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A B S T R A C T

Background: In a clinical setting, an individual subject classification model rather than a group analysis would be more
informative. Specifically, the subtlety of cortical atrophy in some frontotemporal dementia (FTD) patients and over-
lapping patterns of atrophy among three FTD clinical syndromes including behavioral variant FTD (bvFTD), non-
fluent/agrammatic variant primary progressive aphasia (nfvPPA), and semantic variant PPA (svPPA) give rise to the
need for classification models at the individual level. In this study, we aimed to classify each individual subject into one
of the diagnostic categories in a hierarchical manner by employing a machine learning-based classification method.
Methods: We recruited 143 patients with FTD, 50 patients with Alzheimer's disease (AD) dementia, and 146 cog-
nitively normal subjects. All subjects underwent a three-dimensional volumetric brain magnetic resonance imaging
(MRI) scan, and cortical thickness was measured using FreeSurfer. We applied the Laplace Beltrami operator to
reduce noise in the cortical thickness data and to reduce the dimension of the feature vector. Classifiers were
constructed by applying both principal component analysis and linear discriminant analysis to the cortical thickness
data. For the hierarchical classification, we trained four classifiers using different pairs of groups: Step 1 - CN vs.
FTD+AD, Step 2 - FTD vs. AD, Step 3 - bvFTD vs. PPA, Step 4 - svPPA vs. nfvPPA. To evaluate the classification
performance for each step, we used a10-fold cross-validation approach, performed 1000 times for reliability.
Results: The classification accuracy of the entire hierarchical classification tree was 75.8%, which was higher
than that of the non-hierarchical classifier (73.0%). The classification accuracies of steps 1–4 were 86.1%,
90.8%, 86.9%, and 92.1%, respectively. Changes in the right frontotemporal area were critical for discriminating
behavioral variant FTD from PPA. The left frontal lobe discriminated nfvPPA from svPPA, while the bilateral
anterior temporal regions were critical for identifying svPPA.
Conclusions: In the present study, our automated classifier successfully classified FTD clinical subtypes with good
to excellent accuracy. Our classifier may help clinicians diagnose FTD subtypes with subtle cortical atrophy and
facilitate appropriate specific interventions.
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1. Background

Frontotemporal dementia (FTD) is one of the leading causes of
early-onset degenerative dementia (Vieira et al., 2013). The clinically
defined syndromes within the FTD spectrum include three variants: the
behavioral variant FTD (bvFTD), which is associated with early beha-
vioral and executive deficits; semantic variant primary progressive
aphasia (svPPA), which is associated with semantic anomia and im-
paired comprehension; and non-fluent/agrammatic variant primary
progressive aphasia (nfvPPA), which is a progressive disorder of speech,
grammar and word output.(Bang et al., 2015)

Interpretation of magnetic resonance imaging (MRI) scans largely
relies on the intuition and experience of clinicians, though MRI scans
help clinicians diagnose FTD as an auxiliary tool. With the rapid de-
velopment of neuroimaging analysis, we can automatically analyze
cortical atrophy. In this regard, a previous study suggested that FTD
syndromes are characterized by cortical atrophy in the frontal, anterior
temporal and frontoinsular regions (Rosen et al., 2002). The relative
involvement patterns of frontotemporal structures in FTD also vary
among clinical syndromes. That is, patients with bvFTD had cortical
atrophy in the anterior cingulate and frontal insular cortices, most
prominently early in the course of the disease (Rosen et al., 2002;
Davies et al., 2009). Conversely, studies in patients with nfvPPA in-
dicate cortical atrophy in the left frontal area, especially the inferior
frontal gyrus, pars triangularis, Rolandic operculum and precentral
gyrus with left predominance. (Pereira et al., 2009; Gorno-Tempini
et al., 2006) Semantic variant PPA is known to have the most distinct
atrophic pattern among FTD clinical syndromes, which is most promi-
nent in the left anterior temporal lobe.(Davies et al., 2009; Hodges and
Patterson, 2007; Brambati et al., 2015)

In clinical settings, an individual subject classification model rather
than a group analysis would be more informative. The subtlety of
cortical atrophy in early-stage FTD patients and overlapping char-
acteristics of atrophy patterns among the FTD clinical syndromes,
Alzheimer's disease (AD) and normal aging give rise to the need for an
automated image analysis procedure which can be used at the in-
dividual level. Specifically, considering that different forms of dementia
correlate with different underlying neuropathologies,(Seelaar et al.,
2011) distinguishing between different causes of dementia will become
more important with the emergence of targeted therapies.

In this study, we therefore aimed to classify each individual subject
into one of the diagnostic categories in a hierarchical manner by em-
ploying a machine learning-based classification method using surface-
based cortical thickness data. The hierarchical scheme of our classifi-
cation algorithm was designed based on the clinical decision process. In
clinical practice, after noticing that a patient has abnormal findings that
cannot be explained by normal aging, a clinician has to rule out AD first
since it is the most common cause of degenerative dementia. If the
patient has behavioral or language problems that suggest FTD, the
clinician will determine which clinical syndrome it is. To emulate this
process, first, we discriminated the dementia group (FTD and AD
groups combined) from the cognitively normal (CN) group.
Subsequently, the dementia group was classified into FTD and AD
groups. Afterwards, subjects from the FTD group were classified into
bvFTD and PPA groups. Finally, the PPA group was further classified
into nfvPPA and svPPA groups. Our algorithm used a Laplace Beltrami
operator to reduce noise, followed by linear discriminant analysis
(LDA) in combination with principal component analysis (PCA).

2. Methods

2.1. Participants

We consecutively recruited 143 patients with FTD who visited the
dementia clinic of Samsung Medical Center (Seoul, Korea) from
September 2007 to March 2017. All FTD patients who were enrolled in

this study met the diagnostic criteria for FTD clinical subtypes proposed
by Rascovsky et al. (Rascovsky et al., 2011) (for bvFTD) and Gorno-
Tempini et al.(Gorno-Tempini et al., 2011) (for nfvPPA and svPPA).

All patients were evaluated by comprehensive interviews, neurolo-
gical examinations, and neuropsychological assessment. In brief, care-
givers were interviewed in depth by neurologists and neuropsychologists.
Blood tests to exclude secondary causes of dementia included a complete
blood count, blood chemistry tests, vitamin B12/folate, syphilis serology,
and thyroid function tests. Conventional brain MRI scans confirmed the
absence of structural lesions such as tumors, traumatic brain injuries,
hydrocephalus, and severe white matter hyperintensities. Thirty-four out
of 143 FTD patients underwent 18F-florbetaben or 18F-flutemetamol
amyloid positron emission tomography (PET) scanning and four of them
had significant amyloid deposition. A committee that included 5–10
dementia specialists held a quarterly meeting to review the clinical his-
tories and brain imaging results of all cases enrolled in this study, and to
reach a consensus regarding clinical diagnosis.

We also recruited 50 age-matched AD dementia patients and 146 CN
subjects from an in-house registry of individuals who underwent amy-
loid PET scanning (18F-florbetaben or 18F-flutemetamol) from August
2015 to July 2017 and performed the same clinical assessments and
imaging studies. All AD dementia patients met the criteria for probable
AD dementia with evidence of the AD pathophysiological process pro-
posed by the National Institute on Aging-Alzheimer's Association
(McKhann et al., 2011) based on clinical assessments and Aβ positivity
shown in the amyloid PET. The CN group consisted of cognitively
normal subjects without amyloid deposition on 18F-florbetaben PET.

2.2. Ethics statement

The institutional review boards at all participating centers approved
this study, and informed consent was obtained from the patients and
caregivers.

2.3. PET image acquisition and analysis

We used 18F-florbetaben PET or 18F-flutemetamol PET to detect
amyloid in the brain. PET images were dichotomized as either amyloid
positive or negative using visual reads. We defined 18F-florbetaben PET
as positive when a score of 2 or 3 was assigned during visual assessment
on the brain Aß plaque load (BAPL) scoring system.(Barthel et al.,
2011) Visual interpretation of 18F-flutemetamol PET images relied upon
a systematic review of five brain regions (frontal, parietal, posterior
cingulate and precuneus, striatum and lateral temporal lobes). If any
one of the brain regions systematically reviewed for 18F-flutemetamol
PET was positive in either hemisphere, the scan was considered posi-
tive.(Farrar, 2017) In this study, PET images were used to confirm the
diagnostic label of subjects in AD and CN groups.

2.4. MR image acquisition

All subjects underwent a three-dimensional (3D) volumetric brain
MRI scan. An Achieva 3.0-Tesla MRI scanner (Philips, Best, the
Netherlands) was used to acquire 3D T1 Turbo Field Echo (TFE) MRI
data using the following imaging parameters: sagittal slice thickness,
1.0 mm with 50% overlap; no gap; repetition time of 9.9ms; echo time
of 4.6ms; flip angle of 8°; and matrix size of 240×240 pixels re-
constructed to 480× 480 over a field of view of 240mm.

2.5. Image preprocessing

For automated surface modeling and measurement of each subject's
cortical thickness, we applied the FreeSurfer (version 5.1) pipeline to
the T1 weighted MR image (http://surfer.nmr.mgh.harvard.edu/).
Fig. 1A shows an overview of the proposed method. The first step
segments the T1 weighted image based on signal intensity, which
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includes motion noise correction, space transformation, normalization
and skull stripping. Afterwards, we employed the CIVET pipeline for
additional correction of the skull-stripped image. Subsequently, the
cortical surfaces were constructed for both white and gray matter
boundaries. The gray and white matter surfaces were then used for
calculating cortical thickness. To achieve correspondence between
subjects, the mesh vertices were resampled to have the same number
(40,962) of vertices for each hemisphere. Finally, the cortical thick-
nesses were defined at every vertex as the distance between two cor-
responding vertices of the gray and white matter surfaces. Throughout
the whole image preprocessing pipeline, a neuroanatomist visually
checked images, and corrected image processing errors manually. In
particular, the image segmentation was carefully examined and cor-
rected manually in subjects with atrophy: for example, svPPA patients
often have anterior temporal lobe atrophy to such a degree that Free-
Surfer processing may initially fail to detect the gray matter.

Of the initial 339 subjects, eight subjects were excluded due to er-
rors in preprocessing: FreeSurfer failed to produce results in seven
subjects, and one subject had an overestimation error which could not
be corrected manually. Therefore, MRI scans of 331 subjects (48 AD, 48
bvFTD, 50 svPPA, 39 nfvPPA and 146 CN subjects) were analyzed in
this study.

2.6. Hierarchical classification based on cortical atrophy

For hierarchical classification, we used four different pairs of groups
for each classifier step. Fig. 2A shows a schematic view of the hier-
archical classification. First, we trained a classifier using the CN and
Dementia (FTD+AD) groups (Step 1). Subsequently, another classifier
was trained using the FTD and AD groups (Step 2). Next, the FTD
classifier was trained using the bvFTD and PPA groups (Step 3). Finally,
the PPA classifier was trained to distinguish between svPPA and nfvPPA
(Step 4). The hierarchical classification was performed with these four
classifiers. Specifically, a single subject was classified using the Step 1
classifier. If the subject was classified as a patient, the subject was then
tested using the Step 2 classifier. Again, if the subject was classified as

an FTD patient, then Step 3 classifier was applied. This hierarchical
process was performed consecutively through the entire tree until the
subject was finally classified into one of the final clinical labels. Using
the cortical thickness data of each subject, we applied the Laplace
Beltrami operator for noise removal (Fig. 1B). This scheme transforms
the cortical thickness data from the geometrical domain into frequency
space, and represents the original data using oscillations of alternating
thin and thick cortices across the cortical surface.(Qiu et al., 2006;
Vallet and Lévy, 2008) In the frequency domain, high frequency com-
ponents were considered as noise, and thus the lower frequency com-
ponents were used as features in classification. For each subject, the
original cortical thickness data was sampled at 81,924 vertices, which
was then transformed to about 250-dimensional frequency domain. The
detailed process of noise removal was described in our previous work.
(Cho et al., 2012) The classifier was then constructed by applying both
PCA and LDA to the cortical thickness data(Belhumeur et al., 1997; San
Lee et al., 2018) (Fig. 1C). PCA was applied for the purpose of di-
mension reduction, which transforms the 250-dimensional feature data
to much lower dimensional space. The detailed information on the
feature transformation was described in Supplementary Table S1. Fi-
nally, the individual cortical thickness data that was not included in the
training data set was tested to obtain a prediction label (Fig. 1C).

For comparison purposes, two additional experiments were per-
formed. First, classification using a single, five-label LDA classifier
employing the same learning procedure (Fig. 2B) was performed to
demonstrate how the hierarchical scheme improved the classification
performance. Additionally, pairwise classifications without the use of
the Laplace-Beltrami operator were conducted to evaluate how much
this noise-removal step contributed to our classification performances.

In order to evaluate the classification performance, we used a k-fold
cross-validation (CV) approach (Fig. 1C). For each classification step in
the hierarchical tree, the set was randomly split into k=10 in-
dependent subsets. Nine subsets were used for training, and the re-
maining subset was used for testing. We performed the cross-validation
1000 times for reliability and calculated the mean accuracy, sensitivity
and specificity.

Fig. 1. Overview of the proposed cortical atrophy pattern-based classification method. (A) Image preprocessing and cortical thickness extraction. (B) Noise removal
based on the Laplace Beltrami operator. (C) Cortical atrophy pattern-based classification including a training step and a testing step.
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2.7. Discriminative region analysis

We extracted the discriminative regions for our classifiers, which
provided topographic patterns representing the contribution of each
brain region to the discriminability between the two groups being
compared. We obtained the discriminative regions for each

classification by visualizing the weight vector of the classifier similarly
to the method of Haufe et al.(Haufe et al., 2014) Generally, the dis-
criminative regions are the brain regions with relative importance in
classification and are obtained as:

= × wD
x

Fig. 2. Schematic view of (A)hierarchical and (B)non-hierarchical classification.
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(w: weight vector, ∑x= XXT is the covariance of the feature vector)
Since, in our approach, we used additional steps for noise removal

and PCA dimension reduction, the weight vector was defined by mul-
tiplication between the PCA matrix and the LDA matrix
(w=MPCA×MLDA). Additionally, X is the filtered feature in the fre-
quency domain. We then obtained the discriminate pattern (Dfreq) on
frequency space as:

= × ×D M M( ).freq x PCA LDA
filtered

This discriminative pattern on frequency domain was projected
back into the surface domain by shifting back Dfreq using the center
(PCAmean) and MHT (MMHT). Finally, the discriminated region (Dsurface)
on the surface was obtained as:

= + ×D (D PCA ) (M )surface freq mean MHT
T

For visualization, we colored Dsurface on the template surface, and
the warm/cool color represents the importance of the feature for each
group, with darker colors indicating greater importance.

2.8. Statistics

We compared the demographic and clinical data among groups
using one-way analysis of variance (ANOVA) tests. Continuous vari-
ables were expressed as mean± standard deviation (SD). Statistical
analyses were performed using R version 3.5.0.

3. Results

3.1. Clinical characteristics

As shown in Table 1, of the 331 subjects, 153 (46.2%) were men.
The mean age of subjects in the FTD group was 65.5±11.8 years
(bvFTD: 62.4± 9.4, svPPA: 65.6±7.9, and nfvPPA: 68.9±8.6). The
interval between the onset of symptoms and MRI acquisition was
3.4±2.4 years. There were no differences in age, years of education,
and time from symptom onset to MRI among groups. There was no
difference in mini-mental status examination (MMSE) score among FTD
subtypes and the AD group.

3.2. Classification performance

The results from classification using the entire hierarchical tree
showed that each subject was classified into one of the five clinical
labels with 75.8% accuracy. (Tables 2A-1) Supplementary Fig. S1A
shows a confusion matrix of the hierarchical classification approach.
Within the confusion matrix, the numbers in the boxes located diag-
onally from the top-left corner to the bottom-right corner indicate the
cumulative accuracies per diagnostic subgroup (CN 89.3%, AD 73.1%,
bvFTD 57.2%, nfvPPA 51.9%, and svPPA 75.6%).

Table 2A-2 shows the performance of each classification step. In
step 1, the accuracy in discriminating between CN subjects and
Dementia (FTD+AD) patients was 86.1%. In step 2, AD and FTD pa-
tients were classified with 90.8% accuracy. Within the FTD group, the
classifier discriminated between bvFTD and PPA patients with 86.9%
accuracy (step 3). The accuracy in discriminating between PPA clinical
syndromes was 92.1% in step 4. The receiver operating characteristic
(ROC) curves for steps 1 to 4 are shown in Supplementary Fig. S2. The
areas under the ROC curves for steps 1 to 4 were 0.917, 0.955, 0.865,
and 0,955, respectively.

For comparison with the hierarchical classifier, the classification
performance of a single, multi-label classifier which does not use the
hierarchical scheme is shown in Table 2B. This classifier demonstrated
an accuracy of 73.0%. The confusion matrix of this multi-label classifier
is shown in Supplementary Fig. S1B.

Supplementary Table S2 further shows the classification perfor-
mance without the application of the Laplace Beltrami operator to
cortical thickness data. In the overall hierarchical steps, we obtained
3–4% improvements in accuracies by using the operator to reduce noise
components in the cortical thickness data. Fig. 3 depicts the dis-
criminative regions on the atlas surface for our classifiers.

For classification between Dementia and CN groups, the left fronto-
parieto-temporal areas, right anterior temporal area, and right superior
frontal gyrus distinguished demented subjects from cognitively normal
subjects. In step 2, the bilateral precuneus and lateral parietal, right
posterior temporal and lateral occipital, and left frontal regions

Table 1
Clinical characteristics of participants.

Total FTD AD CN

bvFTD svPPA nfvPPA

Number 331 48 50 39 48 146
Age, years 65.4± 11.8 62.4± 9.4 65.6± 7.9 68.9± 8.6 65.7±7.6 65.5± 15.0
Gender (M/F) 153/178 26/22 29/21 17/22 25/23 56/90
Education, years 10.8± 5.3 12.5± 5.2 11.0± 4.8 11.5± 5.1 10.9±2.7 10.0± 6.0
K-MMSE score 23.2± 7.4 19.6± 6.7 18.8± 8.8 19.5± 7.9 17.7±5.8 28.6± 1.7†

Years from first symptom 3.4± 2.4 3.2± 2.4 3.4±2.5 3.0± 2.0 4.1± 2.5

Abbreviations: N=number, FTD= frontotemporal dementia, bvFTD=behavioral variant frontotemporal dementia, svPPA= semantic variant primary progressive
aphasia, nfvPPA=non-fluent/agrammatic variant primary progressive aphasia, AD=Alzheimer's disease, CN= cognitively normal, K-MMSE=Korean mini-
mental state examination.

† p<0.05.

Table 2
Classification performances.

Accuracy Sensitivity Specificity AUC

A-1. The entire hierarchical tree approach
75.8% 69.4% 93.2%

A-2. Performances of the pairwise classifiers from four steps
Step 1 (CN vs Dementia) 86.1%

(85.9–86.3%)
87.0% 85.4% 0.917

Step 2 (AD vs FTD) 90.8%
(90.5–91.1%)

87.5% 92.0% 0.955

Step 3 (bvFTD vs PPA) 86.9%
(86.2–87.5%)

92.1% 77.1% 0.865

Step 4 (nfvPPA vs svPPA) 92.1%
(91.6–92.7%)

97.4% 88.0% 0.955

B. A single, multi-label classification performance
73.0% 67.1% 92.6%

Accuracies for pairwise classifiers were shown with 95% confidence intervals in
brackets.
Abbreviations: AUC=Area under receiver operating characteristic curve,
FTD= frontotemporal dementia, bvFTD=behavioral variant frontotemporal
dementia, PPA=primary progressive aphasia, svPPA= semantic variant pri-
mary progressive aphasia, nfvPPA=non-fluent/agrammatic variant primary
progressive aphasia, AD=Alzheimer's disease, CN= cognitively normal.
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distinguished AD from FTD, while the bilateral anterior temporal, ante-
rior cingulate and right frontal regions distinguished FTD from AD. The
left frontotemporal region and left inferior parietal lobule distinguished
PPA from bvFTD, while the right frontotemporal regions significant in-
fluenced the in discrimination of bvFTD from nfvPPA (Step 3). For dis-
tinguishing svPPA from nfvPPA, the bilateral anterior temporal regions
and left anterior cingulate cortex were of significantly influential in
identifying svPPA, whereas the left frontal lobar regions were significant
for identifying nfvPPA (Step 4).Abbreviations: FTD= frontotemporal
dementia, bvFTD=behavioral variant frontotemporal dementia,
PPA=primary progressive aphasia, svPPA= semantic variant primary

progressive aphasia, nfvPPA=non-fluent/agrammatic variant primary
progressive aphasia, AD=Alzheimer's disease, CN=cognitively normal

3.3. Post-hoc assessment for misclassified subjects

We further performed a post-hoc assessment for misclassified sub-
jects. A total of 89 out of 742 pairwise classifications did not match the
clinical diagnosis. In a visual review of these scans, 22 of them only had
subtle atrophy which were not suggestive of a single clinical diagnosis
(Fig. 4A). Nine scans showed significant atrophy but the spatial pattern
of cortical atrophy was shared by more than one clinical diagnosis

Fig. 3. Discriminative regions for each step. Each discriminative area corresponds to the group written in the same color.
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(Fig. 4B). For the remainder of the misclassified subjects, it was not
obvious from visual review why misclassification occurred. There were
subjects who were misclassified in multiple steps. Fourteen subjects
were misclassified in two steps, and one subject was misclassified in
three steps (Supplementary Table S3).

4. Discussion

We developed a machine learning-based automated classifier for
differential diagnosis of FTD clinical syndromes. We included carefully
phenotyped FTD patients, for whom precise clinical diagnoses were
made through a consensus decision, for the development of our clas-
sifier. This classifier was successful in discriminating among CN, AD,
and FTD subtypes using MRI-based cortical thickness data. Since AD is
the most prevalent cause of dementia and the most important etiology
to be considered for patients with cognitive decline, we also included
AD patients in our classification model. Methodologically, the proposed
method based on the Laplace operator removed high-frequency com-
ponents of cortical thickness data as noise, which made the classifica-
tion more sensitive. This was possible because we were able to over-
come the spatial variance due to noise while maintaining significant
differences of shape especially in FTD and AD groups. Thus, we believe
that one advance of our study was the application of a Laplace Beltrami
operator to the cortical thickness data, which allowed us to reduce the
contribution of noise to the classification. Moreover, visualization of
discriminative regions was possible by transforming the discriminative
patterns in the frequency domain to that in the surface domain.
Therefore, our study clearly shows that the classifier models dis-
criminate each patient group with relative importance weights dis-
tributed across multiple brain regions. Furthermore, automated classi-
fiers are expected to help in the clinical diagnosis of patients with subtle
cortical atrophy. While a clinician might be biased to look for only a

few well-known structural changes in structural MRI, our automated
classifier can identify minute changes in co-varying regions. For ex-
ample, in svPPA, clinicians may only pay attention to the anterior
temporal lobe, while our study demonstrates that the anterior cingulate
cortex also has significance in discriminating svPPA from nfvPPA
(Fig. 3).

Compared with previous classifier studies, we used more diverse
diagnostic categories of neurodegenerative dementia. Previous studies
introduced classifiers discriminating AD patients from cognitively
normal subjects, (Wee et al., 2013; Westman et al., 2013) as well as
those distinguishing between AD, FTD, and CN groups(Davatzikos
et al., 2008; Klöppel et al., 2008; Raamana et al., 2014; Moller et al.,
2016; Bron et al., 2017; Bouts et al., 2018; Kloppel et al., 2008; Kloppel
et al., 2015). Other studies demonstrated classifiers for individual level
classification of PPA subtypes. (Wilson et al., 2009; Bisenius et al.,
2017) In contrast, we built a more comprehensive classifier, which not
only discriminates FTD, AD, and CN from each other, but also further
classifies three clinical syndromes of FTD. We achieved good to ex-
cellent accuracies for classification between groups, especially between
dementia groups. In discriminating FTD from AD, our classifier had an
accuracy of 90.8%, demonstrating similar performance compared to
literature reporting 72% to 89.2% accuracies. (Davatzikos et al., 2008;
Klöppel et al., 2008; Raamana et al., 2014; Moller et al., 2016; Bron
et al., 2017; Bouts et al., 2018; Kloppel et al., 2008; Kloppel et al., 2015)
Our model classified subjects with nfvPPA and svPPA with 92.1% ac-
curacy, which was similar to or higher than the 78% to 89% accuracies
reported in previous studies. (Wilson et al., 2009; Bisenius et al., 2017;
Agosta et al., 2015) We believe that both the surface-based feature
extraction and Laplace-Beltrami operator-based noise removal have
contributed to the improvement in performance.

The patterns of discriminative regions for our classifiers are similar
to previously known cortical atrophic patterns in each clinical

Fig. 4. Examples of misclassified subjects. (A) The MRI scan shows no definite atrophy. (B) The MRI scan shows significant atrophy in the bilateral frontotemporal
areas. The atrophy is slightly worse on the left side, which might have led to the misclassification.
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syndrome. Although the discriminative regions of a certain group can
vary depending on the combinations of groups compared, they gen-
erally reflect the structural changes occurring in that group. Compared
with PPAs, the bvFTD group's discriminative regions showed right
frontal predominance. This may have been influenced by the cortical
atrophy pattern of bvFTD, which is known from past studies. (Rosen
et al., 2002; Seeley et al., 2008) The discriminative regions of svPPA
were most prominent in the left anterior temporal area, which is also
consistent with results from previous studies. (Galton et al., 2001) The
left frontal region was crucial in discriminating nfvPPA from other FTD
clinical syndromes, also consistent with the previously known left
frontal dominance in atrophy pattern in this condition. (Gorno-Tempini
et al., 2006) Thus, our classifiers reflect the known cortical atrophy
pattern for each clinical subtype.

The four steps of our hierarchical classifier emulate the clinical
decision process for diagnosing FTD patients. First, it is important to
determine whether the patient's complaints are due to normal aging.
(step 1) When the patient seems to have behavioral or language
symptoms that cannot be considered as changes of normal aging, the
physician still has to rule out AD (step 2) since the prevalence of AD is
much higher than FTD, and AD patients can show similar symptoms. If
the patient's symptoms and signs suggest FTD, the clinician tries to
determine which clinical subtype is the most likely (steps 3–4). The
classification accuracy of step 4 was highest among the four steps,
probably due to the distinctiveness of the cortical atrophy pattern in
svPPA patients. (Davies et al., 2009; Hodges and Patterson, 2007;
Brambati et al., 2015) Although our main goal was to develop a hier-
archical classifier to emulate the clinical diagnostic process, the clas-
sifiers for each step can also be utilized in clinical practice. For ex-
ample, it is sometimes difficult to determine whether a patient's
behavioral symptoms suggest bvFTD or AD with prominent frontal
dysfunction. Additionally, it is often hard to tell which type of PPA a
patient with mild language dysfunction has. In these cases, individual
classifiers can be used selectively.

We found that about 12% of classifications did not match the clin-
ical diagnosis. This might be related to subtle atrophy or diffuse severe
atrophy at the individual level. In our experiments, many of the mis-
classified patients (about 23%) had subtle cortical atrophy, which made
it difficult for the classifier to capture the characteristic atrophy pattern.
Indeed, such subtle changes in the cerebral cortex were barely detect-
able even in visual assessment performed by an expert neurologist.
Another main reason for misclassification stems from the shared spatial
pattern of cortical atrophy across multiple clinical diagnoses. As the
supervised learning proposed in this study tries to detect different
cortical atrophy patterns in two clinical diagnoses, similar atrophy
patterns between them could lead to a misclassification. This issue is a
well-known overfitting problem in supervised learning, and has been a
major obstacle to the application of computer-aided diagnosis to med-
ical images due to limited numbers of patients. Once we have more
data, we believe this overfitting problem could be resolved, resulting in
an improved performance for classification.

This study has several limitations. First, we did not have patholo-
gical diagnoses for most FTD patients, although we included carefully
phenotyped patients. It is important for a subject's clinical syndrome
and underlying disease to be distinguished, as not only could patients
with clinical AD dementia potentially have underlying frontotemporal
lobar degeneration, but patients with FTD clinical syndromes could also
have AD pathology. The purpose of this study was to predict clinical
syndromes rather than underlying diseases. However, to enhance the
homogeneity within the groups, we used the results of amyloid PET
scans for inclusion of AD and CN subjects. Second, four FTD patients
were amyloid (+) on PET, which leaves open the possibility that frontal
variant AD might be included in the FTD group. However, since we
diagnosed FTD patients through a consensus decision committee,
amyloid (+) in these patients might be incidental findings. In fact, the
prevalence of amyloid (+) in the FTD group seemed to be similar to

that of cognitively normal individuals.(Engler et al., 2008) Third, the
discriminative regions depicted in our figure provide information on
the statistically significant regions used in discriminating one group
from another, but do not clearly demonstrate whether the cortical re-
gions are thicker or thinner. Fourth, because we developed the classifier
using carefully phenotyped subjects, performance may not be as high
when applied to patients in the early stages of these diseases whose
clinical phenotypes are not conclusive yet. In future studies, it would be
meaningful to conduct similar analysis using MRI scans acquired in the
early stage of the clinical course from subjects who were later carefully
phenotyped. Finally, there may be a concern for overfitting when
training an LDA classifier with a relatively small number of data sam-
ples. We indeed compared the classification performance by in-
corporating additional regularization terms for the LDA classifier,
which unfortunately could not improve the 10-fold CV performances.
Our future studies will focus on developing computationally more
generalizable methods with comparable or better classification accu-
racy using an external dataset for validation if possible.

5. Conclusion

With our fully automated classifier, cortical thickness data alone
could classify FTD clinical subtypes and AD with good to excellent
accuracy. Our classifier may help clinicians to diagnose FTD subtypes
with subtle cortical atrophy and facilitate the selection of appropriate
interventions.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nicl.2019.101811.
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