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Abstract
Seasonal influenza remains a major public health problem, responsible for
hundreds of thousands of deaths every year, mostly of elderly people.
Despite the wide availability of vaccines, there are multiple problems
decreasing the effectiveness of vaccination programs. These include viral
variability and hence the requirement to match strains by estimating which
will become prevalent each season, problems associated with vaccine and
adjuvant production, and the route of administration as well as the
perceived lower vaccine efficiency in older adults. Clinical protection is still
suboptimal for all of these reasons, and vaccine uptake remains too low in
most countries. Efforts to improve the effectiveness of influenza vaccines
include developing universal vaccines independent of the circulating strains
in any particular season and stimulating cellular as well as humoral
responses, especially in the elderly. This commentary assesses progress
over the last 3 years towards achieving these aims. Since the beginning of
2020, an unprecedented international academic and industrial effort to
develop effective vaccines against the new coronavirus SARS-CoV-2 has
diverted attention away from influenza, but many of the lessons learned for
the one will synergize with the other to mutual advantage. And, unlike the
SARS-1 epidemic and, we hope, the SARS-CoV-2 pandemic, influenza will
not be eliminated and thus efforts to improve influenza vaccines will remain
of crucial importance.

Keywords
influenza, vaccine, adjuvant, effectiveness, elderly

 Graham Pawelec ( )Corresponding author: graham.pawelec@uni-tuebingen.de
  : Writing – Original Draft Preparation, Writing – Review & Editing;  : Writing – Review & EditingAuthor roles: Pawelec G McElhaney J

 No competing interests were disclosed.Competing interests:
 The author(s) declared that no grants were involved in supporting this work.Grant information:

 © 2020 Pawelec G and McElhaney J. This is an open access article distributed under the terms of the Copyright: Creative Commons Attribution
, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.License

 Pawelec G and McElhaney J. How to cite this article: Recent advances in influenza vaccines [version 1; peer review: 2 approved]
F1000Research 2020,  (F1000 Faculty Rev):305 9 https://doi.org/10.12688/f1000research.22611.1

 28 Apr 2020,  (F1000 Faculty Rev):305 First published: 9 https://doi.org/10.12688/f1000research.22611.1

1,2 2

1

2

   Reviewer Status

  Invited Reviewers

 version 1
28 Apr 2020

 1 2

, Harvard Medical School, Boston, USAMei Wu1

, The University of HongBenjamin J. Cowling

Kong (HKU), Hong Kong, Hong Kong
2

 28 Apr 2020,  (F1000 Faculty Rev):305 First published: 9
https://doi.org/10.12688/f1000research.22611.1

 28 Apr 2020,  (F1000 Faculty Rev):305 Latest published: 9
https://doi.org/10.12688/f1000research.22611.1

v1

Page 1 of 7

F1000Research 2020, 9(F1000 Faculty Rev):305 Last updated: 28 APR 2020

https://f1000research.com/browse/f1000-faculty-reviews
http://f1000.com/prime/thefaculty
https://f1000research.com/articles/9-305/v1
https://orcid.org/0000-0002-3600-0163
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.22611.1
https://doi.org/10.12688/f1000research.22611.1
https://f1000research.com/articles/9-305/v1
https://doi.org/10.12688/f1000research.22611.1
https://doi.org/10.12688/f1000research.22611.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.22611.1&domain=pdf&date_stamp=2020-04-28


Introduction
Despite the common perception that it is “only a flu”,  
seasonal influenza is a powerful pathogen responsible for  
many hundreds of thousands of deaths every year, especially 
of elderly people. It is somewhat puzzling that a highly  
contagious pathogen responsible for an estimated average of half a  
million fatalities every year is faced with such insouciance by 
most people. Indeed, globally, 300,000 to 700,000 people die  
from the consequences of respiratory complications of influenza 
each year, with a huge difference in mortality rates according 
to age: possibly a vanishingly small number of younger adults  
(0.001%) compared with 0.03% of people aged 65–74 but  
rising to 0.1% of people over 751. Although this may seem to 
be a low chance of death caused directly by influenza, indirect  
sequelae of influenza infection contribute to a deteriorated  
health status and frailty in the elderly. These long-term sequelae 
are not limited to the respiratory tract but are increasingly  
associated with systemic, especially cardiovascular2, symptoms.

Vaccination is a highly effective, minimally invasive, and 
cheap protective measure. However, there are many unsolved  
problems associated with the current seasonal influenza vaccines. 
Thus, advances in effective influenza vaccination must include 
increasing the protective efficiency of the vaccine, especially 
in the elderly. This review will focus on recent advances in the  
science and the R&D, but one should not forget that the  
sociology of enhancing acceptance and uptake is of paramount 
importance too.

Disadvantages of current influenza vaccines and 
efforts to improve them
Predicting the next season’s predominant influenza strains 
is a major undertaking that is always fraught with difficulty 
and often incorrect. Recent advances in surveillance, data  
exchange, and bioinformatics may help to mitigate this problem. 
Unexpectedly, help may be at hand from the surveillance of  
social networking sites, which may yield more topical data than 
public health services3. However, instead of chasing seasonal  
variations, it would be much more advantageous to develop  
vaccines that were effective against all influenza strains, hence 
the intensive efforts to develop “universal vaccines” that will  
protect regardless of the seasonal strain. Many such efforts  
focus on directing antibody production away from targeting 
parts of the virus that are different from strain to strain (i.e. 
the highly variable hemagglutinin [HA] head structures) and  
towards generating antibodies against conserved antigens. 
These may be from the stem part of the molecule, which is not  
normally immunodominant. These antibodies should provide  
heterosubtypic protection, i.e. against multiple different strains4. 
However, until recently, this approach was limited to one viral  
group, but modifying the glycosylation state of stem regions  
may increase antibody accessibility and broaden the range of  
strains targeted5. It is not known whether these experiments in  
mice or even in ferrets reflect what would be effective in  
humans. In naturally acquired H1N1 infection, at least, it seems 
that anti-head and not anti-stalk antibodies play a predominant  
role, as expected6. Nonetheless, in passive immunisation  
studies, monoclonal antibodies against stem antigens can be 

protective in human influenza challenge7. Other approaches 
include active immunisation with multi-epitope protein vaccines  
containing several from influenza A and B, common to multiple 
strains of influenza virus. There is some evidence in humans 
that vaccination in one season may confer protection in the 
next season against strains that were not circulating at the time  
of the earlier vaccination. An analogous approach employing  
mixtures of synthetic peptides is also being pursued by other 
companies, for example8. An advantage of this approach, 
analogous to that in cancer vaccines, is to select epitopes  
stimulating both humoral and cellular immunity; indeed, an  
interesting aspect of the action of the M-001 vaccine9 is that 
it does not contain any HA head epitopes and stimulates  
predominantly cellular responses. Another approach attempts 
to exploit an elegant idea to focus antibody responses on the  
stalk by vaccinating with stalk domains engineered onto  
different head domains, which were shown to be protective 
in mice10. A very recent publication now reports the outcome 
of a phase I clinical trial concluding that high anti-stalk titres 
were induced and paves the way for further development of  
universal influenza virus vaccines11.

Rapidity and volume of vaccine production
A major bottleneck in influenza vaccine production is the  
inability to generate large amounts of vaccine quickly. One  
problem here resides in methodology for producing the vaccine, 
which requires improvement. The technique still employed 
by most vaccine producers is to grow the virus in hens’ eggs.  
Alternatives are being energetically sought after, including  
cell culture approaches and genetic engineering of viral com-
ponents. There are several reasons for this, not only to speed 
up the cumbersome process of growing the virus in eggs (not 
to mention allergy problems) but also because in some cases  
egg-adapted viruses used to make the vaccine are not identical 
to the wild-type pathogen in circulation that season and do  
not protect12. Thus, it was concluded that the quadrivalent  
vaccine “Flucelvax” (grown in cultured canine kidney cells) was 
potentially superior to egg-based vaccines in real-life practise 
as well as in clinical trials13, and importantly a similar trivalent  
vaccine was reported to be effective in individuals over  
60 years of age14. An alternative approach dispensing with 
the need for using live viruses has now reached fruition in the  
“FluBlok” vaccine using cultured insect cells to produce the  
vaccine after their infection with genetically engineered 
baculovirus vectors. Employing a direct comparison with  
egg-grown virus vaccines, researchers reported that the recom-
binant vaccine was more efficacious, also in older adults15.  
The use of recombinant technology obviates the need for 
using live viruses, and once the sequence is known, production 
can be much more rapid, which is important for combating 
new and emerging strains. It may also be possible to simplify  
production even more by producing recombinant vaccines in  
plants, which can result in very rapid synthesis of viral  
proteins. Plant-based vaccines have not yet entered clinical trials, 
but experiments in mice have suggested that such virus-like  
particles are protective, even in very old animals16. Some  
investigators go even further and propose that mRNA itself can 
be used as a vaccine without the need to produce viral proteins  
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outside of the host at all. This results in probably the most  
rapid pipeline for developing prophylactic vaccines. To stabilise 
the RNA, it can be enclosed in liposomes, as in the mRNA-1851  
phase I trials in Miami and Berlin, showing immunogenicity  
and good tolerance17.

Adjuvanted vaccines
Adjuvants are non-immunogenic vaccine components that  
enhance immunity in different ways: by a depot effect or by  
stimulating antigen-presenting cells, for example18. Optimal 
vaccine formulations will of course depend on the route of  
administration. All of these considerations have been receiving 
a great deal of attention over the last 3 years. New data on the 
use of well-established adjuvants such as M59 or even alum  
reflect the rather surprising relative paucity of information on 
their action19,20. Work on developing new adjuvants, such as  
“self-adjuvanting” lipid nanoparticles including Toll-like  
receptor (TLR) ligands, is beginning to deliver encouraging 
results21. Mouse models are revealing that responses to intrana-
sal vaccines may also be enhanced by the inclusion of adjuvants 
such as the TLR ligand CpG22. Increasing attention is being paid 
to testing new adjuvants not only in young animals but also in  
those of advanced age, the most susceptible group23. Mouse  
models are suitable for testing the use of live attenuated viral  
vaccines, rather than the non-viable immunogens usually  
employed. Thus, the effects of different interferons on outcomes 
can be assessed using genetically deficient mice, for example24. 
However, mice are not people, and proof of the pudding must  
be RCTs in humans, but there remain relatively few adjuvants in  
common use so far and this differs in different countries25–27.  
Developing better adjuvants is a high priority, especially for  
vaccination of the elderly28. Current discussions centre around  
the practicalities and ethics of human challenge models for  
assessing vaccine efficacy in the most relevant possible “model”29.

Route of administration
Flu vaccines are mostly injected intramuscularly (i.m.), which 
may be suboptimal. Alternative routes include intradermal  
(i.d.), oral, or inhaled. Regarding the route of administration, 
oral vaccines using live attenuated viruses have not yet found  
widespread application since pilot studies in humans in 201630, 
but in the meantime different approaches are being tested to 
protect various forms of immunogen from degradation in the  
stomach31,32. The expectation that i.d. administration might be 
more effective than the usual i.m. injection seems not to have  
been fulfilled, judging from the data thus far accumulated. 
For example, a comparison of recombinant vaccine followed 
by trivalent inactivated vaccine given i.d. or i.m. revealed no  
differences33. There were some earlier data suggesting that 
for the elderly the i.d. route might be more efficacious, but  
differences were not large34. Other variant application routes are  
being examined in mice, for example, the so-called “prime-
pull” strategy whereby i.m. priming is boosted by inhalation35. A 
very recent study employed intranasal administration of a novel 
adjuvanted vaccine to mimic natural influenza infection and 
to activate CD8+ T cells in situ in the lungs. This sophisticated 
approach employed 2’,3’-cyclic guanosine monophosphate– 
adenosine monophosphate (cGAMP) as an “adjuvant” to activate 

the innate immune sensor stimulator of interferon genes (STING) 
targeted to lung-resident alveolar macrophages and alveolar  
epithelial cells (AECs). Moreover, encapsulation of cGAMP 
with pulmonary surfactants enabled stimulation of STING in  
AECs while sustaining the barrier of the pulmonary surfactant 
appropriately. In this way, intranasally administered vaccine 
resulted in protection against multiple strains of influenza in 
mice and ferrets, associated with both humoral and cellular  
responses36.

Factors influencing effectiveness of vaccination
Current vaccines are licensed based on World Health  
Organization-approved centres that test efficacy solely in terms 
of standard measures of humoral immunity. Subjects do not  
necessarily include elderly people, who may not respond as well 
as younger adults, and differences in responses between older  
men and women37 are not taken into account. Measured  
parameters defining responses on the basis of which vaccines 
are licensed may not always be appropriate: for example, the  
requirement for an increase in antibody titre to two of three  
strains in the vaccine may miss the third one that could be  
critical that season. Also, non-response could erroneously be 
attributed to subjects who already have a high (protective) titre  
of antibody pre-vaccination and cannot increase it more. 
These measures of vaccine responsiveness thus cannot predict  
clinical protection. In this context, advances in molecular  
analysis of the immune response may lead to insights 
on individual variability and guide vaccine design and  
application38,39. Hence, better predictive biomarkers are required, 
particularly considering the essential component of T cell  
immunity, which is not usually measured in the assessment of 
vaccine efficacy prior to licensing. Over the last 3 years, the  
realisation that vaccines need to be formulated to take the  
importance of the T cell response into account has come to 
the fore. This is a crucial issue not only because T cells are  
required to eliminate infected host cells prior to viral release 
but also because the epitopes recognised by T cells tend to be  
conserved across viral strains40. Thus, efforts to develop new 
and improved vaccines increasingly aim to generate cellular 
as well as humoral responses41. Moreover, the type of cellular  
response achieved is likely to be of major importance42, and  
this can be markedly influenced by the nature of the adjuvant43 
as well as by multiple host factors including frailty28 and  
medication44,45. The impact of frailty is currently being inten-
sively investigated, with some studies clearly documenting an 
important influence on effectiveness46 while others do not47.  
The reasons for such discrepancies are likely to be multifactorial  
and are not yet clarified but may at least partly reside in  
definitions of frailty and pre-frailty48 as well as the population  
studied and subject selection49. In particular, there has been  
some controversy regarding whether repeated annual vac-
cinations with the same antigens might result in decreased  
responsiveness50, although recent studies suggest that this is 
not likely to be the case51. Confounding factors could also 
include exposures over the life-course that may have thus 
far under-investigated effects, such as exposure to ionising  
radiation52. It has also been noted that obesity can dampen  
influenza vaccine efficiency (although, importantly, it did 

Page 3 of 7

F1000Research 2020, 9(F1000 Faculty Rev):305 Last updated: 28 APR 2020



not decrease efficacy, i.e. the serological response)53. Other  
important host factors probably include the influence of  
infection with HIV, even when controlled54, or with other  
persistent latent viruses. One of the latter is most notably  
cytomegalovirus (CMV), which is also likely to play a role,  
although its impact on humoral responses remains controversial55.  
This may at least partly be due to the fact that CMV  
infection mostly affects T cell responses, with only knock-on 
effects on antibody levels, especially in the elderly56. The main  
mechanism responsible may be CMV-driven impaired granzyme 
B responses in influenza-specific cytotoxic CD8+ T cells and  
higher levels of IL1057, either human or CMV decoy derived58. 
Finally, an impact of the microbiota, usually taken to refer to 
the gut microbiota, is emerging as an important confounding  
factor in responsiveness to influenza vaccination59. Attempts 
to manipulate the microbiota to enhance responsiveness are  
being tested in clinical trials using probiotics60 or synbiotics61, 
so far without resounding success but with some recent evidence 
of efficacy in the elderly62. An extensive “super-meta-analysis”  
of 28 studies published at the end of 2019 investigated  
the state of knowledge on the impact of “intravenous drug 
use, psychological stress, acute and chronic physical exercise, 
genetic polymorphisms, use of pre-/pro-/symbiotics, previ-
ous Bacillus Calmette-Guérin vaccination, diabetes mellitus,  
vitamin D supplementation/deficiency, latent CMV infection 
and various forms of immunosuppression” on responses to  
influenza vaccination63. This study concluded that “while the  
inhibiting effect of several immunosuppressive host factors 
was evident, the enhancing effect of pro/pre/symbiotics and  
chronic physical exercise was doubtful and virus type-specific 
(A but not B)” and that “studying the host-related correlates  
of the influenza vaccine-induced immune response could  
contribute to the production of new personalized vaccines and 
to the development of new patient-oriented vaccination strate-
gies in a value-based public health perspective”63. Nonetheless,  
there are also detailed studies documenting improved cellu-
lar and humoral responses in elite athletes, so the degree of 
exercise and overall fitness may be crucial to seeing increased  
responsiveness64. Thus, these issues all remain a focus of  
intensive research which undoubtedly carry a great deal of rel-
evance not only for influenza vaccination but for responses  
to other pathogens as well. Moreover, benefits of effective vac-
cination to prevent influenza may be felt in unrelated areas of  
healthcare owing to their indirect impact on other diseases 
as diverse as lung cancer65 and in particular cardiovascular  
disease66.

Cost of developing a new influenza vaccine and 
vaccine cost-effectiveness
While academic research teams are working on the develop-
ment of “universal influenza vaccines” and other improvements 
and advances, one should not forget that the regulatory path-
way to the approval of these new vaccines is often referred 
to as the “valley of death”: many new vaccines never make it 

through the many steps in the approval process. The cost of  
making a new influenza vaccine is estimated at $1 billion and 
takes 10–15 years. Even the cost of annually refreshing the  
influenza strains contained in the current seasonal vaccines is 
estimated to be $5–18 million per year. These are significant  
non-scientific hurdles that need to be overcome when con-
sidering recent advances in influenza vaccines (https://www. 
wired.com/story/flu-vaccine-big-pharma/). Nonetheless, a recent 
analysis suggests that despite the drawbacks of current seasonal  
influenza vaccines, there is a huge public health and public 
financial benefit to the use of influenza vaccines so that further  
improvements would make a big impact67. As vaccines produced 
in cells rather than eggs become more generally available, 
some analyses are concluding that in addition to other potential  
advantages (see above), they may also be more cost-effective68.

Perspectives: future scenario of personalised 
vaccination
As with other areas of medicine, a “one-size-fits-all” approach 
to influenza vaccination will never be optimal for every  
individual. In particular, the state of health and pre-exposures 
of the vaccinee will be highly influential in determining the  
success of the vaccine. In an ideal situation, prior to vaccination, 
the immunological history of the person would be assessed 
from a small blood sample. This would determine the state of  
humoral and cellular immunity as it pertained to influenza  
reactivity and the composition and nature of the vaccine  
modified accordingly. If the individual manifested problems 
regarding deficits in the presence and functions of antigen- 
presenting cells, steps would need to be taken to adjust  
adjuvants or vaccine antigens, or even replace defective  
antigen-presenting cells with artificial engineered constructs69, 
which might one day be possible in vivo. Similarly, if the T cell 
or B cell repertoire lacked cells with the appropriate antigen  
receptors, these could be engineered in. This scenario is  
admittedly highly unlikely, even in the not-so-near future, but 
technological progress in these areas, partly driven by efforts  
of cancer therapy researchers70, has been so rapid that such an  
individualised approach may become feasible at some  
point.

Conclusions
In the past 3 years, there has seen steady progress in the  
science behind the development of improved influenza  
vaccines, but the main hurdles have not yet been overcome.  
These remain the continued necessity for producing sea-
sonal vaccines rather than a universal vaccine, the mode 
of production (egg, cultured cells, recombinant products), 
the development of better adjuvants, the focus on humoral 
and under-appreciation of cellular immunity, and perceived  
problems of immunosenescence28,71,72, as well as poor vaccine 
uptake in most countries. Although practical progress has been 
slow, results from the last 3 years encourage the belief that  
significant inroads will be made over the next 3 years.
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