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Actin-depolymerization factor (ADF)/cofilin, a family of actin-binding proteins, are critical
for the regulation of actin reorganization in response to various signals. Accumulating
evidence indicates that ADF/cofilin also play important roles in neuronal structure
and function, including long-term potentiation and depression. These are the most
extensively studied forms of long-lasting synaptic plasticity and are widely regarded
as cellular mechanisms underlying learning and memory. ADF/cofilin regulate synaptic
function through their effects on dendritic spines and the trafficking of glutamate
receptors, the principal mediator of excitatory synaptic transmission in vertebrates.
Regulation of ADF/cofilin involves various signaling pathways converging on LIM
domain kinases and slingshot phosphatases, which phosphorylate/inactivate and
dephosphorylate/activate ADF/cofilin, respectively. Actin-depolymerization factor/cofilin
activity is also regulated by other actin-binding proteins, activity-dependent subcellular
distribution and protein translation. Abnormalities in ADF/cofilin have been associated
with several neurodegenerative disorders such as Alzheimer’s disease. Therefore,
investigating the roles of ADF/cofilin in the brain is not only important for understanding
the fundamental processes governing neuronal structure and function, but also may
provide potential therapeutic strategies to treat brain disorders.
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INTRODUCTION

Long-lasting changes in the efficacy of synaptic transmission, including long-term potentiation
(LTP) and depression (LTD), are widely regarded as the key mechanisms underlying memory
storage (Bliss and Collingridge, 1993; Malenka and Bear, 2004; Citri and Malenka, 2008; Neves et al.,
2008; Kessels and Malinow, 2009; Kandel et al., 2014; Mateos-Aparicio and Rodríguez-Moreno,
2019). Synaptic plasticity involves changes in postsynaptic reorganization, including glutamate
receptor trafficking and morphological remodeling of dendritic spines (Malinow and Malenka,
2002; Bredt and Nicoll, 2003; Collingridge et al., 2004; Lamprecht and LeDoux, 2004; Carlisle
and Kennedy, 2005; Segal, 2005; Alvarez and Sabatini, 2007; Ho et al., 2011; Huganir and Nicoll,
2013; Henley and Wilkinson, 2016; Diering and Huganir, 2018), both of which are regulated by
the actin cytoskeleton (Cingolani and Goda, 2008; Spence and Soderling, 2015; Nakahata and
Yasuda, 2018). Evidence suggests that actin-binding proteins are involved in receptor trafficking
as well as morphological changes at the synapse and consequently affect learning and memory
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(Lamprecht, 2011, 2016; Spence and Soderling, 2015; Borovac
et al., 2018). Abnormalities in these proteins are associated with
several neurological disorders (Lian and Sheen, 2015). In this
review we will focus on the role of actin-depolymerization factor
(ADF)/cofilin in the regulation of LTP, LTD, dendritic spines and
their dysfunction in Alzheimer’s disease (AD).

ACTIN-DEPOLYMERIZING PROTEINS

Cofilin is a member of the actin-depolymerizing protein family
that is important for the regulation of actin cytoskeleton
dynamics (Ridley, 2011; Kanellos and Frame, 2016). This family
includes cofilin-1 (n-cofilin, non-muscle), cofilin-2 (muscle
cofilin) and actin-depolymerization factor (ADF, destrin) and
is well conserved among eukaryotes (Maciver and Hussey,
2002). These proteins have a molecular mass of 15–19 kDa
and share multiple structural similarities. Each consists of an
actin depolymerizing factor homology (ADF-H) domain, which
allows for binding to actin subunits, a central alpha helix, a
N-terminus extension and a C-terminus helix (Lappalainen et al.,
1998; Shishkin et al., 2016). Despite their similarities at the
molecular level, these isoforms differ in their degree of affinity
for actin (Bamburg, 1999; Vartiainen et al., 2002; Yeoh et al.,
2002). Actin-depolymerization factor and cofilin-1 can bind to
actin filaments with similar degrees of affinity, whereas cofilin-2 is
less efficient at depolymerization (Vartiainen et al., 2002). While
ADF is better at sequestering monomeric actin, cofilin-1 is more
efficient at nucleation and severing actin filaments (Chin et al.,
2016). These biochemical differences reflect variations in the
cellular expression between isoforms, where ADF and cofilin-1
are mainly expressed in tissues with higher actin turnover.
Specifically, while cofilin-1 is expressed in all cell types, ADF
is mainly expressed in neuronal, epithelial, and endothelial
cells (Kanellos and Frame, 2016). Cofilin-2 is also expressed
in selected tissues including muscles and brain (Thirion et al.,
2001; Agrawal et al., 2012; Gurniak et al., 2014). This review
will discuss ADF and cofilin-1, which are expressed in neuronal
cells. Many studies addressing the roles of ADF/cofilin do not
specify which isoform as many of their functions overlap. Also,
most antibodies do not differentiate between these isoforms and
rescue experiments often use cofilin from lower level eukaryotes
that express only one isoform (Moon et al., 1993; Kanellos and
Frame, 2016). For these reasons and the sake of simplicity,
this group of actin depolymerizing factors will be referred to
collectively as ADF/cofilin, except in studies where specific
isoforms have been addressed.

GENERAL CELLULAR FUNCTION OF
ADF/COFILIN

Regulation of Actin Dynamics
The most characterized role of ADF/cofilin is the regulation
of actin reorganization and their capacity to increase actin
filament turnover (Pollard and Borisy, 2003; Brieher, 2013).
Treadmilling is the most accepted model for actin turnover

(Figure 1; Wegner, 1982; Blanchoin et al., 2014). In this model,
steady state actin filaments preferentially grow at one end, known
as the barbed end, by association of ATP-bound actin monomers,
whereas actin monomers dissociate at the other end, known as
the pointed end (Pollard and Borisy, 2003; Lee and Dominguez,
2010). Following the addition of the ATP-bound actin subunit,
ATP undergoes hydrolysis into ADP and Pi, after which Pi is
released, leaving ADP-bound subunits at the pointed end. ADP-
bound subunits are more prone to dissociate and return to the
actin monomers pool. Dissociated ADP-bound subunits then
exchange ADP into ATP before entering the cycle again (Carlier
and Pantaloni, 1986; Blanchoin and Pollard, 2002; Pollard and
Borisy, 2003). The dynamic turnover of actin filaments can be
enhanced by an increase in the number of filament ends due
to severing of existing filaments (Ichetovkin et al., 2000; Pavlov
et al., 2007). It can also be enhanced by an increase in the rate of
association (polymerization or nucleation) at the barbed ends and
dissociation (depolymerization) at pointed ends (Carlier et al.,
1997; Kiuchi et al., 2007).

Multiple studies show a significant role for ADF/cofilin
in actin filament assembly and disassembly (Lappalainen and
Drubin, 1997; Rosenblatt et al., 1997; Loisel et al., 1999; Pollard
and Borisy, 2003; Bernstein and Bamburg, 2010; Kanellos and
Frame, 2016). Two models have been proposed to explain the
disassembly function of ADF/cofilin. Actin-depolymerization
factor/cofilin can increase the rate of depolymerization at
pointed ends or sever existing actin filaments into smaller
fragments (Blanchoin and Pollard, 1999; Pavlov et al., 2007).
The best evidence for increased actin subunit dissociation comes
from the “bulk sample of actin” experiment that measured
the exchange of fluorescent or radiolabeled ADP-bound actin
subunits incubated with ADF/cofilin for ATP in the medium
(Carlier et al., 1997). Exchange of ADP into ATP occurs only on
free actin monomers not on actin subunits in filaments, therefore
nucleotide exchange can only happen after the dissociation of
ADP-bound subunits from filaments. The observed increase
in the rate of nucleotide exchange in this experiment can be
interpreted to arise from the dissociation of actin subunits
in the presence of ADF/cofilin (Carlier et al., 1997). Though
this study suggests that depolymerization at the pointed end
increases in the presence of ADF/cofilin, it does not provide
direct evidence to support this conclusion. As neither the
number of ends nor filament lengths were known, it was
not possible to measure subunit dissociation from individual
filament ends (Carlier et al., 1997). The filament disassembly
severing model is supported by real-time microscopy assays
which analyzed single actin filaments. Binding of ADF/cofilin
to actin filaments was found to induce a conformational twist
in these filaments resulting in fragmentation or severing of
filaments (Andrianantoandro and Pollard, 2006). After binding
of ADF/cofilin, an increase in actin depolymerization at pointed
ends was observed in the presence of vitamin D binding proteins,
which sequester free actin monomers. However, the detected rate
of depolymerization was too slow to account for the observed
rates of nucleotide exchange in bulk assays (Andrianantoandro
and Pollard, 2006). Therefore, it could be concluded that severing
of actin filaments by ADF/cofilin can produce many filament
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FIGURE 1 | Regulation of actin dynamics by ADF/cofilin. Binding of profilin on ADP-actin monomers induces nucleotide exchange (1). Formin (2) and Arp2/3 (3)
induce nucleation of actin monomers and formation of actin filaments. While formin induces parallel actin filament (2), Arp2/3 promotes branching of the original
filament (3). In addition, actin filaments can be polymerized by the addition of ATP-actin monomers at the barbed ends (4). Binding of dephosphorylated/active
ADF/cofilin to ADP-actin subunits of actin filaments causes severing of these filaments (5) and depolymerization at pointed ends (8). ADF/cofilin activity is mediated
by phosphorylation and dephosphorylation by LIMK1 and SSH respectively. ADF/cofilin also debranch Arp2/3 nucleated actin filaments (6). The severing activity of
ADF/cofilin is enhanced by Aip1, coronin and CAP (7) and diminished by tropomyosin (5). Binding of capping proteins at barbed ends blocks the growth of newly
formed actin segments. CAP also dissociates ADF/cofilin from ADP-actin monomers and promotes nucleotide exchange on these monomers (1).

ends which may account for the nucleotide exchange rate
(Ichetovkin et al., 2000; Pavlov et al., 2007). Recently, a study
using single-filament approach based on microfluidics suggests
that ADF/cofilin-induced actin disassembly is mediated by both
severing and depolymerization activity (Wioland et al., 2017).
Consistent with Andrianantoandro and Pollard (2006), pointed
end depolymerization was enhanced by ADF/cofilin, though
not to the extent predicted by bulk assays (Andrianantoandro
and Pollard, 2006; Wioland et al., 2017). Actin-depolymerization
factor/cofilin favor barbed-end depolymerization through either
directly targeting the barbed ends of bare filaments, which is
avoided when ATP-actin is present, or preventing the barbed
ends of ADF/cofilin-saturated filaments from elongating and
promoting barbed-end depolymerization, contrary to the general
consensus (Wioland et al., 2017). As there is debate on how
ADF/cofilin promote filament disassembly, they also promote
assembly in multiple ways. Actin-depolymerization factor/cofilin
could increase the rate of polymerization as detected in
bulk assays (Carlier et al., 1997). However, single filament

studies show that ADF/cofilin slow barbed-end polymerization
(Andrianantoandro and Pollard, 2006). Another mechanism
for cofilin-induced filament assembly is through severing,
which may create more filament ends (Andrianantoandro and
Pollard, 2006). Moreover, cofilin could stimulate nucleation
by stabilizing long-pitch actin dimers, the first intermediate
in spontaneous assembly and nucleation may be the main
contribution of ADF to the increased rate of actin filament
assembly (Andrianantoandro and Pollard, 2006). In summary,
ADF/cofilin mediate both filament assembly and disassembly
through multiple mechanisms, including depolymerization,
severing, polymerization and nucleation (Figure 1).

The effect of ADF/cofilin on actin filaments depends
on the relative concentration of ADF/cofilin to actin and
interactions with other proteins (Ono, 2003; Winder and
Ayscough, 2005; Pavlov et al., 2007). At a lower ADF/cofilin
concentration, severing of actin filaments by ADF/cofilin is
highest (Andrianantoandro and Pollard, 2006). When few
ADF/cofilin molecules are bound to actin filaments, the number
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of strained interfaces between twisted and non-twisted region is
the highest, resulting in frequent breakage (Bobkov et al., 2006).
At a higher ADF/cofilin concentration, when actin filaments are
largely covered with ADF/cofilin, severing is no longer observed,
though there is still dissociation from the pointed ends (Pavlov
et al., 2007). When ADF/cofilin levels are higher, they can
nucleate filaments (Yeoh et al., 2002; Andrianantoandro and
Pollard, 2006; Kudryashov et al., 2006). However, abnormally
high levels of active ADF/cofilin can drive the formation of
ADF/cofilin-actin rods that sequester a large fraction of the
total ADF/cofilin, rendering ADF/cofilin incapable of promoting
actin disassembly (Minamide et al., 2000). Other actin-binding
proteins may alter ADF/cofilin’s ability to act on the actin
cytoskeleton (Winder and Ayscough, 2005). These proteins
include actin-interacting protein 1 (AIP1), tropomyosins (TPM),
cortactin, actin-related proteins-2/3 (Arp2/3) and coronins
(Ichetovkin et al., 2002; Brieher et al., 2006; Kueh et al., 2008;
Ostrowska-Podhorodecka et al., 2020).

Interaction With and Regulation of Other
Actin-Binding Proteins
The reported rates of ADF/cofilin-mediated actin filament
disassembly in vitro are lower than those observed in in vivo
experiments, which could be due to a difference in cytosolic
versus in vitro conditions (Lappalainen and Drubin, 1997).
These results also suggest that additional cellular factors may
be involved in regulating the activity of ADF/cofilin under
physiological conditions. Many studies have demonstrated
that other actin-binding proteins can potently modulate
ADF/cofilin’s ability to act on the actin cytoskeleton (Winder
and Ayscough, 2005). These actin-binding proteins include:
(1) proteins structurally or functionally similar to ADF/Cofilin
(e.g., AIP1), cyclase associated protein (CAP), and coronin;
(2) proteins involved in F-actin filament assembly (e.g., Arp
2/3, profilin, and cortactin); (3) proteins generally antagonistic
toward ADF/Cofilin activity (e.g., TPM) (Winder and Ayscough,
2005). Actin-interacting protein 1, coronin, and CAP are
functionally similar to ADF/cofilin as they each promote F-actin
disassembly. Both AIP1 and coronin facilitate the cofilin-
mediated disassembly of Listeria comet tail and purified actin
filaments even with a physiological concentration of actin
monomers, a condition promoting actin assembly (Brieher et al.,
2006; Kueh et al., 2008). This conclusion is supported further
using internal reflection fluorescence microscopy to directly
visualize the integrated actions of coronin and AIP in enhancing
cofilin-mediated actin filaments disassembly (Jansen et al., 2015).
Although AIP1 itself moderately enhances cofilin-mediated actin
severing, the presence of coronin alone appears to inhibit
severing by cofilin (Jansen et al., 2015). The inhibitory effect
of coronin was also previously shown in bulk assay studies
(Cai et al., 2007; Gandhi et al., 2009). This disparity is likely
to arise due to differences in the nucleotides state of actin, as
studies have shown that coronin may interfere with the binding
of cofilin to ATP-actin, but not ADP-actin (Ge et al., 2014).
In addition to the synergistic effect of coronin and AIP1 on
cofilin-mediated actin severing, AIP1 has been shown to be
able to bind to the newly generated barbed ends and block

growth of the newly formed actin segments, enabling actin
filament disassembly under cellular conditions which generally
enables filament assembly (Jansen et al., 2015). Actin-interacting
protein 1 is known to be regulated by STK16, a constitutive
kinase. RNAi knockdown of STK16 in cultured cells resulted
in significantly decreased F-actin levels and increased actin
polymerization, demonstrating a potential link between AIP1
activity and actin dynamics (Liu et al., 2017). Interestingly,
the mixture of cofilin, coronin and AIP1 failed to disassemble
actin filaments with a physiological concentration of actin
filaments until the addition of CAP (Normoyle and Brieher,
2012). As such, CAP was identified as a factor that promotes
disassembly of cofilin-actin filaments. Cyclase associated protein
was shown to associate with both actin monomers and filaments
and is expressed in the hippocampus, striatum and cortex
(Freeman et al., 1995; Bertling et al., 2004; Normoyle and
Brieher, 2012). CAP1 knockdown in cultured cells results in
abnormal cytoplasmic aggregates of cofilin and diminished
actin depolymerization, suggesting a role of CAP in regulating
the localization and function of cofilin-1 in mammalian cells
(Bertling et al., 2004). Interestingly, CAP forms a hexameric
structure that binds to actin filaments though its N-terminal
segment and enhances cofilin-mediated actin severing (Jansen
et al., 2014). The severing efficiency of CAP is directly
proportional to the stoichiometry of their oligomerization, that
is to say CAP tetramers and trimers show increased CAP-
cofilin interaction compared to CAP monomers (Purde et al.,
2019). Despite these studies suggesting a role of CAP in
cofilin-mediated filament severing, recent studies report the
inability of CAP to increase cofilin-mediated actin severing
using single-filament microfluidics approach (Shekhar et al.,
2019). In the same line, CAP accelerates actin depolymerization
at the pointed end suggesting that CAP enhance cofilin-
mediated disassembly through depolymerization not severing
(Kotila et al., 2019; Shekhar et al., 2019). Cyclase associated
protein can also bind to actin monomers through its C-terminal
domain and catalyze nucleotide exchange on cofilin-bound ADP
actin monomers (Jansen et al., 2014; Kotila et al., 2018). Proteins
involved in F-actin assembly/nucleation shown to interact with
ADF/cofilin include Arp2/3, profilin and formin (Weaver et al.,
2001; Sagot et al., 2002; Bleicher et al., 2020). Early in vitro
studies suggest a synergistic relationship between the Arp2/3
complex and cofilin in regulating filament assembly. The total
number of newly polymerized filaments is increased in the
presence of both the Arp2/3 complex and cofilin (Ichetovkin
et al., 2002). In addition, the frequency of Arp2/3-nucleated
branching, in newly formed actin filaments from cofilin-
mediated severing, is higher than old pre-existing filaments.
Other studies suggest cofilin promotes debranching and has
an antagonistic relationship with Arp2/3 as cofilin promotes
dissociation of actin filament branches induced by Arp 2/3
(Blanchoin et al., 2000). Moreover, binding of cofilin promotes
structural changes in actin filaments, which decreases the affinity
of Arp2/3 complex for actin resulting in dissociation of Arp2/3
complex from actin filaments and promoting dissociation of
actin filament branches induced by Arp 2/3 complex (Chan
et al., 2009). Therefore, the debranching activity of cofilin
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occurs via cofilin’s effect on actin filaments and not the
Arp2/3 complex itself. However, some studies suggest that
actin depolymerizing factor homology protein, known as glia
maturation factor, functions more specifically as a debranching
factor through direct interaction with the Arp2/3 complex
(Ydenberg et al., 2013; Poukkula et al., 2014). Much like the
process of disassembly, actin filament nucleation is synergistic
and reliant on the concentration of both actin monomers
and proteins required for polymerization. There is a certain
degree of cooperativity between actin filament assembly and
disassembly, as it has been shown that formin activity can
preclude cofilin-mediated severing, although cofilin activity is
required to produce the actin monomers needed to maintain
network stability (Bleicher et al., 2020). Tropomyosin is a well
characterized regulator of actin filament dynamics known to
dampen ADF/cofilin activity (Gunning et al., 2015). Specifically,
Tpm competes with ADF/cofilin-mediated actin disassembly by
spatially restricting binding sites at the pointed ends of filaments
(Kuhn and Bamburg, 2008; Gateva et al., 2017; Jansen and Goode,
2019). Notably, different Tpm isoforms have varying effects on
ADF/cofilin-mediated actin dynamics; particularly, fast off-rate
Tpm isoforms permit a relative increase in ADF/cofilin binding,
allowing for greater F-actin turnover (Ostrowska-Podhorodecka
et al., 2020). In summary, ADF/cofilin activity is intricately
regulated by its interactions with diverse actin-binding proteins.
Some of these proteins have been shown to play an important
role in spine and synaptic plasticity and will be further discussed
in later sections.

Activation of Phospholipase D1
The phosphorylated form of ADF/cofilin is considered the
inactive form and is not involved in actin cytoskeleton
regulation (Bernstein and Bamburg, 2010; Ridley, 2011;
Kanellos and Frame, 2016). Few studies have shown a role of
phosphorylated ADF/cofilin in muscarinic receptor−mediated
stimulation of phospholipase D1 (PLD1), which is independent
of actin regulation (Schmidt et al., 1999; Han et al., 2007).
Phosphorylated ADF/cofilin can bind and activate PLD1, leading
to the hydrolysis of phosphatidylcholine to phosphatidic
acid by PLD1 in the cell membrane, and is considered
to be involved in a large variety of early and late cellular
responses. These responses include calcium mobilization,
secretion, superoxide production, endocytosis, exocytosis,
vesicle trafficking, glucose transport, mitogenesis and apoptosis
(Exton, 2002). In HEK-293 and neuroblastoma cells, factors
known to increase ADF/cofilin phosphorylation, such as LIM
domain containing kinase (LIMK) 1 and inactive slingshot
phosphatase (SSH) enhance the activity of PLD1, whereas
expression of wild-type SSH, which abolishes ADF/cofilin
phosphorylation, and constitutively active unphosphorylatable
(S3A) cofilin compromise PLD stimulation (Han et al., 2007).
Phospholipase D1 activity has been linked to neurite outgrowth
and LTD, suggesting its involvement in synaptic plasticity
but further characterization is required (Cai et al., 2006;
Santa-Marinha et al., 2020). Thus, even in its phosphorylated,
presumed inactive form, ADF/cofilin is likely to fulfil important
biological roles.

REGULATION OF ADF/COFILIN
ACTIVITY

ADF/Cofilin
Phosphorylation/Dephosphorylation
Actin-depolymerization factor/cofilin
phosphorylation/dephosphorylation at serine 3 (Ser 3) serves as
a key convergence point for many signaling pathways to regulate
ADF/cofilin activity in response to various intrinsic and external
signals (Bamburg, 1999; Bamburg and Bernstein, 2008). Actin-
depolymerization factor/cofilin phosphorylation at Ser 3 inhibits
actin binding, whereas dephosphorylation activates actin binding
(Bernstein and Bamburg, 2010; Kanellos and Frame, 2016).
Actin-depolymerization factor/cofilin Ser 3 phosphorylation is
mediated by LIMK and testicular protein kinase (TESK), which
are serine/threonine kinases (Arber et al., 1998; Yang et al., 1998;
Toshima et al., 2001). LIMKs are extensively studied and contain
two family members; LIMK1 is predominantly expressed in the
nervous system and LIMK2 is widespread throughout the body
(Scott and Olson, 2007; Cuberos et al., 2015). LIMK1/2 have
high specificity for Ser3 of ADF/cofilin, due to the interaction
between the LIMK catalytic domain and the actin binding helix
of ADF/cofilin. Targeted mutations at the phosphorylation site
inhibit functional inactivation of cofilin-1 by LIMK1 in yeast
and mammalian cells (Hamill et al., 2016). LIMK1/2 can be
phosphorylated and activated by the Rho-associated protein
kinases (ROCKs) and p21-activated kinases (PAKs; Scott and
Olson, 2007; Arber et al., 1998; Yang et al., 1998; Cuberos et al.,
2015). Phosphorylation of LIMK1 by PAK1 and LIMK2 by PAK4
occurs at Thr 508 and 505, respectively (Maekawa et al., 1999;
Ohashi et al., 2000; Sumi et al., 2001). Both PAKs and ROCKs are
protein kinases associated with and activated by the Rho family
of small GTPases, the central mediators of actin reorganization in
response to diverse signaling processes (Govek et al., 2005). The
importance of LIMK1 for ADF/cofilin phosphorylation and actin
regulation is shown by reduced ADF/cofilin phosphorylation
and altered F-actin in LIMK1 knockout (KO) mice (Meng et al.,
2002). Cofilin dephosphorylation at Ser 3 is mediated by two
protein phosphatases; chronophin, which is highly specific for
cofilin, and SSH, which can also dephosphorylate and inactivate
LIMK1 (Niwa et al., 2002; Bernstein and Bamburg, 2010). SSH
can be phosphorylated and inactivated by PAK4 and protein
kinase D1 (Soosairajah et al., 2005; Eiseler et al., 2009). Both
chronophin and SSH regulate ADF/cofilin in a spatially precise
manner, proximal to the membrane, this can allow for the
formation of membrane protrusions (Nagata-Ohashi et al., 2004;
Gohla et al., 2005; Nishita et al., 2005). For example, during
lamellipodium formation, dephosphorylation of SSH induces
its release from scaffolding protein 14-3-3 in the cytoplasm
and its translocation on growing actin filaments to induce
dephosphorylation/activation of cofilin within lamellipodium
(Nagata-Ohashi et al., 2004).

Other Regulatory Mechanisms
In addition to Ser 3, phosphorylation at tyrosine (Tyr 68) has been
shown to be important for cofilin-1 regulation (Yoo et al., 2010).
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This regulation is unique to cofilin-1, since ADF does not
have Tyr 68 (Yoo et al., 2010). In HEK cells, phosphorylation
at Tyr 68 does not directly affect the actin-depolymerizing
activity, however it increases ubiquitination and proteasome
degradation of cofilin-1 sufficiently to reduce cofilin-1 levels
and cellular distribution (Yoo et al., 2010). Oxidation has also
been introduced as a mechanism for ADF/cofilin regulation
(Bernstein and Bamburg, 2010; Kanellos and Frame, 2016).
Under oxidative stress conditions in T cells, ADF/cofilin can
undergo oxidative modification. Oxidation of the thiol groups of
cysteine residues in ADF/cofilin molecules leads to the formation
of both intra and intermolecular disulfide bonds which causes
oxidized ADF/cofilin to interact weakly with LIMKs and this
results in an increase in unphosphorylated/active ADF/cofilin
(Klemke et al., 2008). Another mode of ADF/cofilin regulation
is through binding to phosphatidylinositol 4,5-bisphosphate
(PIP2; Bernstein and Bamburg, 2010; Kanellos and Frame, 2016).
In vitro studies show that PIP2 directly binds to ADF/cofilin and
inhibits their actin-depolymerizing activities (Yonezawa et al.,
1990). This was confirmed using biochemical and spectroscopic
studies showing that ADF/cofilin cluster PIP2 molecules at
the membrane through their interaction with multiple PIP2
headgroups and that a small decrease in PIP2 density efficiently
activated ADF/cofilin in carcinoma cells (Zhao et al., 2010).
pH in vitro and in vivo is also shown to modulate mammalian
ADF/cofilin activity (Bernstein et al., 2000; Pavlov et al., 2006).
The in vivo mechanism is highlighted by the ability of cofilin to
act as a cellular pH sensor, with increased activity at higher pH
and that this ability involves the inhibition of cofilin activity by
binding PIP2, as discussed earlier (Frantz et al., 2008). Studies
in neurons have shown other regulatory mechanisms in addition
to those introduced above and these include mRNA availability
and translation (Feuge et al., 2019), and temporal and spatial
regulation of subcellular distribution (e.g., Zhou et al., 2011;
Pontrello et al., 2012; Bosch et al., 2014). These mechanisms are
particularly important for the regulation of ADF/cofilin activity
during spine and synaptic plasticity, which will be discussed
further in later sections.

ROLE OF ADF/COFILIN IN SYNAPTIC
FUNCTION AND MEMORY IN THE BRAIN

Bidirectional Regulation of Spine
Morphology
One of the most important features of neuronal synapses is
their ability to change the strength of synaptic transmission in
response to external stimuli, which is referred to as synaptic
plasticity. In the mammalian central nervous system, most
excitatory synapses are located on small dendritic protrusions
called dendritic spines (Carlisle and Kennedy, 2005; Alvarez and
Sabatini, 2007; Tønnesen and Nägerl, 2016; Gipson and Olive,
2017). Synaptic plasticity, including LTP and LTD, is closely
associated with changes in the number and morphology of
dendritic spines and these changes are typically referred to as
structural plasticity (Lamprecht and LeDoux, 2004; Carlisle and

Kennedy, 2005; Alvarez and Sabatini, 2007; Bernardinelli et al.,
2014; Borovac et al., 2018; Lai and Ip, 2013; Sheppard et al.,
2019). For example, using glutamate uncaging, an enlargement
of dendritic spines during the induction of LTP at single spines
of hippocampal CA1 pyramidal neurons is observed (Matsuzaki
et al., 2004). On the other hand, the induction of LTD using low
frequency stimulation is accompanied by shrinkage of dendric
spines in acute hippocampal slices from neonatal rats (Zhou
et al., 2004). As actin is the main cytoskeletal component of
the dendritic spine, it is not surprising that actin dynamics
play a key role in the regulation of spine morphology (Matus
et al., 1982; Hotulainen and Hoogenraad, 2010; Miermans et al.,
2017; Basu and Lamprecht, 2018). Using two-photon imaging,
a dynamic pool of actin filaments is seen at the tips of spines
from CA1 pyramidal neuron in rat hippocampal slices (Honkura
et al., 2008). These actin filaments can be quickly treadmilled
to generate an expansive force to mediate changes in spines
(Honkura et al., 2008). Two-photon Forster resonance energy
transfer (FRET) imaging shows that activity-dependent actin
polymerization and depolymerization in dendritic spines during
LTP and LTD (Okamoto et al., 2004). During synaptic plasticity,
the actin cytoskeleton is highly regulated and goes through
phases of polymerization and depolymerization (Bosch et al.,
2014; Kim et al., 2015; Borovac et al., 2018). For example, the
reorganization of actin during LTP appears to have two distinct
but overlapping phases (Bosch et al., 2014). Within the first 5 min
after LTP induction, there is remodeling of the actin cytoskeleton
through rapid periods of actin filaments disassembly followed by
periods of actin filament assembly, which result in enlargement of
dendritic spines and LTP. After 5 min of LTP induction, there is a
net increase in actin and newly polymerized actin filaments in the
spine which result in long-term stabilization and consolidation of
early synaptic changes (Bosch et al., 2014).

One of the earliest indications that ADF/cofilin is important
for spine and synaptic regulation comes from studies on LIMK1/2
KO mice, which show altered spine morphology and impaired
synaptic function and that these alterations are associated with
a dramatic reduction in cofilin phosphorylation (Meng et al.,
2002, 2004). In addition, bidirectional changes in ADF/cofilin
phosphorylation and dephosphorylation can be induced rapidly
by activation of glutamate receptors and signaling molecules
at the synapse (Meng et al., 2002). A subsequent study
using immunoelectron microscopy shows that cofilin-1 is
concentrated in the shell of spines rich in dynamic actin
and within postsynaptic density in the stratum radiatum of
the rat hippocampus (Racz and Weinberg, 2006). More direct
evidence to support cofilin function at the synapse comes
from molecular and genetic manipulations of ADF/cofilin and
their upstream regulators. Overexpression of constitutively active
unphosphorylatable cofilin (S3A) in neurons leads to reduced
spine size and immature morphology (Shi et al., 2009). The
expression of constitutively inactive phosphomimetic cofilin
(S3D) restores mature spine morphology (Shi et al., 2009). Longer
dendritic protrusions and slower actin turnover are also observed
when cofilin-1 expression is reduced using siRNA in primary
hippocampal neurons (Hotulainen et al., 2009). In cofilin-1
conditional KO mice where cofilin-1 is selectively deleted in the
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excitatory neurons of the postnatal forebrain, increased synapse
density and enlargement of dendritic spines are found in the
hippocampus and these structural changes are associated with
impaired late phase LTP and LTD (Rust et al., 2010). Although
ADF KO mice show no deficits in spine properties or synaptic
function (Görlich et al., 2011), ADF and cofilin-1 double KO
mice exhibit greater changes in spine enlargement than cofilin-1
conditional KO mice, suggesting that ADF also plays a role in
spine regulation (Wolf et al., 2015). Other evidence supporting
the role of ADF/cofilin in basal spine properties comes from
manipulations of their upstream regulators in addition to
LIMK1/2 (Meng et al., 2002, 2004; Todorovski et al., 2015). These
include PAK1/3 (Meng et al., 2005; Asrar et al., 2009; Huang
et al., 2011), ROCK2 (Zhou et al., 2009), chronophin (Kim et al.,
2016) and Rho GTPases (Nakayama et al., 2000; Li et al., 2002;
Martino et al., 2013), all of which affect either spine morphology
or density. For example, both PAK1/3 double and ROCK2 KO
mice have reduced spine density and immature morphology and
these spine changes are associated with a significant reduction in
cofilin phosphorylation (Zhou et al., 2009; Huang et al., 2011).
Overexpression of chronophin in mice results in the shrinkage of
dendritic spines and knocking out chronophin causes dendritic
spine enlargement in hippocampal neurons (Kim et al., 2016).

Actin-depolymerization factor/cofilin are not only important
for basal spine morphology and density but also required for
spine changes during synaptic plasticity for which the temporal
and spatial regulation of ADF/cofilin appears to be particularly
important (Bernstein and Bamburg, 2010; Lai and Ip, 2013;
Noguchi et al., 2016; Borovac et al., 2018). In general, it has
been shown that ADF/cofilin inactivation is associated with
and required for actin assembly and spine enlargement and
stabilization during LTP, whereas ADF/cofilin activation can
drive actin filament disassembly and spine shrinkage during
LTD. However, single spine imaging studies have revealed that
changes in ADF/cofilin during LTP are much more complex
and dynamic, exhibiting multiple phases of regulation (Bosch
et al., 2014). During the initial phase (<5 min) of dendritic
spine enlargement induced by glutamate uncaging at single
spines, the amount of ADF/cofilin in the spine increases and
this is accompanied by an increase in the amount of actin
and spine enlargement (Bosch et al., 2014). This is consistent
with the observation that cofilin undergoes translocation in
its unphosphorylated/active form following glutamate uncaging
(Noguchi et al., 2016). During a later phase (>5 min), there is
sustained accumulation of phosphorylated/inactive ADF/cofilin
at the base of the spine head where cofilin forms a stable complex
with actin filaments (Bosch et al., 2014). These results suggest that
ADF/cofilin phosphorylation is needed to retain its accumulation
within spines. It is shown that wild type and constitutively
inactive cofilin (S3E) accumulate in the stimulated spines for
30?min after spine enlargement following glutamate uncaging,
whereas constitutively active cofilin (S3A) more rapidly diffuses
away from the enlarged spine (Noguchi et al., 2016). These single
spine imaging results are consistent with earlier studies using
protocols to induce LTP at the global level. PAK and ADF/cofilin
phosphorylation in rat hippocampal slices are found to be
increased 2–7 min after theta-burst stimulation, a time window

consistent with the transition from the initial to later phase (Chen
et al., 2007). In cultured neurons, the levels of phosphorylated
cofilin declines 5 min after the onset of chemically induced
LTP, but significantly increases by 30 min (Gu et al., 2010).
These studies suggest that dynamic regulation of ADF/cofilin
phosphorylation and spine accumulation contributes to different
phases of spine plasticity during LTP. During spine shrinkage
and LTD, although the precise time course of ADF/cofilin
involvement has not be investigated at single spines, ADF/cofilin
dephosphorylation and spine accumulation are consistently
found to be associated with and required for LTD in both cultured
neurons and brain slices (Zhou et al., 2011; Pontrello et al., 2012).
The mechanisms by which ADF/cofilin is regulated during LTP
and LTD will be discussed further in later sections.

How changes in ADF/cofilin activity, either through spine
accumulation or phosphorylation, regulate spine morphology
remain unclear. However, a recent study using a fluorescent
reporter to monitor membrane-proximal actin filaments (MPA)
may provide new insight (Bisaria et al., 2020). In this study, it
is shown that amount of MPA is lower at the front compared
to the back during membrane protrusion and cell migration,
and that increased cofilin activity is required for this MPA
gradient and the initiation of new membrane protrusions. These
results are consistent with earlier studies showing SSH can
regulate ADF/cofilin in a spatially precise manner proximal to
the membrane (Nagata-Ohashi et al., 2004; Soosairajah et al.,
2005) and suggest that cofilin activity driven by SSH at the
front is essential. The major isoform of slingshot is SSH-1L,
which is only active in its cofilin dephosphorylation activity
when it is bound to F-actin (Nagata-Ohashi et al., 2004;
Soosairajah et al., 2005). In contrast to the accumulation of
SSH1L, LIMK1 diffusely distributes in the cytoplasm (Nagata-
Ohashi et al., 2004; Nishita et al., 2005). These findings suggest
that spatially distinct localization of LIMK1 and SSH1L during
protrusions formations may also play a role in spine formation
and morphological changes.

Bidirectional Regulation of Glutamate
Receptors Trafficking
While the induction of LTP and LTD at many synapses
requires the activation of N-Methyl-D-aspartic acid (NMDA)
glutamate receptors, their expression involves modification of α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
glutamate receptors, the principal mediator of fast excitatory
synaptic transmission (Bliss and Collingridge, 1993; Malinow and
Malenka, 2002; Bredt and Nicoll, 2003; Collingridge et al., 2004,
2010; Segal, 2005; Derkach et al., 2007; Rebola et al., 2010; Ho
et al., 2011; Huganir and Nicoll, 2013; Henley and Wilkinson,
2016; Diering and Huganir, 2018). These modifications include
channel properties and receptor abundance at the synapses
(Lau and Zukin, 2007; Huganir and Nicoll, 2013; Henley and
Wilkinson, 2016; Diering and Huganir, 2018). In particular,
receptor trafficking at the synapse attracts the most attention
due to its potent effects on synaptic strength (Collingridge et al.,
2004; Henley and Wilkinson, 2016; Diering and Huganir, 2018;
Park, 2018). Several studies have shown that ADF/cofilin play an
important role in the regulating trafficking and accumulation of
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AMPA receptors within synapses during LTP and this process
appears to be distinct from its role in spine morphological
plasticity (Gu et al., 2010; Rust et al., 2010). Elevated ADF/cofilin
activity markedly enhances addition of AMPARs to the surface
after chemical induction of LTP in cultured neurons, whereas
the inhibition of ADF/cofilin activity suppresses the addition
of AMPA receptors (Gu et al., 2010). The role of ADF/cofilin
in AMPA receptor trafficking has also been demonstrated in
animal models. Lateral diffusion of the AMPA receptors subunit
GluA2 was shown to be compromised in the extrasynaptic
compartment of hippocampal neurons from cofilin-1 mutant
mice (Rust et al., 2010). The exchange of AMPA receptors
between synaptic and extrasynaptic domains by lateral diffusion
is thought to represent a key mechanism to control the level
of synaptic AMPA receptors during synaptic plasticity (Choquet
and Hosy, 2020; Groc and Choquet, 2020). The stabilization
of actin filament by jasplakinolide reduces the mobility of
the extrasynaptic AMPA receptor subunit GluA2, whereas
destabilization of actin filament by latrunculin A results in
increased movement of GluA2 subunits (Rust et al., 2010).
This suggests that the effect of ADF/cofilin on AMPA receptors
mobility and surface expression is mediated by actin-dependent
mechanisms. These results are consistent with studies where
direct manipulations of the actin cytoskeleton affects LTP and
AMPA receptor trafficking (Allison et al., 1998; Kim and Lisman,
1999; Zhou et al., 2001; Cingolani and Goda, 2008; Yang et al.,
2008; Hanley, 2014; Basu and Lamprecht, 2018). ADF/cofilin
have also been shown to play a role in AMPA receptor
internalization during LTD (Zhou et al., 2011). The induction of
metabotropic glutamate receptor-dependent LTD (mGluR-LTD)
induces ADF/cofilin dephosphorylation, spine shrinkage and a
decrease in synaptic AMPA receptors. Actin-depolymerization
factor/cofilin-dependent regulation of AMPA receptor trafficking
is also seen following learning. Extinction of conditioned taste
aversion leads to temporally enhanced ADF/cofilin activity in the
infralimbic cortex of the rats and manipulations of ADF/cofilin
activity accelerates or inhibits memory extinction by regulating
the recruitment of AMPA receptors at the synaptic surface (Wang
et al., 2013). These studies support that ADF/cofilin regulates
synaptic transmission through AMPA receptor trafficking in
addition to spine morphological changes.

Mechanisms and Signaling Pathways
Regulating ADF/Cofilin Activity During
Synaptic Plasticity
At many central synapses, the induction of LTP and LTD
requires Ca2+-dependent signaling pathways, including
protein kinases [e.g., activation of Ca2+/calmodulin-dependent
protein kinase II (CaMKII) during LTP] and phosphatases
(e.g., calcineurin) during LTD (Malinow and Malenka, 2002;
Collingridge et al., 2004; Malenka and Bear, 2004; Derkach
et al., 2007; Citri and Malenka, 2008; Lüscher and Malenka,
2012; Bliss and Collingridge, 2013; Huganir and Nicoll, 2013;
Henley and Wilkinson, 2016; Sanderson et al., 2016; Diering and
Huganir, 2018). Accumulating evidence indicates that multiple
mechanisms exist at the synapse to link these Ca2+-dependent

pathways to regulate ADF/cofilin (Meng et al., 2004; Jia et al.,
2009; Rex et al., 2009; Martinez and Tejada-Simon, 2011;
Yasuda, 2017; Nakahata and Yasuda, 2018) and these are
summarized in Figure 2.

Many studies have shown that ADF/cofilin is a downstream
effector of Rho GTPases and their effector protein kinases such
as PAKs, ROCKs and LIMKs during LTP and spine enlargement
(Borovac et al., 2018; Nakahata and Yasuda, 2018; Kovaleva
et al., 2019). Rho proteins, including RhoA, Rac and Cdc42,
are activated during LTP (Govek et al., 2005; Rex et al., 2009;
Martinez and Tejada-Simon, 2011). For example, stimulation
of NMDA receptors leads to activation of Rac1 and rapid
enlargement of dendritic spines (Xie et al., 2007). Overexpression
of either Rac1 or Rac3 causes an increase in spine density
(Wiens et al., 2005; Pennucci et al., 2019). Double knockouts
of Rac1 and Rac3 inhibit the formation of dendritic spines
and induce an increase in filopodia-like spines (Pennucci et al.,
2019). PAK1 and PAK3 double KO mice show decreased actin
filaments and phosphorylated ADF/cofilin which are associated
with immature spines and LTP impairments (Huang et al., 2011).
Similarly, ROCK2 KO mice are altered in spine morphology
accompanied by reduced phosphorylated ADF/cofilin (Zhou
et al., 2009). LIMK1 KO mice exhibit significant abnormalities
in the actin cytoskeleton, reduced phosphorylated ADF/cofilin
and impaired late phase LTP (Meng et al., 2004; Todorovski
et al., 2015). These genetic studies are consistent with results
from manipulations of the Rho GTPases and their effectors
in cultured neurons and slices (Luo et al., 1996; Nakayama
et al., 2000; Tashiro et al., 2000; Rex et al., 2009; Shi et al.,
2009). Therefore, ADF/cofilin phosphorylation mediated by
the activation of the Rho GTPase-PAK/ROCK-LIMK pathway
is a key mechanism that is responsible for ADF/cofilin
inactivation, actin assembly and spine enlargement during
LTP. Actin-depolymerization factor/cofilin dephosphorylation
through activation of chronophin might also be important spine
enlargement during LTP as chronophin KO mice are impaired in
late-phase LTP (Kim et al., 2016). The effect of chronophin could
be mediated through regulating the coupling of GluN2A subunits
with postsynaptic proteins (Kim et al., 2016).

In addition to ADF/cofilin phosphorylation, reduced protein
translation of ADF/cofilin has also been reported to be associated
with chemical LTP and this translational regulation is mediated
by fragile X mental retardation protein 1 (FMRP1; Feuge
et al., 2019). In cultured hippocampal neurons, glycine induced
LTP is accompanied by reduced ADF/cofilin mRNA availability
and translation, and these changes are impaired in FMRP1
KO mice. How FMRP1-mediated suppression of ADF/cofilin
translation is achieved remains unknown, but it is known that
this mRNA-binding protein is a potent regulator of activity-
dependent local protein synthesis involving the mTOR and
ERK1/2 pathways (Brown et al., 2001), and therefore it is
possible these pathways are also important for downregulating
ADF/cofilin protein level during this form of LTP. Interestingly,
the FMR1 KO mice also show elevated activation of the
Rac-PAK-LIMK pathway, resulting in increased ADF/cofilin
phosphorylation, under basal conditions, and overexpression of
active ADF/cofilin rescues some of the behavior defects in FMR1
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FIGURE 2 | Signaling pathways that regulate ADF/cofilin phosphorylation and dephosphorylation during LTP and LTD. During LTP, activation of NMDA receptors
causes calcium influx into dendritic spines. The increased intracellular calcium activates CaMKII which in turn activates small Rho GTPases, including Rac, Cdc42
and RhoA. These small GTPases bind to and activate PAKs and ROCKs that can directly phosphorylate and activate LIMK1. LIMK1 can also be activated following
the activation of neuroligin 1 receptors during LTP through SPAR-Rac signaling pathway. Activated LIMK1 phosphorylates and inactivates cofilin resulting in the
enlargement of dendritic spines. In addition, the LTP-induced calcium influx diminishes local translation of cofilin mRNA in dendrites through a FRMP 1-dependent
manner. Translocation of cofilin into spines during LTP occurs through yet to be discovered mechanisms. During LTD, the activation of NMDA receptors and influx of
calcium activates CIN which activates SSH through the PI3K-dependent pathway. Activated SSH dephosphorylates and activates cofilin which results in dendritic
spine shrinkage. In addition, LTD-induced calcium influx mediates translocation of cofilin into spines in a β-arrestin 2-dependent manner. During mGLuR-LTD, GluA2
interaction with cadherin/β-catenin activates Rac-PAK which then activate SSH. Additionally, SSH can also dephosphorylate and inactivate LIMK1.

KO mice (Pyronneau et al., 2017). These results indicate that
in addition to translational regulation of ADF/cofilin, FMRP1
also acts as a negative regulator of ADF/cofilin phosphorylation
through the Rac-PAK/LIMK signaling process.

During LTD and spine shrinkage, Ca2+-dependent
phosphatases are important for ADF/cofilin dephosphorylation
and activation. Inhibition of calcineurin in CA1 pyramidal
neurons blocks cofilin-dependent spine reduction during LTD
induced by low frequency stimulation (Zhou et al., 2004).
Chemical LTD induced by application of NMDA is associated
with dendritic spine shrinkage and loss of synaptic proteins,
and these changes require ADF/cofilin dephosphorylation
and spine accumulation (Pontrello et al., 2012). Although
calcineurin dependent activation of phosphatidylinositol
3-kinase (PI3K) is important for ADF/cofilin dephosphorylation,
the intermediates between PI3K and ADF/cofilin are not
yet identified. In non-neuronal cells, PI3K regulates cofilin
dephosphorylation through activation of SSH (Nishita et al.,
2004). Furthermore, calcineurin has been shown to mediate
ADF/cofilin dephosphorylation by SSH in response to calcium
influx (Wang Y. et al., 2005). In neuronal cells, ephrin-induced
dendritic spine retraction and ADF/cofilin dephosphorylation
requires activation of calcineurin and subsequent activation
of SSH (Zhou et al., 2012). These studies suggest that the

calcineurin-P13K-SSH pathway may mediate ADF/cofilin
dephosphorylation and activation during LTD. The spine
accumulation of ADF/cofilin during chemical LTD requires
β-arrestin 2 as NMDA-induced spine remodeling and cofilin
translocation are impaired in β-arrestin 2 KO neurons (Pontrello
et al., 2012). The NMDA-induced cofilin dephosphorylation
appears to be independent of spine accumulation as blocking
the PI3K pathway does not prevent cofilin translocation to the
spine. These results suggest that there are two distinct pathways
respectively regulating cofilin dephosphorylation and spine
accumulation that are activated during NMDA-induced spine
shrinkage and LTD.

During mGluR-LTD, the mechanisms governing ADF/cofilin
regulation are also distinct from those involved in NMDA
receptor dependent LTD (Zhou et al., 2011). mGluR-LTD induces
ADF/cofilin dephosphorylation and spine accumulation and
these changes are required for both mGluR-dependent spine
shrinkage and synaptic depression. Interestingly, ADF/cofilin
dephosphorylation is dependent on the AMPA receptor subunit
GluA2 and its interaction with the cell adhesion molecule
N-cadherin/β-catenin and subsequent activation of Rac1. How
the activation of Rac1 leads to dephosphorylation and activation
of ADF/cofilin is not known, but it could involve inactivation of
the PAK-LIMK pathway or activation of the SSH pathway.
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In addition to glutamate receptors, other neuronal surface
proteins and receptors have also been shown to regulate
ADF/cofilin activity through similar mechanisms discussed
above but may involve additional processes. For example, the
c-terminal domain of the cell adhesion molecule neuroligin 1
induces spine enlargement and cofilin phosphorylation that are
mediated by neuroligin 1’s interaction with spine-associated Rap
GTPase-activating protein (SPAR) and subsequent activation
of the Rac1-LIMK pathway (Liu et al., 2016). Neurotrophic
factors and their receptors regulate spine growth and LTP which
are dependent on changes in ADF/cofilin phosphorylation and
dephosphorylation mediated by Rac1 and RhoA (Gehler et al.,
2004; Soulé et al., 2006; Wong et al., 2019). Glucocorticoid
hormone promotes learning-induced spine formation mediated
by activation of LIMK1 and ADF/cofilin phosphorylation (Liston
and Gan, 2011; Liston et al., 2013). These studies together
indicate the complexity of the regulatory mechanisms governing
ADF/cofilin activity at the synapse.

Regulation of Presynaptic Function
Actin is also abundantly expressed in presynaptic terminals
(Matus et al., 1982; Gotow et al., 1991). Pharmacological studies
have identified a role for actin in regulating synaptic vesicle
mobilization and exocytosis (Morales et al., 2000; Gorovoy et al.,
2005). Like actin, ADF/cofilin are also expressed in presynaptic
terminals (Rust, 2015), suggesting a presynaptic function. This
is initially supported by alterations in presynaptic properties
in LIMK1 KO mice where the frequency of neurotransmitter
release and synaptic depression in response to sustained neuronal
activity are both increased and (Meng et al., 2002). However,
neurotransmitter release and presynaptic short-term plasticity
are not affected in cofilin-1 KO mice (Rust et al., 2010). In
addition, the recruitment and exocytosis of synaptic vesicles are
unchanged in ADF KO mice (Görlich et al., 2011). The lack
of presynaptic defects in ADF KO mice may be explained by
the elevated cofilin-1 levels observed in these mice (Görlich
et al., 2011). Indeed, ADF and cofilin-1 double KO mice
have more severely impaired actin dynamics as well as altered
distribution and exocytosis of synaptic vesicles (Wolf et al., 2015;
Zimmermann et al., 2015). Electron microscopy and biochemical
data from these double KO mice show a shift in the distribution
from the active zone to the reserve pool as well increased
docking of synaptic vesicles at CA1 synapse (Wolf et al., 2015).
In addition, electron microscopy data from the double KO mice
show an increase in the presynaptic bouton area and an increased
number of docked vesicles at the active zone of striatal synapses,
resulting in increased overall glutamate release at the striatal
synapses (Zimmermann et al., 2015). Interestingly, a decrease
in glutamate release is detected within the hippocampus and
this decrease could be caused by defective vesicle recruitment as
shown by reduced glutamate release during sustained synaptic
stimulation (Wolf et al., 2015). Therefore, although cofilin-1
is a limiting factor in postsynaptic plasticity and cannot be
substituted by ADF, the presence of either ADF or cofilin-1
appears to be sufficient to regulate actin remodeling during
presynaptic vesicle release, suggesting an overlapping functions
presynaptically (Rust et al., 2010; Wolf et al., 2015; Zimmermann

et al., 2015). In line with the role of ADF/cofilin in presynaptic
function, the disruption of upstream regulators, including RhoA,
ROCK2, PAK1/3, LIMK1, and SSH, all impair some aspects of
vesicle exocytosis and neurotransmitter release (Meng et al., 2002;
Wang H. G. et al., 2005; Asrar et al., 2009; Yuen et al., 2010;
Huang et al., 2011).

Regulation of Learning and Memory
long-term potentiation and depression are regarded as key
mechanisms for learning and memory (Bliss and Collingridge,
1993; Citri and Malenka, 2008; Neves et al., 2008; Kandel et al.,
2014). The demonstrated role of ADF/cofilin in these forms
of synaptic plasticity, as discussed earlier, suggests that they
are important in memory formation and this is supported by
several studies. For example, the conditional deletion of cofilin-1
in postnatal principal neurons results in severe impairments
in associative learning, but not exploratory or latent learning
(Rust et al., 2010). Activation and inhibition of ADF/cofilin
activities using peptides facilitated or impeded contextual fear
memory extinction in rats, respectively (Wang et al., 2013).
Increased phosphorylated, inactive, ADF/cofilin is observed in
the hippocampal CA1 region of rats after learning in an enriched
environment (Fedulov et al., 2007). Neonatal social isolation
inactivates ADF/cofilin and leads to an increase in stable actin
fractions at the dendritic spines in the juvenile medial prefrontal
cortex (Tada et al., 2016) and barrel cortex of rats (Tada et al.,
2017). Other evidence supporting the importance of ADF/cofilin
in memory comes from memory abnormalities observed in the
absence of ADF/cofilin upstream regulators. Impaired learning
has been documented for mice lacking LIMK1, PAK1/3 and Rho
GTPases (Meng et al., 2002, 2005; van Galen and Ramakers, 2005;
Huang et al., 2011; Todorovski et al., 2015). For example, LIMK1
KO mice are drastically impaired in long-term but not short-
term memory during fear conditioning and the Morris water
maze (Meng et al., 2002; Todorovski et al., 2015). Expression
of dominant-negative PAK3 alters cofilin phosphorylation and
impairs social recognition memory (Leung et al., 2018). Actin-
depolymerization factor/cofilin also play a role in other behaviors
including reward learning (Toda et al., 2006; Rothenfluh and
Cowan, 2013) and anxiety (Goodson et al., 2012). Conditional
cofilin-1 KO mice show impaired novel object recognition, but
normal social behavior including social recognition (Sungur et al.,
2018). Moreover, ADF/cofilin conditional double KO mice also
demonstrate abnormal nesting behavior, increased activity and
impulsive behavior, as well as reduced non-associative learning
and working memory (Zimmermann et al., 2015).

ROLE OF ADF/COFILIN IN NEURONAL
APOPTOSIS AND
NEUROINFLAMMATION

Translocation of ADF/cofilin to the mitochondria is important
for induction of apoptosis in multiple cell types, including
neurons, neutrophils, lymphoma, neuroblastomas, and prostate
cancer (Chua et al., 2003; Zhu et al., 2006; Klamt et al., 2009).
Actin-depolymerization factor/cofilin undergo oxidation during
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inflammatory stress (Klamt et al., 2009; Bernstein and Bamburg,
2010), and when oxidation is prevented, apoptosis is inhibited
(Klamt et al., 2009). In mouse embryonic fibroblasts, oxidation
of ADF/cofilin cause them to lose their affinity for actin and
translocate to the mitochondria, where they induce swelling
and cytochrome c release by mediating the opening of the
permeability transition pore (Klamt et al., 2009). Knocking
down endogenous ADF/cofilin using targeted small interfering
(siRNA) inhibits apoptosis, which is restored by expression of
wild type ADF/cofilin (Klamt et al., 2009). The apoptotic effect
of ADF/cofilin is independent of ADF/cofilin’s role in actin
cytoskeleton regulation (Bernstein and Bamburg, 2010).

Several studies have implicated ADF/cofilin in the regulation
of neuronal apoptosis (Yang et al., 2004; Bernstein and Bamburg,
2010; Li et al., 2013). Knocking down ADF/cofilin from primary
cortical neurons results in decreased excitotoxic neuronal death
caused by excess glutamate (Posadas et al., 2012). During
excitotoxic neuronal death, ADF/cofilin interacts with the
proapoptotic protein Bax, carrying it to the mitochondria
and contributing to the depolarization of the mitochondrial
membrane, the release of apoptotic factors and neuronal death
(Posadas et al., 2012). Actin-depolymerization factor/cofilin is
also involved in ischemia-induced neuronal death (Madineni
et al., 2016). The activation of ADF/cofilin occurs during
ischemia in cortical neurons and knocking down ADFcofilin
increases neuronal viability (Madineni et al., 2016). These results
are consistent with work on LIMK1 and SSH (Yang et al.,
2004; Posadas et al., 2012), showing that overexpression of
LIMK1 and inhibition of SSH protects cells from apoptosis by
inactivating ADF/cofilin.

In addition to direct involvement in neuronal apoptosis,
recent studies suggest that ADF/cofilin contribute to neuronal
apoptosis through other cell types like astrocytes (Alhadidi et al.,
2016). Astrocytes express glutamate transporters which regulate
the clearance of glutamate released from synapses (Anderson and
Swanson, 2000). Dysfunction of astrocytic glutamate transporters
trigger neuronal death by excessive glutamate and excitotoxicity
(Rossi et al., 2000). In primary astrocyte cultures, the actin
cytoskeleton has an important role in regulating the activity of
glial glutamate transporters as inhibition of actin polymerization
by cytochalasin-B reduces cell surface expression of these
transporters (Adolph et al., 2007). Also, Rottlerin, a polyphenol
natural product, decreases the activity of astrocyte glutamate
transporters and disrupts actin filament dynamics (Sheean et al.,
2013). Endocytosis of astrocyte glutamate transporters is also
dependent on actin dynamics (Yan et al., 2014). These studies
suggest that ADF/cofilin mediate actin changes and astrocytic
glutamate transporters which in turn contribute to glutamate
uptake and neuronal apoptosis.

ADF/cofilin have also been suggested to be involved in
the regulation of neuroinflammation (Rasmussen et al., 2010;
Gitik et al., 2014). Microglia and astrocytes are the first cells
to be activated following brain injuries (Taylor and Sansing,
2013). In the Ra2 microglia cell line, ADF/cofilin knockdown
inhibits nicotinamide adenine dinucleotide phosphate hydrogen
(NADPH) oxidase activity and reactive oxygen species (ROS)
formation which result in decline in cells activity (Rasmussen

et al., 2010). Microglial cell phagocytic activity is also highly
influenced by ADF/cofilin activation (Gitik et al., 2014). Similarly,
ADF/cofilin activation is required for the restoration of the
myelin sheath and involve in control of phagocytosis of
degenerated myelin by microglia and macrophages (Hadas
et al., 2012). Actin depolymerization by ADF/cofilin has
also been shown to be important for exosome formation,
which plays an essential role in facilitating neuroinflammation
(Gupta and Pulliam, 2014).

ROLE OF ADF/COFILIN IN ALZHEIMER’S
DISEASE

Given the involvement of ADF/cofilin in the regulation of
dendritic spines, synaptic plasticity and learning and memory,
it is not surprising that deficits in ADF/cofilin are implicated in
a wide range of brain disorders (Bamburg and Wiggan, 2002).
These conditions include autism spectrum disorders (Duffney
et al., 2015; Sungur et al., 2018), Williams syndrome (Hoogenraad
et al., 2004), intellectual disability (Newey et al., 2005; van Galen
and Ramakers, 2005; Zamboni et al., 2018), drug addiction
(Rothenfluh and Cowan, 2013), sleep deprivation (Havekes et al.,
2016) and neurodegenerative diseases such as AD (Liu et al.,
2019), which will be discussed briefly below.

Alzheimer’s disease is a neurodegenerative condition
characterized by memory loss and cognitive decline, resulting
in the loss of independence and a shorter life span (Hsiao et al.,
1996; Hsia et al., 1999; Li et al., 2014). Pathologically, AD is
characterized by neurofibrillary tangles and senile plaques,
consisting mainly of extracellular amyloid β (Aβ) peptides (Hsiao
et al., 1996; Hsia et al., 1999; Hardy and Selkoe, 2002; Butterfield,
2014). In the brain, Aβ results from the proteolytic processing of
the amyloid precursor protein (APP) and it has been proposed
that the accumulation of toxic Aβ42 plays a major role in the
development of dementia (Hardy and Selkoe, 2002; Palop and
Mucke, 2010; Mucke and Selkoe, 2012). The effect of Aβ on
the synapse and synaptic function, including LTP and LTD, is
of great interest due to their direct relevance to learning and
memory (Varadarajan et al., 2000; Selkoe, 2002; Lacor, 2007;
Mucke and Selkoe, 2012; Sheng et al., 2012). Given the function
of ADF/cofilin in synaptic plasticity, learning and memory,
several studies have described the role of ADF/cofilin in the
pathophysiology of AD. Actin-depolymerization factor/cofilin
were discovered to accumulate in senile plaques in AD tissue
and AD mouse models (Bamburg and Bernstein, 2016; Sun et al.,
2019). Several studies show that brain tissue from AD patients
and AD mouse models such as the APP/PS1 model exhibit
elevated levels of inactive phosphorylated cofilin-1 (Barone
et al., 2014; Gu et al., 2014; Han et al., 2017; Kang and Woo,
2019). On the other hand, multiple studies show that active
dephosphorylated cofilin-1 forms aberrant cofilin-actin rods,
which blocks axonal trafficking and may contribute to deficits
in synaptic plasticity (Davis et al., 2011; Mendoza-Naranjo
et al., 2012; Barone et al., 2014; Kang and Woo, 2019). Recently,
it was shown that knocking down CAP2 in hippocampal
neurons results in abnormal dendritic spines and impaired
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synaptic plasticity. This effect of CAP2 is relevant to ADF/cofilin
because the CAP protein family is known to form a complex
with ADF/cofilin and promote actin disassembly as discussed
earlier. Moreover, chemical induction of LTP triggers CAP2
translocation to the spines and increases the formation of
dimers, promoting the association of CAP2 with cofilin. In the
hippocampal synapses of AD patients and mouse models, there
is an increase in cofilin levels accompanied by a reduction in
CAP2 synaptic availability, leading to a decrease in CAP2 dimer
formation at the synapse (Pelucchi et al., 2020). Studies have
also shown that the protein level of cofilin-2 is elevated in the
brain and blood of AD patient brains and mouse models (Sun
et al., 2015, 2019), but the significance of these changes will need
further studies.

The disturbance in cofilin activity in AD may contribute to
the loss of dendritic spines and synapses (Kang and Woo, 2019;
Pelucchi et al., 2020). Decreased dendritic spine density and
active synapses are seen in rat hippocampal pyramidal neurons
from organotypic slices after exposure to Aβ oligomers (Shankar
et al., 2007). Aβ-induced spine loss can be blocked by prevention
of ADF/cofilin activation by expression of constitutively inactive
cofilin (S3D) (Shankar et al., 2007). In the same line,
Aβ42 oligomers promote ADF/cofilin dephosphorylation and
activation in the hippocampus derived HT22 cell line and
primary cortical neurons (Woo et al., 2015). Genetic reduction
in ADF/cofilin activity activation rescues Aβ42-induced synaptic
protein loss as well as deficits in LTP and contextual memory
in APP/PS1 mice (Woo et al., 2015). These studies suggest the
involvement of active cofilin in AD synaptic dysfunction. In
addition, cofilin may also contribute to accumulation of Aβ

aggregate and development of AD. For example, Aβ deposition in
APP/PS1 mice is significantly decreased by genetically reducing
cofilin using small interfering RNA (Liu et al., 2019). The effect
of cofilin in Aβ accumulation may be through dual and opposing
endocytic mechanisms promoting Aβ production in neurons and
inhibiting Aβ clearance in microglia (Liu et al., 2019).

Despite the strong evidence for a role of ADF/cofilin
dephosphorylation and activation in AD pathogenesis, several
studies show that ADF/cofilin phosphorylation and inactivation
may also play a role in AD pathogenesis (Kang and Woo,
2019). Acute exposure to Aβ oligomers increases the level
of phosphorylated cofilin-1 at the postsynaptic compartment,
leading to a subsequent stabilization of spine actin filaments,
as well as impairment of chemically induced LTP (Rush et al.,
2018). Also, Aβ oligomers increase cofilin phosphorylation and
actin polymerization selectively in cholinergic basal forebrain
neurons via increasing PAK1 phosphorylation and activity (Gu
et al., 2014). There is also an increase in level of phosphorylated
cofilin in synaptic fractions from APP/PS1 mice and AD patients’
brains (Rush et al., 2018). In APP/PS1 mouse brains, level
of phosphorylated/inactive cofilin-1 is reduced at 4 months of
age and increases at 10 months of age (Barone et al., 2014).
In addition, different Aβ species and conformations seem to
act differently on ADF/cofilin, depending on the locality, age
and neuronal type (Kang and Woo, 2019). Despite this, the
genetic reduction of ADF/cofilin rescues neurodegeneration
(Woo et al., 2012), as well as LTP and contextual memory deficits

in APP/PS1 mice (Woo et al., 2015). In summary, dysregulation
of ADF/cofilin activity through either phosphorylation or
dephosphorylation may contribute to the neurotoxic effects
induced by Aβ in AD.

Several studies show that ADF/cofilin changes and synaptic
dysfunction induced by Aβ are caused by both LIMK1
and SSH pathways (Kang and Woo, 2019). Treatment of
hippocampal neurons with fibrillar amyloid beta increases
the phosphorylation and activity of LIMK1 and these are
accompanied by abnormalities in actin cytoskeleton, neuritic
dystrophy and neuronal cell death (Heredia et al., 2006).
Hippocampal neurons treated with Aβ42 oligomer induced
LIMK1 activation which is regulated by an increase in the activity
of Rac1 and Cdc42 Rho-GTPases and subsequent activation
of PAK1 (Mendoza-Naranjo et al., 2012). Despite increased
LIMK1 activation, Aβ42 treatments induce dephosphorylation
of ADF/cofilin, suggesting the involvement of SSH. This is
supported by work showing that overexpression of SSH prevents
actin cytoskeleton abnormalities induced by Aβ42 treatments
(Mendoza-Naranjo et al., 2012). In addition, Aβ42-induced
ADF/cofilin dephosphorylation in the hippocampus-derived
HT22 cell line is mediated by β1−integrin, a cell receptor
important in the maintenance of synapses (Lilja and Ivaska,
2018), and the subsequent activation of SSH (Woo et al., 2015).
These studies suggest that ADF/cofilin activity is regulated
by bifurcating pathways that stimulate PAK1 and LIMK1 as
well as SSH. In contrast, deficits in both PAK1 and PAK3
levels are detected in AD patients’ brains, which lead to
activation of ADF/cofilin (Zhao et al., 2006). The application
of Aβ42 can directly result in abnormally low levels of PAK
in primary neurons (Zhao et al., 2006). Despite low levels of
total PAK in AD brains, phosphorylated active PAK is increased
around Aβ deposits (Zhao et al., 2006). Arsenault et al. (2013)
confirm the loss of PAK in cortex of AD patients’ brains and
cortex of AD mouse model (3xTg) and show that expression
of a dominant-negative form of PAK results in deficits in
social recognition.

In addition to the dysregulation of ADF/cofilin activity,
formation of ADF/cofilin-actin rods may contribute to the
pathology of AD (Bamburg and Bernstein, 2016; Kang and
Woo, 2019). For example, an increase in ADF/cofilin-actin
rods/aggregates have been reported in AD patients and AD
mouse models including APP/PS1 and 3xTg (Rahman et al.,
2014; Bamburg and Bernstein, 2016; Kang and Woo, 2019).
Multiple studies have also shown that Aβ dimers/trimers
promote the formation of ADF/cofilin-actin rods in neurons,
associated with the dephosphorylation, activation of cofilin
(Maloney et al., 2005; Davis et al., 2011; Mendoza-Naranjo
et al., 2012; Barone et al., 2014). Bernstein et al. (2012)
show that intermolecular disulfide bonds between cofilin
subunits form in vitro by cofilin oxidation and is critical for
cofilin-actin rod formation in stressed neurons. These less
dynamic ADF/cofilin actin rods consist of ADF/cofilin and
actin in 1:1 ratio and are shown to disrupt the integrity
of dendritic microtubules, block intracellular transport
of mitochondria and induce significant loss of dendritic
spines (Bamburg and Bernstein, 2016; Walsh et al., 2014).
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Targeting ADF/cofilin regulation may provide therapeutic
targets to improve synaptic function and reduce memory
impairment in AD patients (Shaw and Bamburg, 2017).
Inhibition of cofilin-1 stabilizes the function and activity of
dendritic spines in LTD mouse model (Zhou et al., 2004).
Cofilin-1 inhibition is achieved using a phosphorylated peptide
containing the first 16 amino acids of cofilin-1 (p-Cofilin
peptide), which inhibits cofilin-1 activation through competitive
binding to phosphatases. The use of this phosphorylated peptide
in an AD mouse model (5 × FAD) rescues the deficits in
surface expression and function of AMPA and NMDA receptors
(Deng et al., 2016). Cofilin-1 inhibition by the peptide also
partially improves working memory and novel object recognition
in the model (Deng et al., 2016). In summary, ADF/cofilin
contribute to AD pathology through multiple mechanisms
including phosphorylation, dephosphorylation and formation
of less dynamic ADF/cofilin-actin rods. Therefore, targeting
ADF/cofilin holds promise to mitigate the physiological and
behavioral abnormality in AD.

CONCLUDING REMARKS

In summary, ADF/cofilin play multifaced roles in the regulation
of synaptic structure and function in the brain. The temporal
and spatial regulation of ADF/cofilin appears to be particularly
important for the bi-directional effect on spine and synaptic
plasticity. However, there are several key questions that need
to be addressed further. First, although spine accumulation
of ADF/cofilin is associated with both spine enlargement/LTP
and LTD/spine shrinkage, how the increased ADF/cofilin in the
spine leads to opposite changes in spine morphology remains
unclear. Second, the relationship between spine accumulation
and phosphorylation/dephosphorylation of ADF/cofilin needs
further characterization. It remains unclear whether the
translocation of the endogenous ADF/cofilin to the spine
during LTP/spine enlargement or LTD/spine shrinkage requires
ADF/cofilin dephosphorylation, although the exogenously
expressed cofilin S3D appears unable to accumulate in the
spine during LTP or LTD (Pontrello et al., 2012; Noguchi
et al., 2016). Therefore, it is important to further elucidate
how the translocation is regulated by protein phosphorylation

and what protein kinases (e.g., LIMK1)/phosphatases (e.g.,
SSH) are involved. Third, the cooperation between ADF/cofilin
and other actin-binding proteins (e.g., CAP2 and AIP) would
provide another layer of regulation for ADF/cofilin activity at
the synapse as some of these proteins also exhibit redistribution
in the dendritic spine (Bosch et al., 2014; Pelucchi et al.,
2020), but exactly when and how these interactions affect actin
dynamics within the spine will require further studies. The use of
photoactivatable ADF/cofilin (Noguchi et al., 2016; Senju et al.,
2017; Borovac et al., 2018) or their upstream regulators (such
as Rac1) (Wu et al., 2009; Fujii et al., 2013) in specific neuronal
types and/or subcellular compartments within the spine should
facilitate these investigations. Another emerging area is how
ADF/cofilin-mediated actin dynamics are associated with and
affect behavior in living animals, including different phases of
learning and memory. As many brain disorders are associated
with altered regulation of ADF/cofilin, a better understanding
of this protein family could also aid in the understanding and
treatment of these disorders.
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