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When Rheumatology and Infectious Disease Come Together

Introduction
Infections are a common concern of immuno-
suppressive drugs. However, some immunosup-
pressants or disease-modifying antirheumatic 
drugs (DMARDs) show antiviral activity and 
may be safely used or even beneficial in patients 
with selected concomitant viral infections. 
Certain DMARDs may even be considered as an 
alternative treatment for recalcitrant infections. 
Moreover, the concomitant use of 

immunosuppressants and antiviral agents was 
proved to be more effective than antiviral agent 
monotherapy in some reports.1 The antiviral 
property of immunosuppressants may act through 
(a) direct virucidal activity, (b) blockage of recep-
tors, (c) inhibition of necessary molecules for viral 
replication in the hosts, or (d) amelioration of 
inflammatory symptoms. Also, control of inflam-
mation may decrease the susceptibility or enhance 
host ability to defend against viral infection. The 
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Lay summary

Immunosuppressants often raise the concern of infection risks, especially for patients with 
underlying immune disorders. However, some disease-modifying antirheumatic drugs 
(DMARDs) with inherent antiviral activity would be a reasonable choice in the situation of 
concomitant viral infections and flare up of autoimmune diseases. This review covers 
DMARDs of treatment potential for SARS-CoV-2 in part I, and antiviral mechanisms plus trial 
evidence for viruses other than SARS-CoV-2 in part II.
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following review focuses on the immunosuppres-
sants/DMARDs which have antiviral potential 
through the first three mode of actions. Antiviral 
agents with immunosuppressive activity such as 
ribavirin2 are beyond the scope of this review. In 
view of the imperative demand to control the 
recently discovered severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), DMARDs 
with treatment potential are covered in part I. For 
other viruses, including We also conducted a two-
step research as follows: common ones in daily 
practice and those without specific target therapy, 
but life threatening, evidence is covered in part II.

Method
A literature search of the PubMed database using 
the keywords (chloroquine OR hydroxychloro-
quine OR baricitinib OR cyclosporine OR hydrox-
yurea OR minocycline OR mycophenolic acid OR 
mycophenolate mofetil OR leflunomide OR tofaci-
tinib OR thalidomide) AND (virus OR viral) was 
performed from inception to 13 May 2020 (Figure 1). 
Reference lists of pertinent articles were hand 
searched for additional studies of interest.

Part I: DMARDs for severe acute respiratory 
syndrome coronavirus 2
Coronavirus disease 2019 (COVID-19) is a newly 
emerged lethal pandemic caused by SARS-
CoV-2. It is transmitted efficiently by droplets 
and is contagious between humans. While most 
patients experience mild symptoms, some develop 
acute respiratory distress syndrome, multi-organ 
failure, or even death. As of 20 May 2020, more 
than 4.90 million cases have been reported, caus-
ing a total of 0.32 million deaths.

SARS-CoV-2 is a single-strand ribonucleic acid 
(RNA) virus belonging to betacoronaviruses. It 
has three structural proteins, S (spike), E (enve-
lope), M (membrane), anchoring on the lipid 
bilayer membrane. The spike protein binds on 
host receptors and mediates membrane fusion.3

Given that there has been no effective and specific 
therapy to meet the urgent need, several DMARDs 
were repurposed on the basis of potential anti-SARS-
CoV-2 activity and for modulating the cytokine storm.

Chloroquine and hydroxychloroquine
Chloroquine (CQ) and hydroxychloroquine 
(HCQ), both derivatives of 4-aminoquinoline, 

are indicated to treat and prevent malaria. They 
are also used as DMARDs for rheumatoid arthri-
tis, lupus erythematosus, and porphyria cutanea 
tarda. In addition, the application for viral infec-
tions in off-label use has recently been investi-
gated vigorously. The antiviral activity is through 
blocking the virus/cell fusion via increasing endo-
somal pH and hindering the glycosylation of cel-
lular receptors (Figure 2).4

In vitro CQ revealed low half-maximal effective 
concentration (EC50) and high half-cytotoxic 
concentration (CC50) for COVID-19.5 A pre-
liminary study conducted in China showed ben-
efits in pneumonia image, shortening of disease 
course, and promoting a virus-negative conver-
sion compared with control group.6 Then, four 
completed clinical studies demonstrated favora-
ble outcomes in clinical and radiologic ameliora-
tion, while another two randomized controlled 
trials (RCTs) illustrated no statistically significant 
change compared with control arms.7–12 Based on 
the inhibitory effect of azithromycin against Ebola 
and Zika viruses in vitro, and the possibility of 
preventing from progressing to severe respiratory 
tract infections, two French trials which com-
bined the use of azithromycin and HCQ revealed 
better efficacy.7,9

However, further studies are still needed to draw 
conclusions because most of these studies bear 
limitations including selection bias, allocation bias, 
or insufficient case numbers. Several multicenter, 
double-blind, and well-designed controlled trials 
are already underway to assess the efficacy and 
safety of CQ or HCQ in the treatment of COVID-
19 pneumonia. In the absence of other confirmed 
effective therapy specific to SARS-CoV-2, both 
drugs are currently still listed in the treatment 
guidelines (Table 1).

Baricitinib
Baricitinib, blocking Janus kinase (JAK)1 and 
JAK2, is approved for rheumatoid arthritis and 
has been investigated in atopic dermatitis.

SARS-CoV-2 binds on the angiotensin-converting 
enzyme 2 (ACE2) receptors and enters lung cells 
through receptor-mediated endocytosis. Some of 
the numb-associated kinase (NAK) family mem-
bers, AP2-associated protein kinase 1 (AAK1) and 
cyclin G-associated kinase (GAK), are hypothesized 
to regulate the ACE2-mediated endocytosis. 
Baricitinib demonstrated high affinity to AAK1 and 
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Figure 1.  Article selection flowchart. 
AIDS, acquired immunodeficiency syndrome; COVID-19, coronavirus disease 2019; HBV, hepatitis B virus; HCV, hepatitis 
C virus; HIV, human immunodeficiency virus; HSV, herpes simplex virus; RCT, randomized controlled trial; SARS-CoV-2, 
severe acute respiratory syndrome coronavirus 2.
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GAK and was identified as a potential treatment for 
COVID-19 by artificial intelligence. Intriguingly, 
other JAK inhibitors such as tofacitinib and upa-
dacitinib did not illustrate affinities to NAKs.13,16

A case series reported four Italian patients with 
moderate-to-severe unstable COVID-19 infec-
tions. Except one female nurse, the other three 
male individuals were aged 51–76 with high body 
mass index, and two of them had chronic obstruc-
tive pulmonary disease plus hypertension histo-
ries. Under baricitinib 2 mg or 4 mg for 10–12 days, 
all patients improved in clinical symptoms (fever, 
cough, and dyspnea) and in laboratory data 
[interleukin-6 (IL-6), C-reactive protein, ferritin, 
liver enzymes, D-dimer, and viral loads].13

In one controlled open-label study (n = 24), 
patients were given either baricitinib 4 mg/day 
plus lopinavir–ritonavir or antiretroviral plus 
hydroxychloroquine (control group) for 2 weeks. 
Significant improvement of symptoms and labora-
tory results, no intensive care unit transfer (versus 
33% transfer in control cases), and 58% discharge 

from wards (versus 8% in control) was shown 
among the baricitinib-treated individuals.14

In addition to antiviral property, baricitinib has 
been suggested as an approach for a cytokine storm 
syndrome, which features hypercytokinemia and 
multi-organ failure. Elevated ferritin and IL-6 in 
COVID-19 cases were predictive of a high mortal-
ity rate according to a China retrospective study.17 
Baricitinib inhibits cytokines including IL-2, IL-6, 
IL-10, interferon gamma (IFN-γ), and granulocyte-
colony-stimulating factor (G-CSF)13,18 and may 
bring the benefit of immune reconstruction which 
could be used in rapidly progressive diseases.

However, there are competing ideas about the 
interference of JAK inhibitors with IFN-mediated 
antiviral activities. IFNs prohibit viral spreading in 
the early phase of infections. In animal models of 
SARS and Middle East respiratory syndrome 
(MERS), IFN-α and IFN-β showed benefit at the 
early stage but were harmful at the late phase. 
Patients with severe SARS who died of hypoxemia 
revealed high IFN-α, -γ, while those discharged 

Figure 2.  Proposed target of antiviral activities by DMARDs and immunosuppressants.
DMARDs, disease-modifying anti-rheumatic drugs.
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from hospital had low IFN-α, -γ. Therefore, some 
experts suggested baricitinib’s use in the situation 
of hyperinflammation and cytokine syndrome, 
rather than in those with mild diseases.

In fact, clinical trials have commenced to evaluate 
the optimal timing, duration, and safety of barici-
tinib in viral infections, including SARS-CoV-2.19–21

Cyclosporine A
Cyclosporine A (CsA) is indicated for rheumatoid 
arthritis, psoriasis, organ transplants to prevent 
injection, and keratoconjunctivitis sicca. It is also 
used in severe atopic dermatitis, chronic urticaria, 
pyoderma gangrenosum Kimura disease, acute sys-
temic mastocytosis, and ulcerative colitis. CsA 

inhibits lymphocyte function, mainly T cells, by 
forming a complex with cyclophilin. Cyclophilin–
CsA complex binds on the calcineurin, which 
blocks the dephosphorylation of nuclear factor of 
activated T cells (NF-AT). This interferes with 
entry of NF-AT into the T-cell nucleus and further 
suppresses cytokine production such as IL-2.

Proposed antiviral mechanisms: Betacorona
viruses, including SARS-CoV-2, replicate in 
cytosol, where RIG-1 like receptor (RLR) heli-
cases bind on virus RNA and activate mitochon-
drial antiviral proteins (MAVs). MAVs then 
promote the production of IFNs and cytokines to 
defend against viral infections. Thus, mitochon-
dria appear to play a vital role for protection; in 
other words, mitochondrial failure could lead to 

Table 1.  Potential antiviral efficacy of DMARDs and immunosuppressants for SARS-CoV-2.

Medications Proposed antiviral mechanisms In vitro Clinical report

Chloroquine
HCQ

(1) � Increase endosomal pH required for 
virus/cell fusion

(2) � Interfere with the glycosylation of 
cellular receptors

✓ ✓ Cohort (n = 42): negative RT-PCR rate on day 6
    HCQ group: 70% (13/20)
    Control group: 12.5% (2/16)
    HCQ + azithromycin group: 100% (6/6)7

✗  RCT (n = 30): no significant difference8

✓ �Open label, no control group (n = 80): with 
azithromycin, 65/80 improved clinical outcomes9

✓ �RCT (n = 62): significant improvement in time to 
clinical recovery and radiologic change (p < 0.05)10

✓ �RCT (n = 22): shorten hospital days and greater 
radiologic improvement, but not significant 
compared to control (Lopinavir/Ritonavir)11

✗  �RCT (n = 150): only significant in CRP reduction 
(p = 0.045)12

Baricitinib (1) � Regulate endocytosis of virus by 
inhibiting AAK1, GAK.

(2) � Reduce cytokines including IL-2, IL-6, 
IL-10, G-CSF, and IFN-γ

✓ n = 4, improved clinically and in laboratory data.13

✓ �Placebo-controlled, open-label study (n = 24): 
significant improvement in baricitinib group14

Cyclosporine A (1) � Target cyclophilin D to inhibit MPTP 
opening and rescues mitochondria 
from apoptosis.

(2) � MDA5, a putative cytoplasmic receptor 
of SARS-CoV-2, could be reversed by 
calcineurin inhibitors

 

MMF
MPA

Inhibit DHODH and IMPDH ✓  

Thalidomide Suppress pro-inflammatory cytokines  
(TNF-α, IL-8) through inhibition of NF-κB

✓  n = 1: 45 years, woman15

AAK1, AP2-associated protein kinase 1; CRP, C-reactive protein; DHODH, dihydroorotate dehydrogenase; GAK, cyclin G-associated kinase; G-CSF, 
granulocyte-colony-stimulating factor; IL, interleukin; HCQ, hydroxychloroquine; IFN, interferon; IMPDH, inosine monophosphate dehydrogenase; 
MDA5, melanoma-differentiation-activated protein 5; MMF/MPA, mycophenolate mofetil/mycophenolic acid; MPTP, mitochondrial permeability 
transition pore opening; RCT, randomized-controlled trial; RT-PCR, real-time polymerase chain reaction; SARS-CoV-2, severe acute respiratory 
syndrome coronavirus 2; TNF, tumor necrosis factor.
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severe COVID-19. Experimentally, CsA targets 
cyclophilin D to inhibit mitochondrial permeabil-
ity transition pore (MPTP) opening and rescues 
mitochondria from apoptosis.22–24

Moreover, melanoma-differentiation-activated 
protein 5 (MDA5), an RLR helicase and putative 
cytoplasmic receptor of SARS-CoV-2, is also the 
target antigen of clinically amyopathic dermato-
myositis (CADM). Patients with MDA5 plus 
CADM have higher risks of developing rapidly pro-
gressive interstitial lung diseases and respiratory 
failure, while this could be reversed by calcineurin 
inhibitors. Based on these hypothetical functions, 
CsA was proposed as a modulator for cytokine 
storm syndrome in COVID-19 infections.25

Mycophenolate mofetil and mycophenolic acid
Mycophenolic acid (MPA), an active metabolite 
of mycophenolate mofetil (MMF), inhibits ino-
sine monophosphate dehydrogenase (IMPDH), 
an essential enzyme in the de novo purine synthesis 
pathway. IMPDH inhibition especially influences 
T and B lymphocytes because they use almost a de 
novo pathway to synthesize (minimally use a sal-
vage pathway). MMF and MPA are utilized in 
organ transplantation, Crohn’s disease, and as 
steroid-sparing agents for conditions such as pem-
phigus, Behçet’s disease, and lupus erythemato-
sus. Although they were associated with higher 
risk of opportunistic infections including herpes 
zoster, cytomegalovirus (CMV), and BK virus 
(BKV) nephropathy, literature also revealed its 
possible benefit for HIV and influenza virus.26,27

In vitro: MMF showed low EC50 (0.47 μmol/l) in 
SARS-CoV-2-infected Vero E6 cells, while the 
EC50 of remdesivir, as a positive control, was 
0.77 μmol/l. Besides, MMF probably inhibited 
SARS-CoV-2 through IMPDH and especially dihy-
droorotate dehydrogenase (DHODH). DHODH is 
another essential enzyme for pyrimidine synthesis, 
and MMF might control viral infection by depleting 
the intracellular pyrimidine pools.28

Thalidomide
Thalidomide, a derivative of glutamic acid, is 
approved for erythema nodosum leprosum and is 
also used in many conditions such as prurigo 
nodularis, pyoderma gangrenosum, Bechet’s dis-
ease, lupus erythematosus and erythema multi-
forme. It exerts anti-inflammatory effect through 
cereblon E3 ubiquitin ligase as the primary target 

and thus inhibits chemotaxis of leukocytes, mono-
cytes as well as the production of tumor necrosis 
factor (TNF)-alpha, IL-8, and IL-12.

Case report: A 45-year-old woman with critical 
symptoms of COVID-19 was treated by thalido-
mide 100 mg every 24 h. After the first day use of 
thalidomide, clinical conditions including oxygen 
index improved. Cytokines such as IL-6, IL-10, 
IFN-γ all decreased to normal range.15 Proposed 
mechanisms are as follows: thalidomide inhibits 
NF-κB, which further suppresses the production 
of pro-inflammatory cytokines such as tumor 
necrosis factor alpha (TNF-α) and IL-8, and 
prevents the cytokine surge. It also regulates 
immune function by activating T cells and 
T-cell receptors. Moreover, the sedative and 
antiemetic property of thalidomide helps anx-
ious patients calm down, which reduces oxygen 
consumption.15

Now, at least one clinical trial has been conducted 
to investigate the efficacy and safety of thalido-
mide as an adjuvant therapy for COVID-19 
pneumonia.29

Part II: DMARDs with antiviral potential 
other than SARS-CoV-2
Many oral DMARDs have inherent antiviral activ-
ity and could be the treatment of choice for patients 
with coexisting immune-based diseases and infec-
tions. Especially when the infection is still in pro-
gression, choosing DMARDs with anti-microbial 
evidence would bring double benefits for better 
infection control without sacrificing underlying 
disease management. The antimicrobial mecha-
nisms of DMARDs are often distinct from their 
immunomodulatory pathway, and the efficacy is 
different in viral species (Tables 2, 3 and 4). 

Leflunomide
Leflunomide is approved for rheumatoid arthritis 
and psoriatic arthritis (not in the United States). 
Leflunomide inhibits the synthesis of pyrimidine 
via acting on the mitochondrial enzyme DHODH; 
therefore, rapidly dividing cells, especially lym-
phocytes, are suppressed. On the other hand, 
leflunomide showed antiviral activity at least for 
CMV, BKV, and HIV. It works by teriflunomide, 
the active metabolite of leflunomide, which dis-
rupts nucleocapsid tegumentation, and thus pre-
vents virion assembling, rather than influences the 
de novo pyrimidine synthesis pathway.97,100,101,105
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Table 3.  Mechanisms regarding antiviral activities of DMARDs and immunosuppressants.

Medications Viral susceptibility Proposed antiviral mechanisms

Chloroquine
HCQ

SARS-CoV, HIV, dengue virus, 
chikungunya virus, influenza A 
virus, HCV, Zika virus

(1)  Increase endosomal pH required for virus/cell fusion
(2)  Interfere with the glycosylation of cellular receptors

Cyclosporine A HIV Inhibit cyclophilins to incorporate into new virion, which is essential for 
virus infectivity

HCV genotype 1 Inhibit host cyclophilins to form replication complex with NS5A/B of 
HCV, and influence protein folding and trafficking

Flavivirus (Zika virus, dengue 
virus, West Nile virus, yellow 
fever virus)

Block the interaction between host cyclophilins and flaviviral NS5 
protein

Betaretrovirus Interrupt life cycle from:
(1)  viral protein synthesis
(2)  gag and envelope assembly
(3)  particle budding

Hydroxyurea HIV (1)  Inhibit DNA synthesis, slowing production of viral DNA
(2) � Deplete dNTP pools, which increase competitive ability of NRTIs 

to incorporate into HIV-1 DNA chain
(3) � Enhance NRTI phosphorylation, reducing resistance to NRTIs
(4)  Reduce cellular division of CD4+ T lymphocytes

HCV Inhibit HCV RNA replication

HBV Unknown, inhibit HBV replication

HSV Inhibit HSV DNA replication

Parvovirus B19 Unknown

Minocycline HIV (1) � High affinity to HIV integrase and interaction with HIV integrase 
suppress the virus

(2) � Decrease viral expression from CD4+ T cells

Japanese encephalitis virus Inhibit microglial activation and neuronal apoptosis

Dengue virus Reduce viral RNA synthesis, intracellular envelope protein expression, 
and the production of infectious virions

RSV (1) � Reduce RSV-mediated cytopathic effects
(2) � Prevent RSV infection by affecting RSV F protein production or 

maturation

Enterovirus 71 Reduce cytopathic effects and viral protein expressions

Influenza virus Reverse H7N9 replication

West Nile virus Anti-apoptotic properties result in neuroprotection.

Reovirus Reduce apoptosis and antigen expression

Rabies Reduce CD3+ cells may impair the host to control disease

Mycophenolate 
mofetil/
mycophenolic acid

HIV Inhibit the dividing CD4+ T cells, and hence cytostatic and antiviral 
effect by depletion of this substrate

(Continued)
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Herpes simplex virus
A case report with perianal HSV-2 lesions in an acy-
clovir-resistant HIV patient significantly improved 
with leflunomide 40 mg, twice a day.98 Another HIV 
patient with HSV-1/HSV-2 pseudo-tumors on the 
perineum and scrotum only slightly improved with 
valacyclovir, foscarnet, and imiquimod. After 9 months 
of leflunomide, complete regression of the lesions was 
noted. Leflunomide has both immunomodulation 
and antiviral activities in the HSV pseudotumors 
because pseudotumor formation is an immune recon-
struction phenomenon in HIV patients.99

Human immunodeficiency virus
An RCT (n = 18) demonstrated leflunomide decreased 
the activation and cycling of CD4+ T cells. The 
expression of HIV co-receptors CCR5 and CXCR4 
was also reduced compared with placebo.102

Molluscum and verruca
Three patients with atopic dermatitis treated with 
azathioprine developed multiple verrucae and 
molluscum contagiosum. Due to treatment resist-
ance, azathioprine was switched to leflunomide 
(100 mg loading 3 days, then 20 mg/day). All the 
lesions subsided in three patients within 2 months 
of leflunomide treatment.103

Multiple recalcitrant verrucae in three and mol-
luscum in one of renal allograft recipients cleared 
after switching from MMF to leflunomide.104

Leflunomide can serve as a potential option  
for patients with skin warts or molluscum con-
comitant with immune conditions that require 
immunosuppressants.

Cytomegalovirus
A review article collected 45 transplant recipients 
with CMV infection treated by leflunomide. 
Among them, the plasma CMV viral load became 
undetectable in 33 patients (73%). Most of the 
patients had ganciclovir-resistance mutation.107

A prospective study evaluated 17 renal transplant 
recipients. A loading dose of 100 mg for the first 3 
days and then 20 mg per day was given. The result 
showed 15 patients (88%) responded to lefluno-
mide with involved organ healing and viremia 
clearance.113

Leflunomide was regarded as an add-on treat-
ment for multi-drug-resistance CMV infection. 
In vitro anti-CMV properties of leflunomide were 
not through blocking the replication of viral 
DNA, so it is effective even in patients with direct 
antiviral drug-resistance history.105,106

BK virus
BK polyomavirus is widespread (80% of the popu-
lation has the latent form), and often causes mild 
diseases except in immunocompromised patients, 
especially kidney-transplant recipients. The virus 

Medications Viral susceptibility Proposed antiviral mechanisms

Influenza virus Inhibit viral mRNA and protein expression via inhibition of cellular 
IMPDH

MERS-CoV Unknown

Leflunomide HSV, HIV, molluscum and 
verruca, CMV, BKV, RSV

Inhibit nucleocapsid tegumentation and thus prevents virion 
assembling

Tofacitinib HTLV-1 HTLV-1-induced ATLL is associated with JAK3 mutations; tofacitinib 
inhibits JAK3

Thalidomide HHV-8 Unknown, suspect anti-angiogenesis and make immune system able 
to trigger antiviral response

AAK1, AP2-associated protein kinase 1; ATLL, adult T-cell lymphoma/leukemia; BKV, BK virus; CMV, cytomegalovirus; DENV, dengue virus; 
DMARDs, disease-modifying anti-rheumatic drugs; DNA, deoxyribonucleic acid; dTNP, deoxynucleoside triphosphate; GAK, cyclin G-associated 
kinase; HAART, highly active antiretroviral therapy; HBV, hepatitis B virus; HCQ, hydroxychloroquine; HHV-8, human herpesvirus 8; HIV, human 
immunodeficiency virus; HTLV-I, human T-cell lymphotrophic virus-1; IMPDH, inosine monophosphate dehydrogenase; JAK, Janus kinase; 
MERS-CoV, Middle East respiratory syndrome coronavirus; mRNA, messenger RNA; NRTI, nucleoside analog reverse-transcriptase inhibitor; RCT, 
randomized-controlled trial; RNA, ribonucleic acid; RSV, respiratory syncytial virus; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

Table 3.  (Continued)
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disseminates to the urinary-tract system and lives 
there persistently. A sudden increase of BK-virus-
associated nephropathy is related to the adminis-
tration of potent immunosuppressants such as 
MMF and tacrolimus. Leflunomide is now gener-
ally accepted as a second choice after reduction of 
immunosuppressive agents. However, in a phase II 
RCT (n = 46), viremia was decreased in the group 
of leflunomide active metabolites, but no signifi-
cant improvement of renal function was noted.108

Respiratory syncytial virus (RSV)
Treatment options for RSV are limited to supportive 
care or ribavirin with only marginal effectiveness. 
Leflunomide showed a potent, dose-dependent anti-
RSV activity in cell cultures.92 Also, pulmonary 
viral loads were prominently reduced in cotton 
rats, even if there was a 3-day delay of leflunomide 
administration after viral inoculation.109

Leflunomide offers a dual benefit of both viral-load 
reduction and anti-inflammatory effects that atten-
uate the destruction of cytokine-related diseases.

Tofacitinib
Tofacitinib, a JAK1 and JAK3 inhibitor, is indi-
cated in rheumatoid arthritis, ulcerative colitis, 
and psoriatic arthritis. It is also used off label for 
vitiligo and alopecia areata. Tofacitinib treats 
inflammatory diseases by interfering with the acti-
vation of the JAK/signal transducers and activa-
tors of transcription (STAT) pathway, which 
inhibits gene transcription, and cytokine produc-
tion is thereby reduced.

Human T-cell lymphotrophic virus-1 (HTLV-1)
HTLV-1, a retrovirus, has been linked to diseases 
such as adult T-cell lymphoma/leukemia (ATLL), 
HTLV-1-associated myelopathy (HAM), and 
uveitis. Ex vivo and animal studies revealed posi-
tive results of tofacitinib for ATLL and HAM.110 
HTLV-1-encoded tax protein activates IL-2, -9, 
-15, which further trigger JAK3-STAT5 pathway. 
Accumulating data demonstrated a major role of 
JAK3 in the pathophysiology of ATLL.114 As a 
result, tofacitinib targeting JAK3 has been sug-
gested as a therapeutic strategy in future studies.

Hydroxyurea
Hydroxyurea, a deoxyribonucleic acid (DNA)-
synthesis inhibitor, belongs to the antineoplastic 

medications. However, it may be used as a sec-
ond-line drug for psoriasis and palmoplantar pus-
tulosis115 based on the ability to slow down the 
rapid division of keratinocytes. Bone marrow sup-
pression is the major and common adverse effect 
of hydroxyurea.

Human immunodeficiency virus
Hydroxyurea demonstrated promising results in 
reducing HIV RNA viral loads in five placebo-
controlled clinical trials. Among all the trials, 
hydroxyurea was combined with didanosine, a 
nucleoside analog reverse-transcriptase inhibitor 
(NRTI). However, one should be reminded that 
decreased CD4 counts were noted in some stud-
ies. Therefore, close follow up of hematologic 
change is required in daily practice.65–69

In vitro studies demonstrated the antiviral modes 
of hydroxyurea. First, hydroxyurea depletes 
deoxynucleoside triphosphate (dNTP) pools, 
which impedes DNA synthesis and in turn slows 
down the production of viral DNA. Second, 
hydroxyurea enhances NRTI phosphorylation 
and reduces resistance to NRTIs. This may par-
tially explain the benefits of adding hydroxyurea 
to NRTI for viral control. Finally, cytotoxic effect 
of hydroxyurea makes cellular division of CD4+ 
T cells decline. This enables hydroxyurea to block 
HIV proliferation, because HIV could only repli-
cate in dividing CD4+ T cells.64

Hepatitis C virus, hepatitis B virus, herpes 
simplex virus (HSV), parvovirus B19 (B19V)
Although the mode of action of hydroxyurea for 
HCV, HBV, HSV, and B19V is unknown, viral 
replications were inhibited by hydroxyurea in 
in  vitro studies.70,74–76 Small-scaled clinical trials 
showed significant reduction of HCV RNA levels 
and HBV viral loads in chronic HCV and HBV 
carriers, respectively.71,72 However, there is a case 
report of an elderly patient with essential thrombo-
cythemia experiencing reactivation of HBV during 
treatment with hydroxyurea.73 A retrospective 
review of children with sickle cell anemia demon-
strated decreased requirement of blood transfusion 
and attenuation of clinical symptoms when using 
hydroxyurea in patients with B19V infection.77

Minocycline
Minocycline, a second-generation of tetracy-
clines, is frequently used for bacterial infections, 
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acne, and rheumatoid arthritis. The small size 
and lipophilic nature facilitate its penetration 
into blood–brain barrier easily. The neuroprotec-
tion and anti-inflammation effects116,117 brought 
interest in the treatment of virus-induced enceph-
alitis such as HIV, Japanese encephalitis virus 
(JEV), and reovirus. The antiviral property is not 
clearly known but seems to be diverse, including 
neuroprotective, antiapoptotic, interference of 
viral protein expression, and anti-inflammatory 
effects.

Human immunodeficiency virus
In microglial cell culture, minocycline reduced viral 
replication by 71–96%.78 In vivo, macaque monkeys 
treated with minocycline showed less destruction of 
axons and less replication of viruses in the central 
nervous system. The experiment suggested that the 
antiviral effect of minocycline was through reduc-
ing the activation of monocytes and hence, viral 
replication was blocked.79 Nevertheless, two dou-
ble-blind, randomized, placebo-controlled human 
studies revealed that under minocycline 100 mg 
twice daily, there was no difference in cognitive 
function compared with placebo.80,81

Japanese encephalitis virus
Minocycline showed high efficacy in animal 
models and in vitro studies for the treatment of 
JEV.82,83 A double-blind, RCT allocated 44 pedi-
atric patients into a minocycline group or pla-
cebo group. The results demonstrated 
minocycline significantly reduced the duration of 
unconsciousness, fever, and hospital-stay days, 
while neurologic deficits and mortality rate were 
unchanged.84 Another RCT (n = 281) revealed 
that minocycline led to a trend of better out-
comes, especially those who survived the first 
hospital day.85

Dengue virus, respiratory syncytial virus, 
enterovirus 71, influenza virus, West Nile virus, 
reovirus, rabies
Minocycline showed antiviral activity in a broad 
spectrum of other viruses, but most of the evi-
dence was limited to animal or in vitro studies.86–91 
On the contrary, an animal experiment with 
rabies virus infection treated by minocycline 
caused the exacerbation of encephalomyelitis and 
higher mortality rate.92

Chloroquine and hydroxychloroquine

Severe acute respiratory syndrome coronavirus 
(SARS-CoV)
CQ and HCQ are reported to have strong antiviral 
property for SARS-CoV in vitro. Similar to COVID-
19, CQ interferes with glycosylation of cellular 
receptor ACE2 of SARS-CoV.30 Interestingly, the 
inhibitory effect was noted before and after viral 
entry, which means CQ may offer benefit for both 
prophylaxis and treatment.31,32

Human immunodeficiency virus (HIV), dengue 
virus, chikungunya virus, influenza A virus, 
hepatitis C virus (HCV)
Some in vitro studies and clinical trials investi-
gated the efficacy of CQ or HCQ for different 
viruses, especially HIV.33,34 Four clinical trials 
showed positive results of HIV control, either in 
the reduction of immune activation or lowering 
the vertical transmission.35–38 However, another 
two trials (one RCT, one single-arm) revealed no 
efficacy.39,40 As for dengue,41–44 chikungunya,45–47 
influenza A viruses,48–51 and HCV,52,53 paradoxi-
cal outcomes were found in the literature. 
Therefore, the utilization of CQ in these viral dis-
eases still needs further investigation.

Zika virus
The major concern of Zika virus infection is that 
it can transmit from placenta to fetus and cause 
microcephaly or congenital defects. CQ pre-
vented Zika virus internalization in cell cultures 
and reduced morbidity or mortality in mice. In 
addition, it prevented fetal mice from microceph-
aly.54 Therefore, CQ might be a potential treat-
ment waiting for clinical verification.

HCQ had been reported to downregulate the 
expression of IFN genes and reduce the produc-
tion of type I IFNs. This phenomenon was noted 
in vitro118 and in human studies of autoimmune 
diseases.119 Since IFNs are crucial in innate 
immunity to defend viral infections, the usage of 
HCQ may raise concerns about the counter 
effects in viral control. Nevertheless, opposite 
results were also presented: HCQ activated IFN-
β signaling pathways in cell studies of dengue 
virus.120 Furthermore, blocking type I IFN recep-
tors attenuated the efficacy of HCQ in the treat-
ment of dengue-virus-infected cells.120 On the 
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other hand, a case-control study revealed patients 
with lupus erythematosus were 16 times less likely 
to develop serious infections if taking antimalari-
als.121 Another retrospective study showed signifi-
cantly lower infection rate in patients with lupus 
nephritis and exposure to antimalarials.122 HCQ 
is generally thought of as having protective effect 
for viral infection,123 but their relationship with 
IFNs still needs further investigation.

Cyclosporine A

Human immunodeficiency virus
In vitro cyclophilin A interacts with the gag pro-
tein of HIV and its incorporation into a new virion 
plays an essential role for virus infectivity. CsA 
binds to cyclophilin A and inhibits virus replica-
tion by interfering with the incorporation.55

A retrospective study included 27 HIV patients 
with CD4 T-cell counts 300–600/µl. After a 
median exposure time of 11 months on CsA 
(7.5 mg/kg per day), stable CD4 numbers were 
demonstrated, and none of the patients pro-
gressed to AIDS. Conversely, CD4 counts 
declined at a rate of 5 cells/mm3 per year after ces-
sation of CsA.56 Nevertheless, an RCT (n = 28) 
allocated HIV patients with CD4 numbers greater 
than 500/µl into a CsA 2 mg/kg per day group, or 
placebo group. The results demonstrated that 
CD4 numbers did not increase under low-dose 
CsA, but HIV RNA levels raised slightly (that was 
statistically significant) instead.57

Hepatitis C virus
A controlled trial enrolled 120 chronic HCV car-
riers into two groups: IFN-α alone or a combina-
tion of IFN and CsA. The combination group 
significantly increased the sustained virological 
response rate with similar safety profiles in the 
two groups. The benefit was especially marked in 
patients with HCV genotype 1 and high viral 
loads.60

NS5A and NS5B are two important non-struc-
tural proteins that several direct-acting antiviral 
agents target. Cyclophilin A and B bind to NS5A 
and NS5B of HCV to form a replication com-
plex. This complex modulates folding and traf-
ficking of HCV proteins. Thus, CsA influences 
HCV replication by inhibiting cyclophilins’ 
function.58,59

Flavivirus
Flavivirus is an arthropod virus transmitted by 
infected arthropods such as mosquito or tick. 
In  vitro, CsA showed efficacy against several 
viruses belonging to this genus (dengue virus, 
West Nile virus, yellow fever virus and Zika virus). 
The efficacy of CsA is through the inhibition of 
cyclophilins that interact with the NS5 protein of 
flavivirus to facilitate protein folding.61,62

Betaretrovirus
Betaretrovirus is regarded as one of the environ-
mental factors triggering the recurrence of pri-
mary biliary cirrhosis (PBC) after liver 
transplantation. Earlier and more severe recur-
rence of PBC occurred with tacrolimus compared 
with CsA as an immunosuppressant. This may be 
partially explained by the antiviral activity of CsA. 
According to an in vitro study, it was suggested 
that CsA interrupted viral replication through 
inhibiting viral protein synthesis, gag and enve-
lope assembly, and particle budding.63

Mycophenolate mofetil and mycophenolic 
acid

Human immunodeficiency virus
The combination of MMF and highly active 
antiretroviral therapy improved the control of viral 
replication and delayed viral-load rebound in a 
randomized pilot study (n = 17).26 In vitro and 
in  vivo studies showed cytostatic and antiviral 
effect by depletion of the dividing CD4+ T cells.93

Influenza virus
MMF had antiviral activity for influenza 
A(H1N1), A(H3N2), A(H7N9), and B viruses in 
many in vitro studies.27 The effect of MMF on 
influenza virus was through the inhibition of viral 
messenger RNA and protein expression by inhib-
iting the cellular IMPDH. Besides, MMF mark-
edly reduced viral loads in lungs and all mice 
survived.94

Middle East respiratory syndrome coronavirus 
(MERS-CoV)
MERS-CoV causes respiratory infection called 
MERS or camel flu. Mortality rate is around 
33%, and there is no specific treatment or vaccine 
for the disease till now. MMF is one of the 
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retrieved medications investigated for its antiviral 
efficacy for MERS. Although good inhibitory 
effects were noted in in vitro studies,95 all marmo-
sets treated with MMF experienced severe and 
fatal disease.96

Thalidomide

Human herpesvirus 8 (HHV-8)
HHV-8 is the cause of Kaposi’s sarcoma (KS). 
Case reports showed encouraging experience of 
thalidomide in all types of KS (classic, iatrogenic, 
and HIV related).124 Two phase II clinical trials 
investigating HIV-related KS revealed 35% and 
40% of partial responders. Serum titers of HHV-8 
were decreased in all patients.111,112

The effectiveness of thalidomide for KS might be 
related to anti-angiogenesis, and experts hypoth-
esized the modulation of the immune system to 
trigger an antiviral action.

Conclusion
The treatment of immune-based diseases has 
been revolutionized by the introduction of tar-
get therapy, mainly biologics. Compared with 
biologics, conventional synthetic DMARDs 
exert broad-spectrum functionality. DMARDs 
work through immunosuppressive and anti-
inflammatory effects with the possibility of 
higher infection risk. However, many none-bio-
logic DMARDs demonstrate antiviral activities 
instead. Although in most instances, the antivi-
ral activity of DMARDs is based on in vitro or 
small-scale controlled studies, this property 
would be useful in the choice of DMARDs for 
patients with concomitant viral infections. Also, 
the combinational use of antiviral drugs and 
DMARDs has been shown to be more effective 
and less resistant in the control of some viral 
infections. Furthermore, in the face of novel 
viral infection, such as SARS-CoV-2, screening 
of existing chemicals, including DMARDs, may 
prove to be fruitful.
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