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CUB-domain containing protein 1 (CDCP1) is a transmembrane protein acting as an effector of SRC family kinases, which play an
oncogenic role in multiple human cancers. However, its clinical and immune correlations in breast cancer (BrCa) have not been
explored. To define the expression, prognostic value, and potential molecular role of CDCP1 in BrCa, multiple public datasets, and
an in-house cohort were used. Compared with paratumor tissue, CDCP1 was remarkably upregulated in the tumor tissues at both
mRNA and protein levels. In the in-house cohort, CDCP1 protein expression was related to several clinicopathological pa-
rameters, including age, ER status, PR status, molecular type, and survival status. Kaplan–Meier analysis and Cox regression
analysis exhibited that CDCP1 was an important prognostic biomarker in BrCa. In addition, enrichment analysis uncovered that
CDCP1 was not only involved in multiple oncogenic pathways, but correlated with overexpression of immune checkpoints.
Overall, we reported that increased expression of CDCP1 is a favorable prognostic factor in patients with BrCa. In addition, the
correlations between CDCP1 and immune checkpoints provide a novel insight into the adjuvant treatment for immune
checkpoint blockade via targeting CDCP1.

1. Introduction

Breast cancer (BrCa) is a common malignancy with the
highest morbidity and terrible mortality among all cancers
worldwide [1]. According to the latest statistical data, there
will be 290,560 estimated new cases and more than 43,000
estimated deaths in 2022 in the USA [1]. In addition, the
morbidity of BrCa has been slowly increasing by approxi-
mately 0.5% per year since the mid-2000 s partly due to
continued decreases in fertility and increase in excess body
weight [2]. Although the prognosis of BrCa has been per-
sistently improved with the rapid development of com-
prehensive and personalized therapeutic strategies,
including chemotherapy, radiotherapy, targeted therapy,

and immunotherapy, not all patients could benefit from the
established treatment options [3]. +us, reliable biomarkers
are important for the prediction of drug-specific responses
and prognosis in BrCa patients.

CUB-domain containing protein 1 (CDCP1) encodes
a transmembrane protein that contains three extracellular
CUB domains and functions as an effector of SRC family
kinases [4]. Previous studies have revealed that CDCP1 is
oncogenic in several human cancers via regulating tyrosine
phosphorylation-dependent cellular functions, and then
promotes tumor invasion and metastasis [5, 6]. A growing
number of studies uncover the multiple roles of CDCP1 in
cancers. CDCP1 is highly expressed in mesenchymal glioma
subtypes, which may promote proneural-mesenchymal
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transformation [7]. Given CDCP1 is highly expressed in
RAS-driven cancers, targeting a proteolytic neoepitope on
CDCP1 is a pan-cancer approach to control RAS-driven
cancers [8]. In addition, CDCP1 is a prognostic biomarker in
early non-small-cell lung cancer, and its high expression
predicts a poor prognosis [9]. Although several studies have
preliminarily investigated the oncogenic role of CDCP1 in
BrCa [10, 11], systematic analysis based on transcriptomics
and its prognostic value in BrCa has not been defined yet.

In the current research, we aimed to investigate the
expression, prognostic value, and potential molecular role of
CDCP1 in BrCa using multiple public datasets and an in-
house cohort. We reported that CDCP1 was remarkably
upregulated in BrCa tissues and enriched in the HER2-
positive and the triple-negative subtypes. In addition,
high expression of CDCP1 predicted poor prognosis in
BrCa. Moreover, we also performed a systematic analysis of
CDCP1 using the transcriptomic data and found that
CDCP1 was not only involved in multiple oncogenic
pathways but correlated with overexpression of immune
checkpoints. Overall, we systematically analyzed the role of
CDCP1 and emphasized the remarkable correlation between
CDCP1 and immune checkpoints in BrCa.

2. Materials and Methods

2.1. UALCANDatabase Analysis. UALCAN (https://ualcan.
path.uab.edu/) is an online open-access platform using omics
data and clinical information from +e Cancer Genome Atlas
(TCGA) and the Clinical Proteomic Tumor Analysis Con-
sortium (CPTAC) databases [12]. It could be utilized to analyze
transcriptional and protein levels of potential genes of interest
between tumor and paratumor tissues and their association
with clinicopathologic features. In the current study, the
UALCAN tool was utilized to analyze the transcriptional and
protein levels of CDCP1 in BrCa and paratumor tissues and its
association with clinical stages and molecular subclasses. All
the BrCa cases available in the TCGA and the CPTAC sub-
databases were included in our study.

2.2. Kaplan-Meier Plotter Database Analysis.
Kaplan-Meier plotter (https://kmplot.com/analysis/) is
a web-based tool integrating gene expression cohorts,
clinical information, and survival data [13]. All cancer
samples accessible on the Kaplan–Meier plotter were utilized
to assess the prognostic values of CDCP1 in BrCa. +e mean
expression of probe sets (1554110_at and 218451_at) was
used to estimate the CDCP1 expression. BrCa patients were
divided into the low- and high-CDCP1 expression groups
according to the median level of CDCP1, with the rest of the
settings set to default. Kaplan–Meier survival plots were
derived to display all of the cohorts. +e log-rankP value, 95
percent confidence interval (95%CI), and hazard ratio (HR)
were computed and shown online.

2.3. Correlation Genes Screen and Enrichment Analysis.
Linked Omics (https://www.linkedomics.org/login.php) is
a web-based tool used to handle the TCGA data [14]. In this

research, the Linked Omics was used to screen genes that
correlated with CDCP1 in BrCa. Genes with a correlation
coefficient ≥ 0.2 or≤−0.2 were deemed to be candidates. For
all parameters, the default choices were utilized. To identify
the CDCP1-related biological functions and pathways, all
correlated genes were used for enrichment analysis. We
downloaded the h.all.v7.4.symbols.gmt and c2.cp.wiki-
pathways.v7.4.symbols.gmt subclasses from the molecular
signatures database [15], which were used as the back-
ground. +e enrichment analysis was conducted using the R
package “clusterProfiler.” To obtain the results of gene set
enrichment, the minimum gene set was set to 5 and the
maximum gene was set to 5000. +e top 5 terms were
exhibited in this research.

2.4. Estimation of the Immunological Characteristics of the
TME. +e RNA-sequencing (RNA-seq) data of BrCa in the
TCGA database was obtained from the UCSC Xena (https://
xenabrowser.net/datapages/). +e public data was utilized to
investigate the immunological features. First, the ESTI-
MATE algorithm was conducted to estimate tumor purity,
ESTIMATE score, immune score, and stromal score [16],
and their correlations with CDCP1 expression were next
assessed. Next, several gene markers related to the tumor
microenvironment (TME) as well as immune checkpoints
were obtained from a previous publication [17] and their
correlations with CDCP1 expression were evaluated. Fur-
thermore, the correlations between CDCP1 expression and
150 immune-related genes, including chemokines, re-
ceptors, MHC molecules, immunoinhibitors, and immu-
nostimulators, were assessed. In addition, the CIBERSOR
method [18] was used to estimate the abundance of tumor-
infiltrating immune cells (TIICs) based on gene expression
profiles using the R package IOBR, and the correlations
between CDCP1 expression and TIICs abundance were also
evaluated.

2.5. Collection of BrCa Specimens. +e BrCa (Cat. HBre-
Duc159Sur-01) tumor tissue microarray (TMA) was pur-
chased from Outdo BioTech (Shanghai, China). A total of
119 tumor samples and 40 paired paratumor samples were
contained in this research. Detailed clinic-pathological and
follow-up data were provided by Outdo BioTech. Ethical
approval was granted by the Clinical Research Ethics
Committee in Outdo Biotech (Shanghai, China).

2.6. IHC Staining and Semiquantitative Assessment.
Immunohistochemistry (IHC) staining was conducted on
the above sections according to the standardized procedures.
+e primary antibodies used were as follows: anti-CDCP1
(1 : 500 dilution, Cat. AP73474, Abcepta) and anti-EGFR
(Ready-to-use, Cat. PA135, Abcarta). Antibody staining was
visualized with DAB and hematoxylin counterstain, and
stained sections were captured using Aperio Digital Pa-
thology Slide Scanners. +e stained sections were in-
dependently evaluated by two pathologists. Expression levels
of CDCP1 and EGFR in tumor cells were semiquantitatively
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assessed by estimating the immunoreactivity score (IRS)
[19]. Briefly, the percentage of positively stained cells was
scored as 0–4: 0 (< 5%), 1 (6–25%), 2 (26–50%), 3 (51–75%)
and 4 (> 75%). +e staining intensity was scored as 0–3:
0 (negative), 1 (weak), 2 (moderate), and 3 (strong). +e IRS
equals the percentages of positive cells multiplied with
staining intensity.

2.7. Acquisition of GSE173839 Dataset. +e GSE173839
dataset included RNA-seq data of BrCa from 71 patients on
the durvalumab/olaparib arm, which were downloaded from
the Gene Expression Omnibus (https://www.ncbi.nlm.nih.
gov/geo/) [20]. We extracted the expression data of CDCP1
and PD-L1, explored the predictive value of CDCP1 for
immunotherapy, and compared its predictive value
with PD-L1.

2.8. Statistical Analysis. All statistical analyses were con-
ducted using SPSS 26.0 and R 4.0.2. All data are presented as
means± SDs. +e difference between the two groups was
analyzed by Student’s t-test or Mann–Whitney test. Survival
analysis was performed by log-rank test and Cox regression
analysis. Associations between CDCP1 expression and
clinic-pathological features were assessed using the chi-
square test or corrected chi-square test. Correlation analy-
sis between two variables was analyzed by the Pearson test.
All statistical tests were two-sided, and P value≤ 0.05 was
considered statistically significant.

3. Results

3.1. CDCP1 was Upregulated in BrCa Tissues. First, we
compared the expression levels of CDCP1 in tumor and
paratumor samples using the TCGA, the CPTAC, and the
in-house cohorts. In the TCGA cohort, the transcriptional
level of CDCP1 was notably upregulated in BrCa tissues
(Figure 1(a)). In addition, CDCP1 protein was also over-
expressed in tumor samples in the CPTAC cohort
(Figure 1(b)). Moreover, we utilized the IHC staining to
detect CDCP1 expression BrCa and paratumor tissues, and
the results showed that CDCP1 protein was significantly
enhanced in tumor samples (Figure 1(c)–1(d)). Overall,
CDCP1 was highly expressed in BrCa tissues, which could
participate in the oncogenesis of BrCa.

3.2. CDCP1 Was Related to the Molecular Type of BrCa.
Next, the associations between CDCP1 protein expression
and clinicopathological features in BrCa were evaluated in
the in-house cohort. As shown in Table 1, the expression of
CDCP1 was not related to tumor differentiation, T stage,
AJCC stage, and HER2 status. However, CDCP1 was sig-
nificantly associated with age, N stage, ER status, PR status,
molecular type, and survival status. We also compared the
expression levels of CDCP1 in different TNM stages and
molecular subtypes in the TCGA, the CPTAC, and the in-
house cohorts. +e results exhibited that CDCP1 was not
varied in tumor tissues with different TNM stages

(Figures 2(a), 2(c), 2(e)), but upregulated in HER-positive
and triple-negative subtypes (Figures 2(b), 2(d), 2(f )). Taken
together, the expression of CDCP1 was associated with the
molecular type of BrCa.

3.3. Overexpression of CDCP1 Predicted Poor Prognosis of
BrCa. Given the notable association between CDCP1 ex-
pression and survival status, we subsequently investigated
the prognostic value of CDCP1 in BrCa. In the
Kaplan–Meier plotter database, high transcriptional ex-
pression of CDCP1 was remarkably associated with poor
relapse-free survival (RFS), overall survival (OS), and dis-
tant-metastasis-free survival (DMFS) (Figures 3(a)–3(c)). In
addition, in the in-house cohort, CDCP1 was upregulated in
the tumor tissues of patients who died during the follow-up
processes (Figure 3(d)). Similarly, high expression of
CDCP1 protein expression predicted poor OS in the in-
house cohort (Figure 3(e)). Furthermore, both univariate
and multivariate Cox regression analyses revealed that high
expression of CDCP1 was an independent prognostic factor
in BrCa patients (Table 2). Collectively, CDCP1 was a sig-
nificant prognostic biomarker in BrCa.

3.4. Analysis of CDCP1-Related Potential Functions in BrCa.
Subsequently, we tried to investigate CDCP1-related func-
tions in BrCa. Genes correlated with CDCP1 in BrCa with
correlation coefficient ≥0.2 or≤−0.2 were deemed to be
candidates (Figures S1A–S1C). +en, hallmark and Wiki-
pathways gene set analyses of positively correlated genes
(PCGs) and negatively correlated genes (NCGs) were
conducted, respectively. PCGs mainly participated in an
inflammatory response, TNF-α signaling, hypoxia,
epithelial-mesenchymal transition (EMT), and interferon-c
response (Figure 4(a)), and was involved in focal adhesion,
primary focal segmental glomerulosclerosis, PI3K-AKT
signaling pathway, and AGE-RAGE pathway (Figure 4(b)).
+e enrichment results of Wikipathways were visualized in
Figure 4(c). Given that EGFR was as a significant gene that
positively correlated with CDCP1, we validated the corre-
lation between these genes in the in-house cohort, and the
result exhibited that CDCP1 was significantly correlated
with EGFR (Figures 4(d)–4(e)). In addition, the enrichment
results of NCGs were scattered, which were exhibited in
Figure S2. To sum up, CDCP1 may be related to in-
flammatory and immune responses via regulating multiple
pathways in BrCa.

3.5. CDCP1 Was Correlated with Immune Checkpoints Ex-
pressions in BrCa. Considering the potential relationship
between CDCP1 and inflammatory and immune response in
BrCa, we next explored the correlations between CDCP1
and gene markers of immune-related events. CDCP1
showed no significant correlation with the stromal score,
immune score, and ESTIMATE score (Figure 5(a)). In
addition, CDCP1 was also not correlated with MHC mol-
ecules, gene markers of multiple immune cells, but positively
related to immune checkpoint expressions, including CD274
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Figure 1: Expression of CDCP1 in paratumor and BrCa tissues. (a) Comparison of CDCP1 mRNA expression in paratumor and BrCa
tissues in the TCGA dataset based on data mining via UALCAN. (b) Comparison of CDCP1 protein expression in paratumor and BrCa
tissues in the CPTAC dataset based on data mining via UALCAN. (c) Representative images revealing CDCP1 expression in tumor and
paratumor tissues using anti-CDCP1 staining. (d) Expression levels of CDCP1 in tumor and paratumor tissues in the in-house cohort.

Table 1: Associations between CDCP1 expression status and clinic-pathological characteristics in BrCa.

Clinic-pathological characteristics Case
CDCP1 expression

χ2 value P Value
Low High

Age
≤50 58 37 21

5.790 0.016>50 60 25 35
NA 1

Differentiation I (I–II) 40 20 20 0.107 0.744II&III 79 42 37

T stage∗
T1 25 10 15

— 0.281T2 81 43 38
T3 12 8 4
NA 1

N stage∗

N0 43 17 26

— 0.044
N1 36 21 15
N2 28 16 12
N3 8 7 1
NA 4

TNM stage∗
1 7 3 4

— 0.2242 69 33 36
3 39 25 14
NA 4
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Table 1: Continued.

Clinic-pathological characteristics Case
CDCP1 expression

χ2 value P Value
Low High

ER status
Negative 43 15 28

8.460 0.004Positive 75 47 28
NA 1

PR status
Negative 51 18 33

11.367 0.001Positive 66 44 22
NA 2

HER2 status Negative 91 45 46 1.089 0.297Positive 28 17 11

Molecular type

Luminal 78 50 28

12.439 0.002HER2+ 15 5 10
TNBC 25 7 18
NA 1

Survival status
Alive 80 48 32

5.541 0.019Dead 38 14 24
NA 1

Note. ∗ Checked using the corrected chi-square test.

Tr
an

sc
rip

t p
er

 m
ill

io
n

0

10

20

30

40

50

60

Stage1 Stage2 Stage4Stage3

P>0.05

(a)

Tr
an

sc
rip

t p
er

 m
ill

io
n

0

10

20

30

40

50

60

70

Luminal HER2+ TNBC

P>0.05

P<0.001
P>0.05

(b)

Z-
va

lu
e

Stage1 Stage2 Stage3
-4

-3

-2

-1

0

1

2

3
P>0.05

(c)

Z-
va

lu
e

Luminal HER2+ TNBC
-4

-3

-2

-1

0

1

2

3
P>0.05

P=0.014
P>0.05

(d)

Figure 2: Continued.
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Figure 2: Expression of CDCP1 in BrCa tissues with various stages and subtypes. (a, b) Comparison of CDCP1 mRNA expression in BrCa
tissues with various stages and subtypes in the TCGA dataset based on data mining via UALCAN. (c, d) Comparison of CDCP1 protein
expression in BrCa tissues with various stages and subtypes in the CPTAC dataset based on data mining via UALCAN. (e, f ) Comparison of
CDCP1 protein expression in BrCa tissues with various stages and subtypes in the in-house cohort.
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Figure 3: Continued.
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Table 2: Univariate and multivariate analysis of survival in patients with BrCa.

Clinic-pathological
characteristics

Univariate analysis Multivariate analysis
HR 95%CI P Value HR 95%CI P Value

Age 1.21 0.64–2.29 0.559
Grade 1.33 0.66–2.68 0.429
T stage 1.54 0.86–2.78 0.149
N stage 1.36 0.98–1.90 0.067
TNM stage 2.13 1.19–3.84 0.011 2.90 1.51–5.56 0.001
ER status 0.43 0.22–0.80 0.008 3.19 0.51–20.07 0.217
PR status 0.34 0.18–0.67 0.002 0.55 0.19–1.57 0.260
HER2 status 1.04 0.49–2.19 0.924
Molecular type 1.84 1.30–2.60 0.001 2.38 0.92–6.17 0.075
CDCP1 expression 2.10 1.08–4.06 0.028 2.13 1.04–4.34 0.038

0 40 80 120 160
0

50

100

low CDCP1
high CDCP1

Time (months)

P=0.024

O
ve

ra
ll 

su
rv

iv
al

HR = 2.09 (1.10 − 3.96)

(e)

Figure 3: Prognostic value of CDCP1 in BrCa patients. (a, b, c) RFS, OS, and DMFS curves were plotted to assess the prognostic value of
CDCP1mRNA expression in BrCa using the Kaplan–Meier Plotter database. (d) Expression levels of CDCP1 in tumor tissues from alive and
dead patients. (e) OS curves were plotted to evaluate the prognostic value of CDCP1 protein expression in the in-house cohort.
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Figure 4: Continued.
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Figure 4: Enrichment analysis of PCGs of CDCP1 in BrCa. (a) Hallmark enrichment analysis of PCGs of CDCP1. (b) Wikipathways
enrichment analysis of PCGs of CDCP1. (c) Heatmap showing PCGs expressions in the Wikipathways enrichment analysis. (d) Rep-
resentative images revealing CDCP1 and EGFR expressions in tumor tissues using anti-CDCP1 and anti-EGFR staining. (e) Correlation
between CDCP1 and EGFR in BrCa tissues in the in-house cohort.
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Figure 5: Continued.
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(PD-L1), CD276 (B7–H3), and VTCN1 (B7–H4)
(Figure 5(b)). In addition, a larger throughput analysis
showed that CDCP1 was not significantly associated with
immune-related genes and TIICs abundance (Figures 5(c)–
5(d)). Since CDCP1 was positively correlated with PD-L1,
we also examined whether CDCP1 could be a biomarker for
immunotherapy in BrCa. +e results showed that CDCP1
and PD-L1 were highly expressed in BrCa tissues with
a good response (Figure 6(a)), and the predictive value of
CDCP1 was even higher than PD-L1 in the GSE173839
dataset (Figure 6(b)). Overall, CDCP1 was related to en-
hanced immune checkpoint expressions and could predict
the response to immunotherapy in BrCa.

4. Discussion

CDCP1 has been revealed to be significantly dysregulated in
tumor tissues and accelerates progression in several ma-
lignancies [21]. CDCP1 is eminently located on the cyto-
membrane, which lies at the nexus of critical tumorigenic
signaling cascades, containing the SRC-PKCδ, PI3K-AKT,
WNT, and RAS-ERK axes, the oxidative pentose phosphate
pathway, and fatty acid oxidation, making significantly
functional contributions to tumor progression and devel-
opment [21]. In addition, CDCP1 has a notable prognostic
role in cancer. Ikeda et al. performed a multivariate Cox
regression analysis of 200 lung adenocarcinoma patients and
revealed that high-CDCP1 expression was an independent
prognostic factor for OS in lung adenocarcinoma [22].
Dagnino et al. suggested that the circulating serum level of

CDCP1 was related to the risk of developing lung cancer,
especially in patients with tobacco exposure [23]. However,
a systematic analysis of CDCP1 in BrCa has not been
performed yet.

In this research, we reported that CDCP1 was signifi-
cantly overexpressed in BrCa tissues and highly expressed
in the HER2-positive and triple-negative subtypes. Pre-
vious research has revealed that CDCP1 is a novel marker
of triple-negative breast cancer [24] and promotes tumor
progression via reduction of lipid-droplet abundance and
stimulation of fatty acid oxidation [25]. In addition,
CDCP1 could interact with HER2 and enhance HER2-
driven tumorigenesis in BrCa [26]. +us, the enrichment
of CDCP1 might be crucial for the aggressiveness of the
HER2-positive subtype. Furthermore, high expression of
CDCP1 predicted poor prognosis in BrCa, which could be
a novel biomarker for prognostic assessment in BrCa.
Moreover, we also performed a systematic analysis of
CDCP1 using the transcriptomic data and found that
CDCP1 was not only involved in multiple oncogenic
pathways, but correlated with overexpression of immune
checkpoints.

With the rapid development of bioinformatics-assisted
tumor immunity studies, immuno-correlations analysis has
been emerging as a hotspot in the field of cancer research. A
growing number of novel immune biomarkers has been
identified [27–29]. Most immune biomarkers in the tumor
were correlated with the inflamed immune microenviron-
ment, such as enhanced chemokines, MHC molecules, and
effective TIICs, and also correlated with immune checkpoint
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Figure 5: Association between CDCP1 and the immune microenvironment in BrCa. (a) Correlations between CDCP1 and stromal score,
immune score, and ESTIMATE score are estimated by the ESTIMATE method. (b) Correlations between CDCP1 and indicated gene
expressions. (c) Heatmap showing immunomodulators expressions in BrCa tissues. (d) Heatmap showing TIICs abundance estimated by
the CIBERSOR method in BrCa tissues.
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expressions [30, 31]. In the current research, we found that
CDCP1 was not related to the inflamed immune microen-
vironment, but positively correlated with immune checkpoint
expressions, including CD274 (PD-L1), CD276 (B7–H3), and
VTCN1 (B7–H4). +us, CDCP1 might be a crucial regulator
that contributed to immune evasion via promoting immune
checkpoint expressions.

It has been reported that CDCP1 is crucial for the
activation of RAS in cancer [8], and participates in
multiple oncogenic pathways, such as EGF signaling [32]
and HGF signaling [33]. In addition, we predicted that
CDCP1 was involved in TNF-α signaling, hypoxia, EMT,
interferon-c response, PI3K-AKT signaling, and
AGE-RAGE signaling. Most of these pathways are asso-
ciated with the regulation of immune checkpoints in
cancer. For example, PD-L1 could be upregulated in ZEB1
and miR-200 dependent manners EMT-activated human
breast cancer cells [34]. In addition, immune checkpoint
molecules PD-L1 and B7–H3 were notably upregulated
during TGF-β1-induced EMT [35]. Although our current
study suggested potential relationships of CDCP1 to these
pathways, the lack of confirmation from the molecular
biology level remained an unavoidable shortcoming of
this study.

5. Conclusion

In conclusion, we revealed that CDCP1 was highly
expressed in BrCa tissues and enriched in the HER2-
positive and triple-negative subtypes, which also func-
tioned as a novel prognostic biomarker in BrCa. In addi-
tion, CDCP1 was positively correlated with immune
checkpoint expressions in BrCa, and several possibly re-
lated pathways were also suggested. Overall, we system-
atically investigated the role of CDCP1 in BrCa and
provided a possible insight into the CDCP1-mediated
overexpression of immune checkpoints.
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