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Despite the success of antiretroviral therapy (ART), people living with HIV continue to suffer
from high burdens of respiratory infections, lung cancers and chronic lung disease at a
higher rate than the general population. The lung mucosa, a previously neglected HIV
reservoir site, is of particular importance in this phenomenon. Because ART does not
eliminate the virus, residual levels of HIV that remain in deep tissues lead to chronic
immune activation and pulmonary inflammatory pathologies. In turn, continuous
pulmonary and systemic inflammation cause immune cell exhaustion and pulmonary
immune dysregulation, creating a pro-inflammatory environment ideal for HIV reservoir
persistence. Moreover, smoking, gut and lung dysbiosis and co-infections further fuel the
vicious cycle of residual viral replication which, in turn, contributes to inflammation and
immune cell proliferation, further maintaining the HIV reservoir. Herein, we discuss the
recent evidence supporting the notion that the lungs serve as an HIV viral reservoir. We will
explore how smoking, changes in the microbiome, and common co-infections seen in
PLWH contribute to HIV persistence, pulmonary immune dysregulation, and high rates of
infectious and non-infectious lung disease among these individuals.

Keywords: HIV, HIV reservoir, pulmonary immunity, lungs, alveolar macrophages, CD8 T-cell dysfunction, mucosal
immunity, alveolar macrophage (AM)
INTRODUCTION

HIV-1 infection is characterized by chronic immune activation and inflammation, which are
predictors of disease progression (1, 2). In fact, HIV+ status has been linked to higher prevalence of
age-associated noncommunicable comorbidities, such as cardiovascular and renal disease, where
inflammation is believed to be the driving factor (3). Furthermore, chronic inflammatory states
persist in PLWH despite virologic suppression with antiretroviral therapy (ART), which has been
linked to a higher non-AIDS related morbidity and mortality rate (4, 5). Chronic inflammation and
the prevalence of infectious and non-infectious comorbidities is especially pertinent in regards to
the lungs. Even on ART, PLWH are 25 times more likely to suffer from pneumonia and are at a
higher risk of developing chronic obstructive pulmonary disease or lung cancer than healthy
org January 2022 | Volume 12 | Article 8087221
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individuals (6–10). Rates of tuberculosis infection and influenza-
associated mortality is also higher in PLWH than in general
population (11, 12).

Despite the success of ART at inhibiting HIV replication, the
major challenge for a functional HIV cure is viral persistence in
cellular and tissue reservoirs. An HIV reservoir is an anatomical
site harboring cells where a replication-competent proviral DNA
with stable kinetic properties persists in its integrated form (13).
As a retrovirus, HIV integrates its DNA into the genome of host
cells, mainly CD4 T cells (14). After acute infection, the provirus
enters a state of post-integration latency whereby viral
transcription is reversibly silenced. The lack of viral protein
expression on the cell surface protects the cell from detection and
elimination by the immune system (15). Cellular HIV reservoirs
are established during the early days of infection, whereby HIV
seeds different anatomical sites such as lymph nodes, gut-
associated lymphoid tissue, the central nervous system, the
genitourinary tract and, based on recent evidence, the lungs
(16–18).

Early viral presence in the lung, along with high rate of lung
diseases in PLWH even after ART initiation raise the question on
why and how the lung might serve as another anatomical HIV
reservoir and what challenges does it pose on our way to a true
functional HIV cure.
LUNG IMMUNITY

Just like the skin and the gastrointestinal tract, the lungs are an
interface between the inner body and the outside world. Apart
from ensuring adequate gas exchange, the lung must prevent
harmful effects of noxious compounds, microbes, and debris on
the body. The lungs are designed to facilitate optimal oxygen
exchange between the environment and red blood cells. Thus,
not only are they highly vascularized, but they also house around
300 million alveoli, covering a surface area of approximately 500
m2 – roughly the size of a tennis court (19, 20). This entire area
must be kept clean of unwanted airborne particles and is
patrolled continuously for foreign invaders – a task executed
by the innate and adaptive arms of the immune system.

Physical and Biochemical Barriers
The human respiratory tract can be divided into the upper and
lower parts. The upper portion is composed of the nasal cavity,
pharynx, and larynx, while the lower portion includes the trachea
and the lung itself, which houses part of the conducting airways
(bronchi, bronchioles) that lead into the respiratory zone (the
alveoli) (21). The lumen of the airways is lined with epithelium
that is made up of ciliated, non-ciliated, and secretory cells (21).
These are sealed shut with tight junctions, creating a physical
barrier, whose permeability is controlled by transmembrane
proteins called claudins (22). This barrier is further reinforced
by a layer of airway surface fluid made of mucins - large heavily
glycosylated proteins secreted by goblet cells that form a gel-like
physical barrier that protects the underlying cells from physical
and chemical stressors. Moreover, this barrier acts as an
antimicrobial wall, trapping any microbes with which it comes
Frontiers in Immunology | www.frontiersin.org 2
into contact (23). In addition to mucins, airway surface fluid
contains a large number of antimicrobial proteins and peptides,
such as defensins and lysozymes, which collectively exhibit
broad-spectrum antimicrobial activity (24). Airway mucous,
along with the trapped microbes and debris within it, is
pushed out continuously from the lower lung into the trachea
and esophagus by the mucociliary clearance system where
ciliated cells move the surface fluid via the motive force of
their cilia. As we progress from the terminal bronchus into the
alveolar sacs, the cellular and airway surface fluid makeup
changes. Here, in the alveolar sacs, the epithelial barrier
becomes extremely thin and its surface mucus becomes
replaced by surfactant, a detergent-like substance that prevents
alveolar collapse when we breathe (25). Since gas exchange in
this zone is vital, structural damage, air flow obstruction, or
uncontrolled inflammation within this tissue can have life
threatening consequences (26).

Sensor Cells of the Innate Immune System
The next tier of the lung’s defense system are sensor cells, which
include the aforementioned epithelial cells along with alveolar
macrophages (AMs), dendritic cells (DCs), and mast cells (25).
In bronchoalveolar lavage (BAL) fluid, AMs make up the
majority of this cell pool (~85%) (27). Unlike most immune
cells, AMs are largely derived from a unique tissue-resident cell
subset that originates from a distinct hematopoietic cell lineage
during embryonic development (28, 29). When quiescent, the
primary role of AMs is to clear the lung of allergen particles, dead
cells, and other debris to maintain tissue homeostasis. They also
receive multiple inhibitory signals, such as CD200, transforming
growth factor−b (TGF-b) and interleukin−10 (IL−10), from
pulmonary epithelium that prevent their unnecessary
activation (30). Notably, healthy lung microbiota further
supports these anti-inflammatory homeostatic functions (31).
However, during an active infection, these processes are
interrupted. Once a pathogen is encountered and recognized
by one of the aforementioned sensor cells, pro-inflammatory
cytokines are released, which immediately initiate an innate
immune response. The type of immune response initiated
depends on the nature of the pathogen and the type of
cytokines it triggers. For instance, in the case of a viral
infection, epithelial cells, AMs and DCs begin producing Type
I and Type III interferons (IFNs), to limit pathogen spread and
induce an antiviral state of the cells in the vicinity (32).

Engaging the Adaptive Immune System
If the aforementionedmechanisms fail to clear the pathogen, tissue-
resident lymphoid cells are recruited. These include innate
lymphoid cells, natural killer cells, Natural Killer (NK) T-cells,
conventional CD8 and CD4 T-cells, as well as mucosal-associated
invariant T-cells (MAIT) and gd T-cells. Collectively, these cells
further enhance direct killing of the pathogen or infected cells and
recruit more effector cells from the circulation, such as neutrophils
and monocytes, to facilitate infection clearance in its early stages
(25). If the pathogen is still not cleared, additional forces of the
adaptive immune system are called to action. DCs are the key
mediators of this process. Residing under the epithelial layer within
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the pulmonary interstitium, these cells can extend their dendrites
across the epithelial layer to sample antigen from the lumen. Under
inflammatory conditions, DCs become activated and begin to
transport the microbial antigen to the draining lymph nodes and
nearby mucosal associated lymphoid tissues, where they activate
naïve and central memory T-cells whose T-cell receptor matches
theMHC-peptide complex onDC’s surface (33–35). The efficiency
ofDCs toactivate these cells dependsonboth thenature of infection
and the type ofT-cell it encounters. For example, during respiratory
influenza virus infection, CD103+ migratory DCs are the most
potent activators of naïve virus-specific CD8 T-cells (36, 37).

CD8+ cytotoxic T-cells and CD4+ Th1 cells fight intracellular
microbes by killing infected cells, releasing pro-inflammatory
and anti-viral cytokines (IFN-g), and recruiting phagocytes to the
infection site (25, 33, 38). CD8+ Tc2 cells and CD4+ Th2 cells
fight extracellular parasites via granulocyte recruitment, mast cell
activation, stimulation of mucus production by goblet cells, and
promotion of B-cell class-switching to IgE (25, 38). CD4+ Th17
and CD8+ Tc17 cells are devoted to battling against extracellular
bacteria and fungi. These cells amplify neutrophil recruitment,
stimulate antimicrobial peptide production by the pulmonary
epithelium, and promote B-cell class-switching to opsonizing
antibody production (38, 39). B-cells and follicular helper T-cells
(Tfh) are crucial against all classes of pathogen. With the aid of
Tfh cells, B-cells expand and differentiate. Depending on the
activation site and signals they receive from Tfh cells, some will
traffic back to the airways and become local IgA producing
plasma cells, while others will switch to IgG and home to the
bone marrow to provide systemic protection (40). Notably, in a
healthy respiratory tract, IgA is the major immunoglobulin and
IgA deficient individuals experience higher rates of respiratory
infections (20, 41).

Lastly, regulatory T-cells (Tregs) are tasked with resolution of
inflammation upon infection clearance. Their job is crucial in
collateral damage control caused by pro-inflammatory immune
mechanisms. Originating either from the thymus (natural Tregs)
or from conventional CD4+ T-cells differentiated in the
periphery (induced Tregs), these cells are potent immune
suppressors. They downscale immune activation, kill effector
T-cells, limit growth factor availability, and promote tissue repair
returning the lung back to homeostasis (42–44).
PULMONARY IMMUNE DYSREGULATION
DURING HIV INFECTION

Acute HIV and Lung Immunity
Within a few hours of the transmission event, HIV begins to
replicate in mucosal, submucosal, and draining lymphoid tissues.
Notably, lung is an early target of HIV dissemination because it is
highly vascularized and houses a very large pool of target cells.
Experimental SIV-infections of macaques demonstrate that the
virus is seeded into the lungs shortly after intravenous infection
(45–47). In fact, SIV replication in BAL cells of pigtailed
macaques can be detected as early as 7 days post-inoculation,
peaking at 10 days during acute infection (46). Interestingly, the
Frontiers in Immunology | www.frontiersin.org 3
CCR5-tropic HIV strain, known as HIV-1Bal, was originally
isolated from the lungs (48). Viral quasispecies specific to this
tissue and distinct from the circulation have also been reported
(49, 50).

Upon reaching the lung, HIV is seeded into multiple cell
types: CD4 T-cells, DN T-cells, and AMs. Although HIV
preferentially infects CD4 T-cells, which account for ~6% of
total BAL cells in healthy non-smokers, AMs, which account for
~85% of total BAL cells, are also infected (27, 51–53). Although
data on pulmonary immune perturbations during primary acute
HIV infection is scarce, in vitro experiments on human lung
lymphocytes and in vivo animal SIV models suggest that during
the acute phase of infection pulmonary interstitial CD4 T-cells
are more severely and rapidly depleted compared to the blood
compartment that is largely due to CCR5+ memory CD4 T-cells’
high susceptibility to CCR5-topic HIV-1 infection, which make
up the vast majority of the lung CD4 T-cell pool (54, 55).

Most acute HIV-1 infections are caused by the CCR5-tropic
strain (T-tropic strain), which preferentially targets T-cells.
Although it’s not very efficient at infecting macrophages on its
own, its infectivity is enhanced significantly during cell-to-cell
contact between AMs and infected CD4 T-cells, as has been
recently shown by Schiff and his group, suggesting that AM HIV
entry during acute infection is CD4 T-cell dependent (53).
Within the AM cell pool (CD206+) two subsets have been
identified based on size (FSC) and granularity (SSC) – small
and large AMs (56). Human ex vivo AM analysis shows that HIV
preferentially infects monocyte-like small AMs, which show
higher pro-inflammatory gene expression and greater
phagocytic capacity compared to large AMs (56, 57). In
addition to infecting AMs, we have also shown in a humanized
mouse model of early HIV infection that the virus is
preferentially seeded within lung DN T-cells, a rather novel
lung HIV reservoir cell subset, which is enriched in the lungs of
both HIV+ and seronegative individuals compared to other
tissues (58).

In about two thirds of cases with primary HIV infection,
individuals experience flu-like symptoms such as fever, chills,
and swollen lymph nodes. Some individuals also suffer from
respiratory symptoms such as a sore throat or a dry cough,
suggesting engagement of the pulmonary innate immune
response (59). Massive CD4 T-cell apoptosis during the acute
infection phase is accompanied by profound immune activation,
caused by release of apoptotic microparticles into the
bloodstream (1, 60). Furthermore, in addition to the attack on
human immune cells, HIV also compromises the integrity of the
lung epithelial barrier by infecting human bronchial epithelial
cells, decreasing their expression of E-cadherin, and increasing
paracellular permeability (61, 62).

Untreated Chronic HIV and the
Lung Immunity
At this point, viral reservoirs in deep tissues are already well
established, including the reservoir in the lung. In fact, SIV-
models show that during the asymptomatic phase of infection,
there is no correlation between plasma and BAL fluid viral loads (46).
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This is further supported by human phylogenetic studies, which
demonstrate HIV lung reservoir compartmentalization in
untreated patients (63, 64). Furthermore, whole lung tissue
biopsies of untreated HIV-infected persons harbor distinct viral
quasispecies compared to those found in their blood and
lymphoid tissues suggesting that the HIV reservoir may be
replicating and evolving locally in that anatomical site, rather
than solely spreading from the circulation (49, 50).

Prior to introduction of ART, lung disease was the leading
cause of death in people living with HIV (PLWH) (65). As seen
in the very first AIDS reports of Pneumocystis jirovecii
pneumoniae infections in gay men in the 1980s, previously rare
fungal pulmonary infections became a staple AIDS-defining
illness observed in severely immunosuppressed patients (66,
67). Untreated PLWH are also at a higher risk of developing
recurring bacterial pneumonia, whose rate is inversely
proportional to the patients’ CD4 T-cell counts (68). They are
also more prone to cancer development, such as lung cancer,
compared to persons without HIV infection (69, 70).

The dysregulated pulmonary immune environment in PLWH
may facilitate the development of such lung pathologies.
Destruction of lung parenchyma, pulmonary inflammation, and
emphysema are recognized complications of HIV infection. Up to
60% of untreated PLWH present with lymphocytic alveolitis,
characterized by infiltration of B-cells, gamma-delta T-cells, as
well as CD4+ and CD8+ T-cells into the lung, which is observed in
absence of any respiratory symptoms (71–74). Both their
pulmonary CD8 and CD4 T-cells show 2- to 3-fold greater
expression of HLA-DR and CD38, which are markers of
immune activation, compared to seronegative adults (75). Neff
and colleagues have also shown that in untreated PLWH with
lymphocytic alveolitis, lung HIV-specific CD4+ and CD8+ T-cells
show impaired proliferative capacity, which is caused by high
expression levels of PD-1, a classic exhaustion marker that
dampens T-cell receptor signaling (71, 76). Furthermore, the
lung cytokine milieu of PLWH is disrupted. Jambo et al. have
shown that BAL fluid taken from ART-naïve HIV+ study
participants have increased concentrations of RANTES and
TNF-b and a shift towards MIP-1b, MCP-1, and IP-10 signaling
network (77). Notably, RANTES is a lymphocyte chemoattractant,
shown to a play a role in lung CD8 T-cell recruitment in other
viral lung infections. These CD8 T-cells can in turn produce TNF-
b, a potent pro-inflammatory cytokine that promotes vascular cell
adhesion, chemokine production, and further immune cell
infiltration into the tissue (78–80). IL-6 is another pro-
inflammatory player, whose levels are associated with higher
HIV RNA levels and has repeatedly been shown to be produced
by monocytes and macrophages in response to HIV (81, 82). In
vivo non-human-primate models further show that IL-6
expression in pulmonary interstitial macrophages of SIV-
infected animals is positively correlated with monocyte turnover
and lung tissue damage (83). As mentioned previously, HIV has
also been shown to impair pulmonary epithelial integrity by
decreasing expression of cell-to-cell adhesion molecules and
promoting further release of pro-inflammatory mediators by
these cells, thus accelerating the decline in lung function (61).
Frontiers in Immunology | www.frontiersin.org 4
Chronic pulmonary inflammation further leads to increased
production of matrix metalloproteinases (MMPs), a family of
endopeptidases that can degrade elastin and collagen fibers (84).
Notably, both elastin and collagen degradation products act as
immune cell chemoattractants: while elastin fragments recruit
monocytes, collagen fragments attract neutrophils (85).
Collectively, MMPs play a role in tissue repair and modulate
the immune response. In vitro experiments on primary human
airway basal cells have shown that HIV infection can force these
cells to acquire a destructive phenotype via upregulation of
MMP-9 through activation of MAPK signaling, thus
potentially contributing to emphysema development in
PLWH (86).

On the other end of the scale between inflammation and
wound repair, HIV leads to higher levels of TGF-b – an anti-
inflammatory cytokine produced by Tregs and alveolar
macrophages. Because PLWH experience persistent low-grade
chronic inflammation, that is in part caused by bacterial
translocation across the gastrointestinal mucosal barrier, the
immune system tries to counteract it via anti-inflammatory
cytokines, such as TGF-b (87, 88). Notably, TGF-b levels are
significantly higher in PLWH compared to seronegative
individuals and remain elevated regardless of ART treatment
and viral load suppression (89). TGF-b can downregulate
inflammatory processes by promoting Treg expansion and
inhibiting effector T-cell function, as well as drive collagen
deposition by fibroblasts as part of the normal wound repair
process (90, 91). In PLWH long-term TGF-b elevation may
contribute to irreversible tissue fibrosis of the gut, secondary
lymphoid organs, and the lung (92–95). One study has also
shown higher TGF-b production by AMs from PLWH compared
to AMs from healthy donors, which the authors believe to be
implicated in impaired IgG secretion in the alveoli (96). AMs
from PLWH also show a pro-inflammatory phenotype, higher
TNFa production, and impaired phagocytic ability, which in
turn leads to poor pathogen clearance (57, 97–99). Untreated
HIV infection also leads to loss of anti-inflammatory CD163
+CD206+ AMs (100). Furthermore, AMs from SIV infected
macaques show elevated levels of PD-1 which positively
correlates with plasma viral load, suggesting that higher PD-1
expression on AMs may be associated with disease
progression (101).
ART-Treated HIV and Lung Immunity
Although introduction of ART has greatly reduced the rate of
opportunistic infections and improved the quality of life of
PLWH, it does not fully restore all of immune perturbations
caused by HIV infection. Instead, the spectrum of most prevalent
pulmonary diseases had shifted from opportunistic infections to
chronic illnesses, such as emphysema, chronic obstructive
pulmonary disease (COPD), pulmonary fibrosis, and lung
cancer which are discussed in more detail in a later section.
Notably, although ART had greatly reduced the rate of lung
infections in PLWH, they still occur more frequently in HIV
infected individuals compared to the general population (7, 102).
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Viral control after ART-initiation has a significant impact on
lung immunity. Lymphocytic alveolitis resolves, CD8 T-cell
numbers decrease, CD4 T-cell count improves, and thus CD4:
CD8 T-cell ratio is ameliorated (103, 104). Notably, lung CD4 T-
cell repopulation likely occurs due to local expansion of the tissue
resident subset, as seen by higher Ki67 expression in BAL CD4
T-cells 1 month after starting therapy (104). Twigg et al. have
also demonstrated that level of CD38 and HLA-DR on BAL
lymphocytes decrease significantly after the first 6 months of
therapy, especially on CD8+ T-cells (105). However, as our team
has recently demonstrated, levels of HLA-DR+CD38+ BAL CD4
T-cells remain higher in ART-treated PLWH compared to
healthy controls (17).

Twigg and his group also show that intracellular levels of INF-g,
TNF-b, and IL-2 in alveolar CD4+ and CD8+ T-cells, measured
after mitogenic stimulation with the superantigen staphylococcal
enterotoxin B, decline significantly in ART-treated PLWH (105).
Similar reports were made on extracellular levels of inflammatory
cytokines in BAL fluid, such as INF-g, IL-6, and INF-g inducible
chemokines like IP-10 (105–107). In contrast, Knox et al. showed
that although BAL CD4 T-cell infection rate decreases with
introduction of ART, both CD4 and CD8 T-cell polyfunctional
profiles (INF-g, TNF-a, IL-2) after mitogenic stimulation remain
relatively unchanged (104). Importantly, this was not the case in
the peripheral blood, where CD8 T-cells showed a marked
improvement in polyfunctional cytokine secretion in response to
a stimulus (104). These findings further highlight that immune
restoration in lung tissue during ART is incomplete, which can
help explain ongoing susceptibility of treated PLWH to pulmonary
infections (108, 109).

Apart from pro-inflammatory mechanisms, anti-
inflammatory immune functions also remain dysregulate
during ART. PLWH show higher levels of CD39+CD73+Tregs
in their BAL fluid compared to peripheral blood, while no such
difference is observed in seronegative controls (17). Importantly,
these immunosuppressive cells can act as a double-edged sword.
They can help resolve inflammation during acute lung injury, but
they are also capable of promoting tumor cell survival,
angiogenesis, and fibrosis (110, 111).

AM dysfunction is yet another factor contributing
compromised lung immunity in PLWH on ART. Collini et al.
have shown that AMs from ART-treated PLWH have defects in
microbicidal mechanisms, mediate by HIV’s gp120 protein,
which could inhibit macrophage apoptosis induction, caspase
activation, and mROS-dependent pneumococcal killing (112).
These cells also remain subjected to chronic oxidative stress
despite ART. Yeligar et al. have shown that BAL fluid from
treated PLWH has higher H2O2 concentration (113).
Furthermore, their AMs have lower expression levels of
proliferator-activated receptor (PPAR)-g, an important player
in combatting oxidative stress during acute lung injury, higher
expression levels of expression of NADPH oxidases, which
further promote oxidative stress and inhibit phagocytosis, and
higher levels of TGF-b, a big driver of tissue fibrosis (113–116).
Impaired AM phagocytic capacity and skewing in polarization
has been further emphasized by Akata et al. (117). Using BAL
Frontiers in Immunology | www.frontiersin.org 5
samples from PLWH and healthy controls, they have
demonstrated that out of the four macrophage subsets (non-
polarized: CD40-, CD163-; M1: CD40+, CD163-; M2: CD40-,
CD163+; double-polarized: CD40+, CD163+) the double-
polarized subset has the highest phagocytic capacity. Notably,
this subset was significantly diminished in HIV+ COPD-
individuals, while the non-polarized subset, which had the
lowest phagocytic capacity, was enriched (117). The collective
effects of HIV on pulmonary inflammation are summarized in
Figure 1.

ART Toxicity
Interestingly, there are several studies which suggest that ART
toxicity might also play a role in immune dysregulation in PLWH.
In vitro studies have shown that nucleoside reverse transcriptase
inhibitors can decrease mitochondrial DNA content and
complement-mediated phagocytosis in human monocyte-
derived macrophages (118). In addition, Korencak et al. looked
at CD4 T-cells from treated and untreated PLWH, as well as
healthy subjects, showed that ART improves these cells’metabolic
phenotype but not the respiratory impairment, especially in
patients receiving integrase inhibitors. Furthermore, they show
that CD4 T-cells treated with dolutegravir and elvitegravir shift the
cytokine response of these cells from a polyfunctional one to a
TNF-a dominated one (119). A similar observation was made by
Bowman and colleagues, which demonstrate that human
macrophages exposed to tenofovir disoproxil fumarate and
emtricitabine have lower mitochondrial mass and increased lipid
uptake (120). These studies can help explain the observations
made by Correa-Macedo et al. showing the potential adverse effect
of ART on transcriptional response of AMs to Mycobacterium
tuberculosis (Mtb). In their recent study, they have isolated AMs
from healthy controls, PLWH on ART, as well as seronegative
participants taking pre-exposure prophylaxis (PrEP). Notably,
AMs from HIV+ and HIV- PrEP study groups both had a
weaker transcriptional response when challenged with Mtb
compared to AMs from healthy controls. Furthermore, AMs
from HIV- PrEP and HIV+ donors showed no change in
chromatin state upon challenge, unlike AMs from healthy
controls which displayed a significant change in chromatin
accessibility (121). Collectively, these findings suggest that
although ART greatly improves the quality of life of PLWH and
does restore many of their immune parameters it does not come
without side effects. Some regimens may decrease mitochondrial
function and elicit a pro-inflammatory immune cell profile,
thus partially contributing to chronic inflammation in
treated individuals.
ACCELERATED PULMONARY CO-
MORBIDITIES DURING HIV INFECTION

Accelerated Immune Aging
Many age-related co-morbidities occur in PLWH at a younger age
than in the general population. This premature onset of age-related
January 2022 | Volume 12 | Article 808722
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illnesses has been largely attributed to chronic inflammation and
immune activation, which in turn leads to accelerated immune
aging, now known as ‘inflammageing’ (4, 122). Inflammageing is
characterized by high level of circulating pro-inflammatory
Frontiers in Immunology | www.frontiersin.org 6
cytokines (IL-6, IL-8, TNF-a, and IFN-g), telomere shortening,
cell senescence (loss ofCD28and increased expressionofCD57and
KLRG1 on T-cells), mitochondria dysfunction, and changes in
microbial composition of the microbiota, all of which have been
FIGURE 1 | Pulmonary inflammation drives immune dysregulation and reservoir persistence in people living with HIV. Even during the era of antiretroviral therapy (ART),
people living with HIV (PLWH) continue to suffer from high burdens of pulmonary illnesses. Inflammation is likely the biggest driver of pulmonary pathologies and lung HIV
reservoir persistence in these individuals. Apart from the virus itself, which is seeded into the lung within the first few weeks of infection, other factors also contribute to
pulmonary immune perturbations in PLWH even during ART, such as smoking, co-infections, changes in the microbiome, and compromised integrity of mucosal barriers.
Collectively, these fuel chronic inflammatory state and pulmonary immune activation characterized by high levels of pro-inflammatory cytokines (RANTES, TNF-b, IFN-g, IL-
6, IP-10), which in turn lead to immune cell recruitment to the lung tissue, typically presenting as CD8 T-cell lymphocytic alveolitis. These CD8 T-cells appear as
functionally impaired and fail to remove lung HIV reservoir that continues to persist in mucosal CD4+ T-cells and CD4-CD8- Double Negative (DN) T-cells, as well as
alveolar macrophages (AMs). A vicious cycle of immune activation and residual viral replication ensues further exacerbating pulmonary immune abnormalities, such as pro-
inflammatory AM polarization, extracellular matrix destruction caused by increased production of matrix metalloproteinases (MMPs), further CD8 T-cell recruitment, and
increased neutrophil count. In an attempt to counteract this inflammatory process, immunoregulatory arm of the immune system could further contribute to increased risk
of pulmonary co-morbidities: accumulation of immunosuppressive regulatory T-cells (CD73+CD39+Treg) might be implicated in higher lung cancer risk and higher levels
of TGF-b could be the primary driver of irreversible pulmonary fibrosis. [Images adapted from Servier Medical Art licensed under CC 3.0 (smart.servier.com)].
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documented in PLWH (122–125). Consequently, this accelerated
immune aging affects the lungs. Leung et al. had conducted several
studies on telomere shortening in PLWH (126, 127). They have
shown that telomeres in circulating leukocytes of PLWH are
significantly shorter than in seronegative study participants.
Furthermore, their telomere length correlated with severity of
poor lung function determined by forced expiratory volume
(126). Notably, in their more recent publication, which included
HIV+ participants with good immune recovery and undetectable
viral loads, the telomere length of their small airway epithelial cells
was significantly shorter than in healthy controls, even after
accounting for cigarette smoke exposure (127). Moreover, HIV+
participants in that study were on average 4 years younger than the
seronegative ones.

HIV and COPD
COPD is a progressive inflammatory lung condition characterized
by airway obstruction, inflamed mucous membranes and alveolar
damage and is the third leading causes of death worldwide with 2
million people affected in Canada alone (128, 129). Both smoking
and HIV are independent risk factors for COPD development
(130–132). Furthermore, COPD has often been proposed to be a
disease caused by accelerated immune aging (133, 134). A recently
published study conducted by Córdoba-Lanús et al. monitored
telomere length of patients with COPD over a 10 year period and
found an association between accelerated telomere shortening and
progressive decline in lung function, such as worsening of gas
exchange and lung hyperinflation in COPD patients (135).

HIV-associated COPD also further dysregulates lung
immune cell function. Popescu et al. have documented that
HIV+COPD+ individuals show severe CD4 T-cell loss in their
BAL fluid, mediated by Fas-dependent activation-induced cell
death. Their BAL CD4 T-cells also show poor HIV-specific
immune response and loss of polyfunctionality compared to
HIV+COPD− participants (136). Curiously, unlike lung mucosal
CD4 T-cells, BAL CD8 T-cells in these individuals maintained
their HIV-specific function. Moreover, increased CD8 T-cell
cytotoxicity has been documented previously in COPD
patients, which might contribute to this condition’s highly
tissue destructive phenotype (137).

HIV and Lung Cancer
Lung cancer is yet another leading cause of death in PLWH (138).
Notably, HIV and COPD are both risk factors for lung cancer
development even after accounting for smoking status (139–141).
Increased lung cancer risk in PLWH has been attributed to acute
inflammatory insults caused by lung infections, chronic low-grade
inflammation, CD8 T-cell dysregulation, compromised integrity of
pulmonary epithelium, and changes in lung microbiome (142–145).
Accelerated immune aging may also play a role. Klugman and
colleagues have shown that in the United States PLWH were
diagnosed with non-small cell lung cancer at a younger age
compared to seronegative participants, with lower median
survival time especially among those with a low CD4/CD8 ratio
and high viral loads (146). Exhausted CD8 T-cells likely contribute
to worse lung cancer outcomes in PLWH, especially in those with
multiple co-infections which exacerbate this exhausted phenotype
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further (147, 148). Given the importance of these cells in fighting
cancer, their exhaustion leads to decreased responsiveness to
stimuli, low cytotoxicity, poor IFN-g secretion, and thus
compromised ability to kill tumour cells (149–151).

HIV and Pulmonary Fibrosis
The high rates of pulmonary fibrosis in PLWH compared to
those in the general population could be attributed to increased
TGF-b levels (95, 152). TGF-b levels are significantly higher in
PLWH compared to seronegative individuals and remain
elevated regardless of ART treatment and viral load
suppression (89). Because TGF-b can drive collagen deposition
by fibroblasts it has been implicated in irreversible tissue fibrosis
of the gut, secondary lymphoid organs, and the lung in PLWH
(92–95). A 2017 multi-center Lung-HIV study has shown that
fibrotic lung changes have been observed in 29% of HIV-infected
participants, which correlated with viral load but not ART
treatment status or CD4 T-cell count (95). Of note, high levels
of TGF-b in PLWH might contribute to poor non-small lung
cancer outcomes, as it has already been documented in
seronegative individuals, although a direct link between TGF-b
levels in PLWH and lung cancer outcomes is yet to be established
(96, 153–155).

HIV and Pulmonary Emphysema
In contrast to pulmonary fibrosis, emphysema is characterized by
higher lung compliance, increased lung volume and lower
expiratory flow rate (156). Increased risk of PLWH of pulmonary
emphysema was reported as early as the 1980s (157). More recent
studies further confirmed that HIV status is a risk factor for
emphysema development independently of smoking (158, 159).
Some of themechanisms inPLWH that likely contribute to this risk
have been mentioned previously. These include CD8 T-cell
accumulation, increased oxidative stress, AM activation, and
increased production of MMPs caused by chronic lung
inflammatory state, which can subsequently lead to extracellular
matrix destruction (85, 86, 159). Attia et al. have further
demonstrated that participants in their HIV+ study group were
more likely to have a greater portion of their lung to be affected and
were more likely to be diagnosed with COPD compared to
seronegative controls diagnosed with emphysema. Additionally,
in their HIV+ study arm, low CD4 T-cell counts and high soluble
CD14 levelswere linkedwithdisease severity, supporting thenotion
that immune activation in PLWH contributes to the risk of
pulmonary emphysema development (158). Whether ART
initiation decreases the risk of emphysema development remains
rather unclear. Emphysema rates in the pre-ART era were reported
to be 15% in PLWH versus 2% in the general population (160). In
ART-treated patients, the reported incidence rates are even higher.
Guaraldi et al. have reported that, of 1,446HIV-infected patients on
ART in their cohort, nearly 50% had evidence for emphysema and/
or bronchiolitis based on thoracic computed tomography (CT)
scans, with 13% showing signs of bronchiolitis, 19% showing
emphysema, and 16% having both (161). Furthermore, among
ART-treated HIV-infected participants recruited by Leung et al.,
emphysema progression was not associated with peripheral CD4
cell counts or CD4:CD8 ratio, HIV viral load, ART classes or
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duration of ART exposure (162). As proposed by others, the
increase in incidence rate of chronic inflammatory conditions in
the ART era, of not just emphysema and COPD but also diabetes
and cardiovascular disease, can largely be explained by improved
life expectancies in treated PLWH, giving them more time to
develop these co-morbidities (163, 164).

Role of Smoking in Pulmonary Co-Morbidities
In a nationwide population-based cohort study conducted,
Helleberg and others reported that both all-cause and non-
AIDS-related mortalities are higher among HIV+ smokers
compared with HIV+ non-smokers. They also highlight that
smoking PLWH lose more life-years to smoking than to HIV
itself (12.3 years versus 5.1 years respectively) (165). Furthermore,
they show that smoking-associated risk of death was 61% among
PLWH compared to 34% among healthy controls. Notably, risk of
death among former smokers was reduced by 40% compared to
current smokers. Around 70% of myocardial infarctions and 27%
of cancers in PLWH are related to their smoking status (166).
Importantly, unlike with myocardial infarction risk, cancer risk
could remain elevated in former smokers even 5 years after
smoking cessation (166).

Smoking further increases the risk of COPD and emphysema
in PLWH (159, 167). Notably, pulmonary emphysema is more
prevalent in HIV+ smokers compared to seronegative smokers
and is often developed at a younger age, which could be partially
attributed to immune dysregulation of AMs in PLWH (159).
Indeed, previous ex vivo human studies show an increase in
MMP expression in both AMs and epithelial lining fluid in HIV
positive smokers with early emphysema compared to HIV
negative smokers with the same lung condition (168). Previous
reports also show that smoking can activate cytotoxic CD8 T-
cells, which can in turn exacerbate pulmonary injury (169–171).
LUNGS AS AN HIV RESERVOIR

Lungs Provide Ideal Grounds
for HIV Spread
As organs, the lungs possess several features that may contribute
to HIV reservoir establishment, several of which stem from their
anatomy. Similarly to the gastrointestinal tract, a confirmed and
well-studied HIV reservoir site (172), the lungs are an extension
of the external environment. They are constantly exposed to
external particles and airborne microorganisms. The antigen
load in the lungs is therefore quite high. Furthermore,
although lymphocytes make up only 10% of the BAL cell pool,
the lymphocyte count in pulmonary interstitium is comparable
to that of peripheral blood, with as many as 10 X 109 cells (7).
High antigen load can in turn promote activation of these
lymphocytes and other immune cells, consequently supporting
HIV replication and continuous reservoir replenishment in
the lung.

Because the lungs carry out the vital function of gas exchange,
they are highly vascularized. Their high blood flow, cell
proximity, surface area, and small arteriole size could further
Frontiers in Immunology | www.frontiersin.org 8
aid in HIV cell to cell spread and reservoir compartmentalization
(7). Furthermore, the lungs of HIV-infected persons harbor
distinct viral quasispecies that are tissue specific suggesting that
HIV reservoir may be replicating locally in that anatomical site,
rather than spreading from other infected tissues (49, 50).

HIV Persists in Multiple Lung
Immune Cell Types
Early viral presence in the lung, along with high rate of co-
morbidities caused by lung diseases in PLWH even after ART
initiation, support the notion that lungs serve as another
anatomical HIV reservoir. Our team previously assessed HIV
persistence in the pulmonary milieu in individuals under long-
term treatment (median 9 years) (17). We found that total HIV
DNA in BAL CD4 T-cells was significantly higher than in
peripheral blood mononuclear cells. Moreover, the lungs were
enriched in activated memory CD4+ T-cells subsets that can
further promote HIV replication and persistence (173). We also
observed that pulmonary mucosal DN T cells of PLWH on ART
expressed higher levels of HLA-DR and several cellular markers
associated with HIV persistence (CCR6, CXCR3, and PD-1)
compared to the blood (58). Importantly, CD3+CD4-CD8- DN
T-cells from the BAL fluid of these participants harbored HIV
DNA. Using the humanized bone marrow-liver-thymus mouse
model, our group also observed higher infection frequencies of
lung DN T-cells than those of the blood and spleen in both early
and late HIV infection stages, meaning that apart from AMs and
CD4 T-cells, HIV is also seeded in pulmonary mucosal DN T-
cells early following infection and persists in these potential
cellular HIV reservoirs even during long-term ART (58).

AMs pose yet a bigger challenge on our way to HIV reservoir
eradication due to their abundance, longevity, and resistance to
apoptosis (112, 174). As alluded to previously, HIV viral proteins
remain detectable in BAL fluid of treated HIV-1 infected
patients, as Collini and his group have demonstrated, which
further underscores the role that AMs serve as HIV cellular
reservoirs in the lung despite ART (112). Clayton and colleagues
also show that HIV-infected macrophages are resistant to CD8
T-cell mediated killing, even more so than HIV-infected CD4 T-
cells, which is associated with increased pro-inflammatory
cytokine production (175). The relative importance of the
lungs as viral reservoirs has also been highlighted by Horiike
et al. in an SIV-infected Rhesus macaque model, where they
found that the lungs and intestines of ART-treated animals had
the largest burdens of SIV RNA, second to the lymphatic tissues
(176). HIV persistence in the lung during ART has been further
confirmed by Santangelo’s group using antibody-targeted
positron emission tomography – a real-time, in vivo viral
imaging method, showing that although lung viral signals are
reduced after ART initiation they still remain detectable (177).

Lung CD8 T-Cells Show Poor
HIV-Specific Response
CD8 T-cells play a key role in clearance of virus-infected cells.
Once differentiated into cytotoxic T-lymphocytes, they acquire
several immunological effector functions. Their arsenal includes
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cytokines (IFN-g, TNF-a, IL-2), cytotoxic granules containing
perforin and granzymes, and the Fas ligand (178). These allow
CD8 T-cells to kill infected target cells, activate and recruit
phagocytes, and mediate pro-inflammatory processes, thus
orchestrating and modulating the immune response (179, 180).
As mentioned in the previous sections, chronic inflammatory
environment and antigen stimulation leads impaired CD8 T-cell
function in lungs of PLWH, rendering them susceptible to
opportunistic infections. Although some of the effector
functions of CD8 T-cells in the peripheral blood do recover
after ART initiation, this is not the case for the CD8 T-cells in the
lungs (181, 182). Moreover, elevation in CD8/CD4 ratio
contributes to non-AIDS-related morbidity (183). These cells
might also induce excessive expansion of other CD8 T-cells in
the vicinity via T-cell receptor independent mechanisms, known
as “bystander activation” (184, 185). Excessive expansion and
immune activation consequently lead to accumulation of these
functionally impaired CD8 T-cells displaying reduced
proliferation, poor effector functions, and high expression of
inhibitory receptors, such as PD-1, in the lung (184, 186, 187).

Impaired CD8 T-cell function may further contribute to lung
reservoir persistence. Several studies have shown that these cells
are required for HIV infection control. Once HIV-specific CD8
T-cells rise during acute infection, peak viremia begins to
subside, meaning that these cells play a crucial part in viral
control during primary infection (188, 189). Furthermore, SIV-
infected Rhesus Macaques whose CD8 T-cells have been
depleted, show increased plasma viremia, which is reversible
with CD8 T-cell repopulation (190). Moreover, HIV mutants
that can escape the CD8 T-cell response appear early during
infection and persist, further demonstrating that there is a strong
evolutionary pressure posed on the virus yielding CD8 T-cell
escape highly advantageous (191, 192). In a recent study, our
team has demonstrated that pulmonary CD8 T-cells show lower
perforin expression ex vivo compared with blood CD8 T-cells,
regardless of HIV or smoking status (193). Pulmonary CD8 T
cells also showed significantly lower in vitro degranulation ability
and less effective HIV-specific CD4 killing capacity than blood
CD8 T cells, potentially contributing to a suboptimal anti-HIV
immune response within the lungs.
INTERPLAY BETWEEN CHRONIC
INFLAMMATION AND VIRAL
PERSISTENCE WITHIN THE LUNGS

Persistent Lung Immune Dysfunction and
HIV Persistence
Residual inflammation in PLWH is one of the biggest contributors
to immune dysfunction, chronic co-morbidities, and replenishment
of the viral reservoir even on ART. Several mechanisms have been
put forth to explain HIV reservoir persistence after many years of
ART treatment: poor ART penetration into deep tissues, residual
replication, persistent cell stimulation due to residual antigen load,
and CD8 T-cell exhaustion (194–196). Residual replication is of
particular importance as it can create a self-perpetuating cycle
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where some of the virus will continue replicating, increasing viral
antigen load locally (197, 198). In turn, this antigen load will
stimulate nearby immune cells, activating their transcriptional
machinery, which will produce more virus if that cell harbors
intact and inducible viral DNA.

Studies have shown that the size of the viral reservoir is
associated with residual levels of immune activation in ART-
treated PLWH. Levels of both cell-associated RNA and proviral
DNA have been positively correlated with frequencies of
activated (CD38+HLA-DR+) and exhausted (PD-1+) CD4+
and CD8+ T cells (199, 200). Although most of these studies
are typically done in the blood, the lungs of PLWH show a
similar phenomenon. All lung T-cells show high frequencies of
activation (HLA-DR) (17, 58, 193). Lung CD4 T-cells from
treated PLWH also show higher frequencies of senescent cells
(CD57), while CD8+ and double negative T-cells show high
expression of PD-1 (17, 58, 193). These high levels of immune
activation likely contribute to lung HIV reservoir persistence
under ART, which our team has demonstrated to be larger in
BAL CD4 T-cells compared to the blood (17). They also
underline the presence of HIV-infected AMs in BAL fluid
from PLWH on ART, which could induce chronic activation
of the innate immune response in that tissue and contribute to T-
cell dysfunction, as has already been shown in monocyte-derived
macrophages (97, 201). Furthermore, Collini and colleagues were
able to detect residual levels of HIV viral protein gp120 in BAL
fluid of HIV-1-seropositive donors with median ART treatment
time of 75 months (112). This finding is of particular importance,
because the ability to detect HIV viral proteins in PLWH who
have been on ART for over 6 years suggests that there is ongoing
residual viral replication in that tissue that contributes to chronic
pulmonary inflammation. In turn, chronic inflammation will
consequently fuel HIV reservoir maintenance either through
active viral replication or through proliferating latently infected
cells, both of which are promoted by inflammatory environment,
creating a vicious cycle that ensures HIV reservoir renewal
(202–204).

Dysbiosis of the Gut-Lung Axis
Fuel Inflammation
Impaired lung immune function and HIV reservoir expansion
are likely amplified through exacerbated inflammation caused by
microbial dysbiosis in the lung and gut of PLWH (145, 205–208).
Although the gastrointestinal and respiratory tracts are separate
organs, they share a common mucosal immune system known as
the gut–lung axis (209). Disruption of the gut microbiota has
been linked with pulmonary diseases such as asthma and COPD
(210, 211). Similarly, a well-balanced gut microbiome can help
the lung immune system fight viral respiratory infections (212).
Importantly, the lung and gut microbiomes do not exist in
isolation from each other and prolonged immune activation, as
seen in PLWH, affects both of them.

In PLWH, chronic inflammation isn’t just fueled by residual
infection but also by damaged mucosal barriers and bacterial
translocation, especially in the gut, which can further promote
immune activation and HIV reservoir expansion in the lung. It is
well known that HIV seeds into the gut within the first few weeks
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of infection and aggressively depletes memory CD4 T-cells in
that tissue (213, 214). This is then followed by tight junction
disruption between intestinal epithelial cells, leading to increased
permeability, also known as a ‘leaky gut’, which might not be
fully reversed with ART (215–217). This in turn leads to
gastrointestinal dysbiosis and translocation of bacterial
products, such as lipopolysaccharides, into the circulation
leading to systemic innate immune activation (218–220).
Notably, systemic markers of inflammation and innate defense
have been associated with decreased lung function and
pulmonary abnormalities in PLWH (221). Alterations in the
pulmonary microbiome prior to ART initiation include
decreased richness (a diversity) and increased change in
species (b diversity) of microbial communities, as well as
increased abundance of Streptococcus and Tropheryma whipplei
in HIV-infected subjects compared to uninfected controls (144,
222). Although dysbiosis improve after treatment initiation, the
lung microbiome is not always fully normalized even after
effective ART. Levels of Veillonella, for instance, remain
elevated in the lungs of PLWH even after 3 years of ART.
Notably, Veillonella outgrowth has been previously associated
with pulmonary inflammation in COPD patients characterized
by higher lymphocyte and neutrophil count in BAL fluid and
increased levels of exhaled nitric oxide (145, 223).

Role of Smoking and Respiratory
Co-Infections in HIV Persistence
Within the Lungs
Smoking and co-infections further exacerbate pulmonary
inflammation and thus could promote lung HIV reservoir
persistence. Several research groups have shown that common
co-infections in PLWH, such as hepatitis B, hepatitis C, and
cytomegalovirus, are associated with higher circulating LPS
levels, increased CD8 T-cell activation, and accelerated
immunologic aging (224–226). Mtb infections, are especially
detrimental to HIV-infected individuals. According to UNAIDS,
PLWH are 19 times more likely to fall ill with tuberculosis (TB). In
2018, around 1.5M people died from the disease, 251 000 of which
died from TB that was AIDS-related, making it the leading cause
of death in PLWH (227, 228). Notably, the risk of TB stays 4-fold
higher in treated HIV+ individuals, despite ART and both diseases
are characterized by chronic inflammation caused by failure to
clear either pathogen (229). Importantly, in vitro studies show that
macrophage infection with HIV-1 leads to impairment in IL-10
secretion in response to subsequent Mtb challenge, which is
further confirmed by low IL-10 levels and high IL-1b levels in
PLWH with tuberculosis, meaning that HIV can exacerbate
pulmonary inflammation during TB infection even during ART.
Furthermore, PLWH co-infected with Mtb have increased lung
HIV viral load, and increased systemic HIV heterogeneity likely
becausemore CD4 T-cells are recruited to pulmonary granulomas,
which leads to accumulation of highly permissive HIV target cells,
thus facilitating viral replication and cell to cell spread (230–233).

Smoking, which is highly prevalent in HIV-infected population,
has also been shown to promote inflammatory immune
environment (234). Neff and colleagues have recently documented
increased expression levels CCR2, TLR4, CXCR4, and program
Frontiers in Immunology | www.frontiersin.org 10
death ligand 1 (PD-L1) by AMs in smokers regardless of HIV
infection status (100). Importantly, higher TLR4 and CXCR4 levels
were statistically significant only in HIV-infected smokers but not in
seronegative nonsmokers and HIV+ nonsmokers, suggesting an
additive inflammatory effect of HIV and smoking on AMs. They
also highlight that the effect of CXCR4 upregulation on AMs in
smokers should not be overlooked, since its upregulation in other
contexts can lead to increased viral entry of X4-tropic HIV virus in
vitro and increased viral evolution in vivo (100, 235).

HIV and SARS-CoV-2 Infection
In the face of a pandemic, many contradictory statements have
been made over the past two years regarding the relationship
between HIV and SARS-CoV-2 infection. While some groups
suggest that PLWH are more susceptible to SARS-CoV-2
infection and poor disease outcomes, other groups suggest that
their immune suppression may prevent cytokine storm onset
(236–241). Some groups even report that they do not see a
significant difference in hospitalization rates or adverse outcomes
caused by SARS-CoV-2 between PLWH and the general
population (242, 243). In a meta-analysis, Ssentongo et al.
examined studies published between January and December of
2020 and reported that the proportion of PLWH among SARS-
CoV-2 infected patients in the cities was double compared to that
found in the general population (244). Furthermore, they found
that the risk of death in PLWH with SARS-CoV-2 infection was
80% greater than in HIV negative patients (244). However, the
relationship between HIV and SARS-CoV-2 infection is
challenging to decorticate due to many confounding factors,
including multiple vulnerabilities and more often belonging to
groups disproportionately affected by the pandemic than people
without HIV infection (245).

Greater risk of SARS-CoV-2 infection and complications
could be explained, in part, by accelerated immune aging and
higher rates of co-morbidities in the HIV-infected population.
Many of these co-morbidities, such as cardiovascular disease,
diabetes, and cancer, are considered to be risk factors for severe
SARS-CoV-2 infection outcomes independently of HIV
infection (246, 247). Furthermore, given the immune
perturbations of both innate and adaptive immune cells of the
pulmonary mucosa, higher levels of pro-inflammatory cytokines,
along with increased susceptibility of PLWH to respiratory
infections, it is not surprising that they are also more likely to
be infected with SARS-CoV-2 and suffer from a severe form of
infection. Lastly, ART-discontinuation was also reported to be a
risk factor for SARS-CoV-2 infection among PLWH, further
stressing the importance of treatment-adherence in these
patients (248). Importantly, preliminary data suggest that some
PLWH, and especially those with low CD4 T-cell count below
250 cells/mm3 or detectable viral load, may exhibit a weaker
humoral immune response to SARS-CoV-2 vaccination than
persons without HIV infection, although results are mixed (249–
251). Poor vaccine response in the setting of poorly controlled
HIV or suboptimal CD4 T-cell recovery is well-recognized for
many other pathogens, including pneumococcal pneumonia and
influenza (252–255). The effects of SARS-CoV-2 on the lung
HIV reservoir remain largely unknown. It is plausible that SARS-
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CoV-2-induced immune activation, similarly to what has been
reported in PLWH with tuberculosis and other pulmonary
infections, could stimulate viral replication and clonal
expansion of HIV-infected cells but no studies have yet been
published to support or refute this hypothesis (229, 256).
CONCLUSION

In summary, ART does not fully restore lung immunity in PLWH,
who continue to suffer from high burdens of pulmonary illnesses.
Many different factors contribute to pulmonary immune
perturbations in PLWH even during ART. Inflammation is the
biggest driver of pulmonary pathologies and lung HIV reservoir
persistence in these individuals. High blood flow, large pool of
target cells, close cell-to-cell proximity, and small arteriole size
likely contribute to lung HIV infection and spread. Furthermore,
because the lung mucosa is continuously exposed to a large
number of airborne antigens, these could further stimulate
residual HIV replication and proliferation of infected cells. A
true functional HIV cure will likely need to target many different
factors to subdue both systemic and pulmonary inflammation
such as promoting a healthy lung and gut microbiota, restoring
Frontiers in Immunology | www.frontiersin.org 11
epithelial integrity of the mucosal barriers, reducing microbial
translocation, and controlling other co-infections.
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