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Abstract: BET proteins, which recognize and bind to acetylated histones, play a key role in tran-
scriptional regulation. The development of chemical BET inhibitors in 2010 greatly facilitated the
study of these proteins. BETs play crucial roles in cancer, inflammation, heart failure, and fibrosis.
In particular, BETs may be involved in regulating metabolic processes, such as adipogenesis and
metaflammation, which are under tight transcriptional regulation. In addition, acetyl-CoA links
energy metabolism with epigenetic modification through lysine acetylation, which creates docking
sites for BET. Given this, it is possible that the ambient energy status may dictate metabolic gene
transcription via a BET-dependent mechanism. Indeed, recent studies have reported that various BET
proteins are involved in both metabolic signaling regulation and disease. Here, we discuss some of
the most recent information on BET proteins and their regulation of the metabolism in both cellular
and animal models. Further, we summarize data from some randomized clinical trials evaluating
BET inhibitors for the treatment of metabolic diseases.
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1. Introduction

Epigenetic modulation involves the addition (writing) or removal (erasing) of histone
modifications across the chromatin to facilitate changes in the heterochromatin allowing its
transition into the open, activated euchromatin state necessary for transcription [1,2]; Lysine
acetylation has emerged as an important and widespread regulatory posttranslational
modification in several key proteins, including, the modification of various lysine sidechains
within the unstructured amino-terminal tail of various histone proteins [1–3]. This process
is closely associated with transcriptional regulation and is a key target in the evaluation
of epigenetic diseases [3]. The bromodomain extra terminal (BET)- family of epigenetic
reader proteins, including BRD2, BRD3, BRD4, and BRDT (hereafter referred to as BETs),
regulate gene transcription via their recognition and binding of acetylated histones [4,5].
Given this critical role, BETs were treated as both a plausible and important therapeutic
target, and investigations of these proteins facilitated the development of two sets of BET
inhibitors in 2010 [6,7]. The development of these chemical BET inhibitors greatly facilitated
and accelerated the study of BET family proteins, with several investigations revealing
their close association with metabolic signaling [8–10] and diseases [11,12]. Therefore, we
designed this review to evaluate the pathophysiological roles of these proteins in both
normal metabolic processes and their disorders.

2. Overview of BET Bromodomain

Bromodomains, which are comprised of ~110-amino-acid modules, consist of a four-
helix bundle (helices a Z, a A, a B, and a C) with a left-handed twist, and a long intervening
loop between helices a Z and a A (termed the ZA loop) [13]. These bromodomain modules
form a deep hydrophobic pocket that then recognizes and interacts with acetylated histone
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lysines, facilitating their key role in transcriptional regulation [13]. The human proteome
encodes 61 BRD modules across 42 diverse proteins including several BET proteins, such
as BRD2, BRD3, BRD4, and BRDT, which form a subfamily featuring two tandem bromod-
omains (BD1 and BD2) [3]. Both BD1 and BD2 are essential for BET activity and facilitate
their interactions with acetylated chromatin [14], with each domain making a distinct func-
tional contribution to gene transcription [15]. It was recently reported that BD1 primarily
regulates steady-state gene expression, whereas the rapid increases in transcription induced
by inflammatory stimuli require the activity of both the BD1 and BD2 across all of the BET
proteins [15]. BRD4 is the most well-studied of these proteins and acts as the prototype for
this subfamily.

The first study to report a clear connection between BETs and transcriptional regulation
via their recognition of and interaction with acetylated histones was published in 2003 [14].
Further, numerous studies confirmed that BETs play a key role in transcriptional regula-
tion. In 2005, two independent groups reported that BRD4 recruits positive transcription
elongation factor b (P-TEFb) to the promoter of target genes [4,16]. P-TEFb is a heterodimer
composed of cyclinT1, T2, and cyclin-dependent kinase 9 [4,16]. Upon recruitment to
the promoter by BRD4, P-TEFb phosphorylates RNA polymerase II (RNAPII) inducing
transcription in vivo [4,16]. In addition to recruiting P-TEFb, BET protein BRD4 also acts as
an atypical kinase binding the carboxyl-terminal domain of RNAPII directly phosphory-
lating its serine 2 [17] and has also been shown to recognize non-histone acetylation [18].
Huang et al. reported that BRD4 binds to acetylated lysine-310 within the RelA subunit
of nuclear factor (NF)-κB and enhances transcriptional activation of NF-κB and a subset
of NF-κB-responsive inflammatory genes [18]. In 2013, Young et al. proposed the concept
of the super enhancer, which differs from typical enhancers in size, transcription factor
density and content, ability to activate transcription, and sensitivity to perturbation [19,20].
This group also identified BRD4 as a critical supporting partner for the establishment of
several super enhancers known to drive the expression of various key genes associated
with multiple myeloma [19]. Subsequently, other studies also reported that BRD4 is a key
co-transcription factor in super enhancer-mediated gene expression across multiple biologi-
cal processes [21,22]. BRD4 not only functions as a negative cotranscription factor but also
a target that is positively phosphorylated or dephosphorylated by kinase or phosphatase,
respectively. Wu et al. reported that casein kinase II-mediated phosphorylation of a con-
served acidic region in BRD4 modulates its association with P53, modulating the expression
of various P53 target genes [23]. In addition, Shu et al. found that hyper-phosphorylation
of BRD4 is closely associated with resistance to BET inhibitors in triple-negative breast
cancer [24]. In addition, BRD4 phosphorylation has also been shown to be involved in
various cognitive activities, such as memory formation and extinction [25] (Figure 1).
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These were all critical steps in establishing BET research, but these evaluations received
a significant boost in 2010 when two independent groups reported structurally similar BET
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inhibitors in the same issue of Nature [6,7]. These studies demonstrated that BETs play a
key role in controlling the expression of onco- and inflammatory genes with each of these
inhibitors facilitating the functional evaluation of these BET bromodomains [6,7]. Since
then, the BET bromodomain has been shown to be involved in multiple pathophysiologi-
cal processes, including various cancers [26], inflammation [15,22,27], fibrosis [28], heart
failure [28–30], and metabolic disorders [27,31]. These early BET inhibitors, including JQ1,
I-BET, target both BDs equally and have similar biological effects, although they display
distinct bioactivities [6,7]. RVX-208 is another important early BET inhibitor that has been
shown to selectively target BD2 [32]. Recently, BD1 or BD2 selective inhibitors with better
efficacy and tolerability have been developed [15]. The major BET inhibitors are listed in
Table 1.

Table 1. Summary of Drugs Targeting BET Proteins.

Compound Selectivity Indication Reference

BET inhibitors

JQ1 BD1 and BD2 from
BRD2/3/4 and BRDT

Chronic obstructive pulmonary disease [33]

NUT midline carcinoma [6]

Multiple myeloma [34]

Acute myeloid leukemia [35]

Diffuse large B-cell lymphoma [36]

Hematologic malignancies [37]

Lung cancer [38]

Breast cancer [39]

Colon cancer [40]

Pancreatic ductal adenocarcinoma [41]

Colorectal cancer [42]

Hepatocellular cancer [43]

RVX-208 BD2 from BRD2,3,4

Atherosclerosis [44]

Diabetes [45]

Fabry disease [12]

Chronic kidney disease [46]

IBET-762
(GSK-525762)

BD1 and BD2 from
BRD2,3,4,T

Neoplasm [12]

Testis carcinoma [47]

Midline carcinoma [12]

IBET-151 BD1 and BD2 from
BRD2,3,4,T

MLL-fusion leukemia [48]

Colorectal ctumorsancer [42]

Gastric cancer [49]

Vismodegib-resistant esophageal
adenocarcinoma [50]

Rheumatoid arthritis [15]

Melanoma [51]

Myeloma [52]

MK8628/OTXO15 BRD2,3,4

Lymphoma or multiple myeloma [53]

Acute leukemia [54]

NUT midline carcinoma

[12]Triple-negative breast cancer

Lung cancer

Castration-resistantprostate cancer
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Table 1. Cont.

Compound Selectivity Indication Reference

FT1101 BRD2,3,4,T
Acute myeloid leukemia

[12]
Non-Hodgkin lymphoma

CPI-0610 BD1 from
BRD2,4,T Multiple myeloma [12]

ABBV-075
Mivebresib BRD2,3,4

Relapsed/Refractory solid tumors. [55]

Breast cancer

[12]Prostate cancer

Non-Hodgkin lymphoma

Multiple myeloma

Relapsed/refractory acute
myeloid leukemia. [56]

NHWD-870 BRD4
Pancreatic ductal adenocarcinoma [41]

Osteosarcoma [57]

BMS-986158 undisclosed Advanced tumors [12]

PFI-1 BRD2,4 Acute leukemia [58]

ABBV-744 BD2
prostate cancer [59]

Acute myeloid leukemia [59]

GSK788 BD1 Acute myeloid leukemia [15]

GSK620 BD2

Rheumatoid arthritis [15]

Psoriasis [15]

Non–alcoholic fatty liver disease [15]

RO6870810/TEN-10 undisclosed

Acute myeloid leukemia
and myelodysplastic syndrome [60]

NUT carcinoma, other solid tumors, or
diffuse large B-cell lymphoma [61]

Multiple myeloma [62]

BAY 1238097 BRD4

Advanced malignancies [63]

Pancreatic ductal adenocarcinoma
Non-small cell lung cancer [64]

Lymphoma [65]

ZEN-3694 BD1,BD2 Metastatic castration-resistant prostate
cancer [66]

INCB054329 BRD4 Advanced malignancies [67]

INCB057643 BRD4 Advanced malignancies [67]

ODM-207 BRD2,3,4,T Castration-resistantprostate cancer. [68]

AZD5153 BRD4 Malignant solid tumor and lymphoma NCT03205176

CC-90010 BRD2,4

Advanced solid tumors and
relapsed/refractory Non-Hodgkin’s

lymphoma.
[69]

Solid tumor [69]

BET degraders

ARV-825 BRD2,3,4,T

Burkitt’s lymphoma [70]

Multiple myeloma [71]

Secondary (s) acute myeloid leukemia [72]

dBET1 BRD2,3,4 Leukemia [73]

ARV-763 BRD4 Multiple myeloma [71]
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Table 1. Cont.

Compound Selectivity Indication Reference

ARV-771 BRD2,3,4

Castration-resistant prostate cancer [74]

Hepatocellular carcinoma [75]

Non-small cell lung cancer [76]

Post-myeloproliferative neoplasm
secondary acute myeloid leukemia [77]

QCA570 BRD4 Acute leukemia [78]

BETd-246/BETd-260 BRD4 Triple-negative breast cancer [79]

MZ1 BRD4 Castration-resistant prostate cancer [80]

The compounds are listed according to their (1) mechanism of action in blocking BETs function; (2) selectivity
for BET family proteins; (3) condition or diseases for which they are being studied. BET indicates bromodomain
extra terminal.

3. BET Bromodomain and Metabolic Signaling

Cells growing under sufficient energy conditions produce enough acetyl-CoA to
support adenosine triphosphate (ATP) synthesis via the tricarboxylic acid (TCA) cycle and
the cellular respiration, or it functions as a substrate to support histone acetylation. Given
this, we can use histone lysine acetylation as a sort of “energy marker”.

Helping to inform the genome that energy is available for growth. Histone acetylation
and its recognition by BET bromodomains are tightly coupled with energy metabolism.
Therefore, the association between energy sensing signaling transducer and BET bromod-
omain are discussed initially.

3.1. Adenosine Monophosphate-Activated Protein Kinase (AMPK) and Autophagy

AMPK is a master regulator of cellular energetics. AMPK is activated in response to
energy stress by sensing increases in AMP: ATP and ADP: ATP ratios. This kinase acts to
restore energy balance by inhibiting anabolic processes that consume ATP, while promoting
catabolic processes that generate ATP [81]. A recent study found that AMPK maintains the
epigenome of mixed-lineage leukemia (MLL)-rearranged acute myeloid leukemia (AML)
by linking acetyl-CoA homeostasis with BET recruitment to the chromatin. This study also
showed that AMPK deletion reduces acetyl-CoA and histone acetylation, displacing BETs
from the chromatin in leukemia-initiating cells, and reported that treating these cells with
AMPK and BET inhibitors synergistically suppressed AML [82].

Macro autophagy/autophagy is an intracellular recycling system that delivers cy-
toplasmic organelles and materials to lysosomes for degradation [83]. This process is
regulated by several autophagy-related (ATG) genes [84] and tightly controlled by stress-
responsive signaling pathways [85]. This means, that AMPK, which acts as the primary
sensor of cellular energy status, also plays a key role in promoting autophagy. In fact, a
recent study has reported that BRD4 is an evolutionarily conserved autophagy repressor
with BRD4 knockdown activating a series of autophagy processes including phagophore
and autophagosome formation, the fusion of autophagosomes with lysosomes, and the
subsequent degradation of their targets [8]. In addition, other studies have shown that nu-
trient deprivation disrupts the recruitment of BRD4 to the promoters of various ATG genes
thus promoting autophagy. It is also worth noting that this dissociation is mediated by
both AMPK and SIRT1 [8]. In summary, in the nutrient sufficient status, BRD4 suppresses
autophagy that promotes growth, whereas, in the nutrient-deficient status, BRD4 facilitates
cell death because the alternative source of energy, i.e., autophagy, is disrupted.

3.2. Yes-Associated Protein (YAP) and Transcriptional Coactivator with a PDZ-Binding
Domain (TAZ)

YAP is a downstream Hippo reactive transcription factor, known for its critical role in
cell growth [86]. TAZ is a YAP paralog from mammals regulated by the Hippo pathway and
both YAP and TAZ are phosphorylated by LATS kinase and sequestered in the cytoplasm
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via their binding to 14-3-3 where they are ubiquitinated and degraded [86]. When LATS is
inactive, dephosphorylated YAP/TAZ translocates to the nucleus to initiate transcription.
YAP/TAZ do not contain their own DNA-binding motifs and initiate transcription by inter-
acting with TEA domain family members 1–4 [87]. In addition to their classical effects on
promoting cell proliferation, tissue regeneration, and oncogenesis, YAP/TAZ were recently
shown to be involved in metabolic signaling. Accumulated data reveals that YAP/TAZ
activity is strictly controlled by glucose homeostasis and lipid metabolism [88]. Glucose
availability sustains YAP/TAZ activity by feeding the hexosamine biosynthesis pathway,
while the reduction in glucose levels inhibits YAP/TAZ activity, mainly through the activa-
tion of AMPK [88]. Moreover, YAP/TAZ positively control various metabolic processes
with White et al. revealing that YAP/TAZ promote glycolysis but suppress mitochondrial
respiration [89]. In addition, YAP/TAZ have been shown to regulate adipogenesis [90] and
thermogenesis [91], and a recent report suggests that YAP/TAZ physically engages with
BRD4 guiding the genome-wide association of BRD4 [9]. In addition, treatment with small-
molecule inhibitors of BRD4 blunts YAP/TAZ pro-tumorigenic activity in several cells and
tissues making it an interesting mediator of transcriptional regulation [92]. YAP/TAZ are
also key regulators of liver size and regeneration and Liu et al. found that the addition of
a BET inhibitor suppresses YAP/TAZ-mediated transcription and liver regeneration [93].
However, whether other YAP/TAZ-regulated metabolic processes, such as thermogenesis,
glycolysis, and mitochondrial respiration, are controlled by BETs remains unknown.

3.3. PGC1A

PGC-1α is a transcriptional coactivator known to control mitochondrial biogenesis
and is linked to oxidative phosphorylation. PGC-1α interacts with NRF1 and 2 and
stimulates mitochondrial transcription factor A, a mitochondrial matrix protein essential
for the replication and transcription of mitochondrial genes. In addition, PGC-1α binds
PPARα to stimulate cellular fatty acid oxidation (FAO) [94] and recent studies have shown
that BRD4 coordinates with PGC-1α to control mitochondrial function and metabolism,
although these outcomes and their regulation may often be in opposition under different
conditions [10,95]. Padmanabhan et al. found that BRD4 interacts with GATA4 in a
bromodomain-independent manner to increase the expression of PGC-1α in the heart, while
BRD4 knockout suppressed PGC-1α target gene expression and mitochondrial biogenesis
and function producing cardiac contractile dysfunction and lethality in various models [10].
However, in mitochondrial complex I-mutated cells, BET inhibition or BRD4 ablation
actually increases oxidative phosphorylation capacity and protects against cell death [95].
This is likely mediated by the fact that BRD4 occupancy at nuclear-encoded promoters
regulates the expression of mitochondrial genes and prevents PGC-1α from binding, which
allows for BRD4-mediated activation of PGC-1α in normal heart tissues and PGC-1α
suppression in Complex I mutated cells.

4. BET Bromodomain Functions in Fat Tissue Biology
4.1. Adipogenesis

Adipogenesis is a process where fibroblast-like progenitor cells restrict their fate to
the adipogenic lineage, accumulate lipids, and differentiate into triglyceride-filled mature
adipocytes. Adipocyte differentiation is controlled by the action of peroxisome proliferator-
activated receptor gamma (PPARγ) and CCAAT/enhancer binding protein alpha (C/EBPα),
master transcription factors known to control the gene expression program of the devel-
oping adipocyte [96]. Upon adipogenic induction, PPARγ, CEBPα, and their downstream
target genes, many of which are involved in adipocyte functions such as lipid uptake
and lipid synthesis, are dramatically upregulated [97]. BRD4, which is an indispensable
cotranscription factor known for controlling inducible gene expression, has been shown
to control proadipogenic gene expression [21]. Hu et al. reported that BETs physically
associate with JMJD6 allowing for the control of its chromatin binding and proadipogenic
gene transcription [98]. In addition, an analysis of BRD4 chromatin occupancy by Brown
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et al. revealed that the induction of adipogenesis in 3T3L1 fibroblasts provokes dynamic
redistribution of BRD4 to de novo super-enhancers proximal to genes controlling adipocyte
differentiation [21]. Disruption of BRD4 by siRNAs or chemical inhibitors suppresses
adipogenesis, supporting a key role for BETs in adipocyte differentiation [21]. Our in vivo
evaluations revealed that heterozygous BRD4 knockout in adipose tissues results in re-
tarded body weight gain and early death (4–5 weeks) in an animal model, suggesting an
indispensable role for BRD4 in fat biology [99]. This hypothesis was then further supported
by the fact that treatment with JQ1 decreases both body weight and fat content [99]. In
addition, Lee et al. found that BRD4 is required for the development of brown adipose tis-
sues [100]. Although BRD2 and BRD4 belong to the BET bromodomain subfamily, it seems
that they act in opposition when controlling adipogenesis. BRD2 knockdown promotes,
while its overexpression suppresses, adipogenesis in 3T3L1 preadipocytes [101,102].

4.2. Lipolysis

Lipolysis is the process through which TAGs are hydrolyzed to release fatty acids
(FA) for use by organs, such as the liver and skeletal muscle, when faced with carbon
scarcity. Lipolysis requires at least three different enzymes: ATGL catalyzes the initial step
of lipolysis, converting TGs to diacylglycerols (DGs); hormone-sensitive lipase (HSL) is
primarily responsible for the hydrolysis of DGs to monoacylglycerols (MGs) and MG lipase
hydrolyzes MGs [103]. These enzymes are regulated at both the transcriptional and post-
transcriptional levels and while BETs are known to control inducible gene transcription,
their role in controlling lipolysis gene transcription remains less defined. A recent study
reported that overexpression of BRD2 promotes lipolysis in mice and 3T3L1 via ERK/HSL
pathway activation and perilipin 1 degradation. In addition, myeloid lineage-specific
BRD4 knockout promotes lipolysis in adipose tissue and leads to reduced obesity in
mice [104]. Thus, while there is some indirect evidence supporting the inclusion of BETs in
the regulation of lipolysis more studies are required to confirm and evaluate these roles.

4.3. Thermogenesis

Brown adipocytes harbor small, multilocular lipid droplets and an abundance of
mitochondria, which produce heat through non-shivering thermogenesis. Heat production
by BAT is governed by uncoupling protein-1 (UCP1), which resides in the inner mito-
chondrial membrane of brown adipocytes and functions as a long-chain fatty acid/H+
symporter to catalyze mitochondrial proton leak and thereby uncouple electron transport
from ATP synthesis, with UCP1 strongly induced by cold stress [105,106]. We found that
core body temperature was comparable between JQ1-treated and control mice under room
temperature conditions. However, when the mice were exposed to 4 ◦C for 10 h, the body
temperatures of the JQ1-treated mice were slightly but significantly lower than that of
the control. In addition, JQ1 treatment suppressed BAT glucose uptake as determined
by PET-CT scanning [99]. These data suggest that BETs may play an important role in
thermogenesis, and this hypothesis was then supported by another study, which described
a reduction in the thermogenic response of brown adipocytes following the addition of
HDAC11. Additional evaluations revealed that this response was BRD2-dependent and
an in vitro study went on to confirm that BRD2 knockdown completely blocks HDAC11
mediated suppression of Ucp1 and PGC1α mRNA, although it did not explore whether
BRD2 influenced body temperature [107]. Taken together these results suggest there may be
some BET-mediated regulation of thermogenesis, but more studies are needed to evaluate
this role in greater detail.

4.4. Obesity

Obesity is characterized by increased fat accumulation, often resulting from excessive
TAG storage in white adipose tissues following excessive TAG hydrolysis. Obesity leads to
increased chronic low-grade inflammation, which impairs insulin signaling, contributing
to the development of type 2 diabetes mellitus and cardiovascular diseases [108]. Hu et al.
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reported that deficiencies in BRD4 expression in myeloid lineage-specific cells protect mice
from high-fat diet–induced obesity, inflammation, and insulin resistance in their adipose
tissues [109]. In contrast to the effect of BRD4 knockout in myeloid lineage cells, genetic
disruption of BRD2 (which reduces the expression of BRD2 protein) results in an extremely
obese phenotype in mice with these animals reaching a weight of 60 g by 4 months of age
and 90 g by 14 months, even when placed on a regular chow diet. Although disruption
of BRD2 induced the development of severe obesity, knockout mice still presented with
normal glycemia and glucose tolerance, and lower inflammation levels in their adipose
tissues than control mice [102].

5. BET Bromodomains in Hepatic Biology
5.1. Hepatic Steatosis

Hepatic steatosis is characterized by triglyceride accumulation in hepatocytes and
can progress to more severe pathologies such as nonalcoholic steatohepatitis, liver fibrosis,
and cirrhosis [110]. Hepatic steatosis is an important risk factor for the development of
hepatic insulin resistance and type 2 diabetes [110]. Yamada et al. reported that force-
feeding fructose upregulated genes related to hepatic lipid accumulation, such as Cyp8b1,
Dak, and Plin5 [111]. In addition, acetylation of histones H3 and H4, and BRD4 binding
around the transcribed region of these fructose-inducible genes, were enhanced by fructose
force-feeding [111]. Importantly, JQ1 treatment reduced the expression of these fructose-
inducible genes, histone acetylation, and BRD4 binding around these genes [111]. Moreover,
Chromatin Immunoprecipitation Sequencing (ChIP-Seq) using liver tissues from patients
with non-alcoholic steatohepatitis (NASH) revealed that H3K27ac enrichment increases at
gene loci associated with tumor necrosis factor α (TNFα) signaling inflammatory responses,
epithelial-to mesenchymal transition, and IL2-STAT5, while BRD4 inhibition significantly
reduced NASH-induced hepatocarcinogenesis [111]. Taken together, these data suggest a
role for BETs in hepatic steatosis, but these relationships need further evaluation.

5.2. Hepatic Fibrosis

Fibrosis is characterized by the excessive deposition of extracellular matrix (ECM)
in and around injured tissues in response to a wide variety of insults, such as inflam-
mation, infection, and metabolic imbalance [112]. Fibrotic cells are characterized by the
activation of the fibrogenic transcription programs in the myofibroblasts, which drive
ECM production [28]. However, recent studies have shown that BRD4 expression is en-
hanced in liver fibrosis, and BETs inhibition has an anti-fibrotic effect in both the liver
and other organs [112]. Ding et al. reported that BRD4 mediates a profibrotic response
in activated hepatic stellate cells (HSCs), and inhibition of BRD4 blocks HSC activation
into myofibroblasts, while JQ1 treatment attenuates CCl4 (carbon tetrachloride) exposure-
induced hepatic fibrosis [113]. In addition, BET inhibition suppressed NASH, inflammation,
and schistosomiasis-induced hepatic fibrosis [114–116], suggesting a broad-spectrum anti-
fibrotic effect for these compounds.

5.3. HDL Biology

Plasma lipoproteins, which contain very low-density lipoprotein, low-density lipopro-
tein (LDL), and high-density lipoprotein (HDL), are macromolecular complexes used to
transport hydrophobic lipids, cholesteryl esters, and triglycerides [117]. In addition, HDL
mediates cholesterol efflux from atherosclerotic plaque via reverse cholesterol transport
making it a protective lipoprotein. Apolipoprotein A-I (ApoA-I) is a critical component
in HDL and is primarily produced by the liver via APOA1 gene expression. An increase
in the synthesis of ApoA-I and HDL is believed to provide a new approach for treating
atherosclerosis via their regulation of reverse cholesterol transport [44]. A recent study
showed that administration of RVX-208, a BD2 selective BET inhibitor, for 12 weeks in-
creased the expression of both ApoA-I and HDL-C, and promoted the production of large
HDL particles, consistent with cholesterol mobilization [118]. These findings were con-
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firmed in both a Phase 2b SUSTAIN and ASSURE clinical trials [119]. Mechanistically, BET
bromodomain inhibition promotes the transcription of the APOA1 gene in human primary
hepatocytes, thus improving cholesterol mobilization [44]. Thus, taken together, these
studies proposed a novel therapeutic strategy for treating cardiovascular diseases, which
might allow compensation for LDL-C lowering therapies widely used in the clinic.

5.4. Fatty Acid Oxidation, Gluconeogenesis, and Fasting Biology

During periods of fasting, the hepatic metabolism is programmed to initiate gluco-
neogenesis to maintain blood glucose levels and fatty acids oxidation to deliver fuel in
the form of ketone bodies and produce hepakines to coordinate systemic energy home-
ostasis. These biological processes are tightly controlled at both the transcriptional and
post-transcriptional levels. A recent report found that inhibition of BETs suppressed the
expression of fibroblast growth factor (FGF) 15 in the ileum and decreased FGF receptor
4-related signaling in the liver, resulting in increased glucose production in the liver and
hyperglycemia [31]. Mechanistically, impaired FGFR-4 signaling following BET inhibition
results in increased expression of the gluconeogenesis and β-oxidation genes [31]. However,
although the regulation of both gluconeogenesis and FAO gene transcription is important
in carbon scarcity adaption, the influences of BETs on these genes in complex scenarios,
such as extending fasting or ketogenic diet feeding, are not determined.

6. BET Bromodomains and Cardiovascular Diseases
6.1. Cardiac Metabolism and Heart Failure

Under normal conditions, the heart uses a large amount of energy when contracting
but uses relatively little energy for growth. Thus, the heart primarily relies on the most
energy-effective FAO for energy. However, in response to pressure overload, the heart
experiences a shift away from FAO and to an increased reliance on glycolysis [120]. This
change is also often coupled with transcriptional reprogramming characterized by an
upregulation of the glycolytic genes and a downregulation of FAO gene expression [120].
Few studies have also revealed that BETs are likely to be involved in the transcriptional
regulation of various pathological genes associated with murine transverse aortic coarc-
tation [29]. The earliest study by Anand et al. found that BETs function as pause-release
factors critical to the expression of pathological hypertrophic genes, and that inhibition
of these BETs suppresses cardiomyocyte hypertrophy in vitro and pathological cardiac
remodeling in vivo [30]. Subsequent studies confirmed that chemical inhibition of BETs
suppressed heart failure in multiple models [28,29].

Unexpectedly, genetic deletion of BRD4 in cardiomyocytes leads to an acute deteriora-
tion in cardiac contractile function, culminating in dilated cardiomyopathy [121]. Mecha-
nistically, BRD4 colocalizes with GATA4 at genes controlling mitochondrial bioenergy pro-
duction, and BRD4 knockout results in a severe disruption of the cellular metabolism [10].
Moreover, they found that decreased BRD4 expression following heterozygous deletion
results in delayed heart failure, which suggests that BRD4 may function as a critical protein
scaffold in these cells via a bromodomain-independent mechanism.

6.2. BET Bromodomain in Metaflammation and Atherosclerosis

Metabolic inflammation, also known as metaflammation, is defined as low-grade,
chronic inflammation orchestrated by metabolic cells in response to excess nutrients and
energy [122]. Metaflammation contributes to the development of many metabolic diseases
including type 2 diabetes mellitus, non-alcoholic fatty liver disease, and atherosclero-
sis [123]. Various papers have demonstrated that BETs are not only involved in canonical
inflammation following lipopolysaccharide (LPS) exposure [27] but also control metaflam-
mation. Our previous study showed that BETs coordinate with NF-κB to drive super
enhancer production and inflammatory gene transcription [22]. Disruption of BETs by JQ1
attenuates endothelial inflammatory responses and, more importantly, atherogenic diet-
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induced-metaflammation and atherosclerotic lesions are significantly reduced in systems
treated with JQ1 [22].

Despite this promising start, clinical trials using RVX-208 to treat atherosclerosis
produced controversial outcomes. Tsujikawa et al. reported that, at least in patients
with cardiovascular disorders, RVX-208 treatment reduced circulating levels of vascular
inflammatory mediators, which may result in increased atherosclerotic plaque stabilization
and decreased major adverse cardiac events in these patients [124]. However, another study
by Nicholls et al. found that RVX-208 induced no significant increase in ApoA-I or HDL-C
when compared to the placebo and that it did not induce any incremental regression in
atherosclerosis [125]. Therefore, whether the application of BET inhibitors in the treatment
of atherosclerosis produces any significant clinical benefit remains unclear.

7. BET Bromodomain in Diabetes
7.1. Pancreatic β Cells and Type 1 Diabetes

Pancreatic β-cells are located within the islets and produce insulin in response to
enhanced glycemia and multiple neurohormonal factors. Type 1 diabetes (T1D) results from
the progressive loss of pancreatic β cells as a result of autoimmune destruction [126]. BRD2
and BRD4 are highly expressed in pancreatic β-cells, where they normally inhibit β-cells
mitosis and insulin transcription [102,127,128]. In fact in vitro evaluations have revealed
that the specific inhibition of both BRD2 and BRD4 enhances insulin transcription, leading
to increased insulin content [127]. In other studies, the evaluation of the natural history
of T1D in humans and nonobese diabetic (NOD) mice reveals that these β-cells acquire a
senescence-associated secretory phenotype (SASP) which is regulated by BET-mediated
transcriptional control. In fact, the addition of BET inhibitor I-BET762 prevented diabetes in
NOD mice and attenuated SASP in islet cells in vivo [128]. In addition, evaluations of BET
bromodomain inhibitor I-BET151 significantly promoted the expansion of hPSC-derived
pancreatic progenitor cells, which can be efficiently differentiated into functional pancreatic
β-like cells (ePP-β cells) [129]. I-BET151 also irreversibly suppressed the development of
type-1 diabetes in NOD mice by eliciting the regeneration of islet β-cells and inducing their
proliferation [129]. Treatment with this compound also increases the expression of various
genes encoding the necessary transcription factors for β-cell differentiation/function and
induced pancreatic macrophages to adopt an anti-inflammatory phenotype.

7.2. Insulin Resistant and Type 2 Diabetes

Insulin resistance, which remains a major metabolic abnormality in the great majority
of patients with Type 2 diabetes, is caused by altered functions within the insulin target
cells and the accumulation of macrophages secreting proinflammatory mediators, such as
IL-6, TNFα, IL-8, and MCP-1 [130]. BRD4 binds to PPARγ and increases the expression of
Gdf3 in adipose tissue macrophages, resulting in increased fat accumulation and insulin
resistance [109]. Myeloid lineage-specific BRD4 knockout mice fed a high-fat diet display
reduced local and systemic inflammation and improved insulin sensitivity [109], while
overexpression of BRD2 in white adipose tissues from wild-type mice induces insulin
resistance [131]. In addition, reductions in BRD2 blocks insulin resistance even in severely
obese mice [102]. These findings indicate that BRD2 and BRD4 enhance insulin resistance
and are potential therapeutic targets for the clinical treatment of both insulin resistance and
Type 2 diabetes.

Obesity and low-grade inflammation induce insulin resistance but a recent study
showed that TNF-α inhibited insulin-stimulated glucose uptake in 3T3-L1 cells, while
knockdown of BRD2 maintained their insulin sensitivity [102]. This is because BRD2
knockdown attenuates TNF-α-mediated inflammatory mRNA expression in adipocytes,
indicating that BRD2 is required for TNF-α signaling and the initiation of insulin resistance
in vitro [102]. Knockdown of BRD2 increased insulin-induced phosphorylation of IRS-1
and Akt, suggesting that these systems were exhibiting increased insulin sensitivity [131].
In addition, BRD2 suppresses Deptor expression, thereby activating the mTORC1 pathway,
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leading to feedback inhibition of insulin signaling and promoting insulin resistance [131].
The macrophage-mediated inflammatory response has also been implicated in the patho-
genesis of insulin resistance. The bone marrow-derived macrophages (BMDMs) from global
BRD2 reduced mice are less sensitive to LPS stimulation and have lower inflammatory
cytokine production than the control BMDMs isolated from wild-type mice [27].

7.3. Clinical Evaluations of BET Inhibitors for the Treatment of Diabetes

Randomized clinical trials have recently been performed to determine the effect of
BET inhibitors on diabetes. In the first trial, RVX-208 was used to treat unmedicated males
with prediabetes and evaluated using an oral glucose tolerance test augmented with stable
isotope tracers to facilitate postprandial plasma glucose levels, indices of insulin secretion
and sensitivity, glucose kinetics, and lipolysis. These evaluations revealed that RVX-208
treatment produced a similar plasma glucose peak to the placebo, but with a more sustained
elevation 30 min later. RVX-208 treatment also led to a reduction and delay in total and oral
glucose secretion to the plasma and suppression of endogenous glucose production. The
rate of glucose disappearance was also lower following RVX-208, with no effect on glucose
oxidation or total glucose disposal [45]. These results suggest that RVX-208 delayed and
reduced oral glucose absorption and endogenous glucose production, while maintaining
plasma glucose levels via reduced peripheral glucose disposal. Thus, these effects may
protect against the development of type 2 diabetes.

Another trial evaluated the impact of 3–6 months of RVX-208 treatment in terms of both
lipid parameters and coronary atherosclerosis, and also evaluated the incidence of major
adverse cardiovascular events (death, myocardial infarction, coronary revascularization,
and hospitalization for cardiovascular causes). Patients treated with RVX-208 experienced
fewer major adverse cardiovascular events than those treated with the placebo, and that this
effect was more pronounced in patients with diabetes [132]. These results suggest that RVX-
208 treated patients, particularly those with diabetes, experienced fewer cardiovascular
events than the control group.

Finally, a recent phase III BETonMACE trial compared the effects of RVX-208 and
placebo treatment on the incidence of major adverse cardiovascular events in 2425 patients
with a recent diagnosis of the acute coronary syndrome (ACS) and diabetes. RVX-208
treated patients experienced a lower rate of the first hospitalization for heart failure, the
total number of hospitalizations for heart failure, and combined cardiovascular death or
hospitalization for heart failure [133]. These data indicate that RVX-208 treatment was
associated with fewer hospitalizations in patients with Type 2 diabetes for heart failure and
recent ACS. Taken together, these results indicate that BET inhibition may have additional
clinical benefits in patients with diabetes.

8. Conclusion and Perspective

We summarized recent findings pertaining to BETs and their regulation of various
metabolic processes and disorders(Figure 2), and the major conclusions are: 1. in vitro
adipogenic differentiation is BET-dependent; 2. inhibition of BETs upregulates APOA1 gene
expression, thereby increasing plasma HDL levels, which may improve atherosclerosis;
3. chemical inhibition of BETs and genetic deletion of BRD4 produce opposite results in the
heart, suggesting BRD4 has an unknown scaffolding function; 4. randomized clinical trials
of BET inhibitors in diabetes are promising.
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Figure 2. Role of BETs in metabolic processes and disorders. IR, insulin resistance; AS, atherosclerosis;
T2DM, type 2 diabetes mellitus; NAFLD, nonalcoholic fatty liver disease; SASP, senescence-associated
secretory phenotype; T1D, type 1 diabetes.

Despite exciting progress regarding BETs and their function in the metabolism, some
important issues have not been addressed. These include the fact that how BETs couple
with energy metabolism for adaptive gene transcription and their involvement in the
hepatic fed and fasting response remain unknown. In addition, the roles and selectivity of
BD1 and BD2 in both metabolic signaling and disease progression also remain unexplored.
Although there has been significant progress in this field, there are many more fundamental
questions that still need to be answered. In addition, translating these findings to the
clinical setting should be the focus of future studies.
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