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Simple Summary: Age-related macular degeneration (AMD) and diabetic retinopathy (DR) are the
leading causes of blindness and lack non-invasive drug treatments. Macular edema and neovascular-
ization are the key pathogenic features responsible for vision loss in AMD and DR. Clinical studies
showed that fenofibrate, a PPARα agonist, has robust therapeutic effects on macular edema and
retinal neovascularization after oral administration. However, the efficacy of oral fenofibrate remains
to be improved, due to limited amounts of the drug delivered to the retina after systemic adminis-
tration. To increase the drug availability in the retina, this study developed a novel nano-emulsion
fenofibrate eye drop. Topical administration of the fenofibrate eye drop delivered significantly higher
drug concentrations to the retina/vitreous, relative to the systemic administration. The fenofibrate
eye drop alleviated retinal inflammation and vascular leakage in both DR and AMD models. Further,
the fenofibrate eye drop also alleviated laser-induced choroidal neovascularization. These findings
suggest that topical administration of the nano-emulsion-based eye drop of a PPARα agonist has
potential to become a non-invasive therapeutic strategy for long-term treatment of DR and AMD.

Abstract: Macular edema caused by retinal vascular leakage and ocular neovascularization are the
leading causes of severe vision loss in diabetic retinopathy (DR) and age-related macular degenera-
tion (AMD) patients. Oral administration of fenofibrate, a PPARα agonist, has shown therapeutic
effects on macular edema and retinal neovascularization in diabetic patients. To improve the drug
delivery to the retina and its efficacy, we have developed a nano-emulsion-based fenofibrate eye
drop formulation that delivered significantly higher amounts of the drug to the retina compared to
the systemic administration, as measured by liquid chromatography–mass spectrometer (LC-MS).
The fenofibrate eye drop decreased leukocytes adherent to retinal vasculature and attenuated over-
expression of multiple inflammatory factors in the retina of very low-density lipoprotein receptor
knockout (Vldlr−/−) mice, a model manifesting AMD phenotypes, and streptozotocin-induced di-
abetic rats. The fenofibrate eye drop also reduced retinal vascular leakage in these models. The
laser-induced choroidal neovascularization was also alleviated by the fenofibrate eye drop. There
were no detectable ocular toxicities associated with the fenofibrate eye drop treatment. These findings
suggest that fenofibrate can be delivered efficiently to the retina through topical administration of the
nano-emulsion eye drop, which has therapeutic potential for macular edema and neovascularization.

Keywords: fenofibrate; nanomedicine; eye drop; age-related macular degeneration; diabetic
retinopathy; PPARα; vascular leakage
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1. Introduction

The blood–retinal barrier (BRB) breakdown or vascular leakage can result in macular
edema, which is the leading cause of vision loss in age-related macular degeneration (AMD)
and diabetic retinopathy (DR) [1,2]. In neovascular AMD, a subretinal neovascular disease,
new vessels grow from the choroid into the avascular outer retina and subretinal space.
In proliferative DR, pathological neovascularization (NV) originates from retinal vessels.
These pathological NV can result in vision loss. As such, amelioration of retinal vascular
leakage and NV represents a major goal for the treatment of AMD and DR [2,3].

The key pathophysiological process in macular edema in DR and AMD is believed
to be the BRB breakdown. The macromolecules in the plasma leak out of the retinal cap-
illaries, resulting in retina edema, which most commonly occurs in the macula [4]. The
breakdown of the BRB is often accompanied by inflammatory responses, involving various
inflammatory factors, such as intercellular adhesion molecule-1 (ICAM-1) and vascular
endothelial growth factor (VEGF) [5]. It has been shown that leukostasis, leukocyte ad-
herence to the retinal vasculature, is increased in the retina of both AMD and DR models.
The consequent impairment of the capillary endothelium leads to increases of vascular
permeability and macular edema [6,7]. According to AMD Preferred Practice Pattern (PPP)
guidelines, intravitreal injection of anti-VEGF agents is the most effective way to manage
neovascular AMD and represents the first line of treatment [8]. For proliferative DR or
macular edema, the anti-VEGF therapy is also considered a stand-alone treatment or in
combination with panretinal photocoagulation [9]. However, a study argued that VEGF
inhibitors are symptomatically effective in only 30% of patients with neovascular AMD in
preventing the progression of neovascular AMD with some vision recovery [10,11]. Addi-
tionally, repetitive intravitreal injections have risks of causing side effects such as cataracts,
bleeding, retina damage, and in severe cases, postinjection endophthalmitis. Furthermore,
emerging evidence suggests that the anti-VEGF treatment may lead to exacerbation of
vasoproliferative disease after cessation of initial anti-VEGF therapy [12]. Therefore, there
is an unmet clinical need for a non-invasive, affordable, and long-term treatment for DR
and AMD.

Fenofibrate, a FDA approved fenofibric acid derivative drug, is widely used to reduce
triglycerides and total cholesterol while increasing high-density lipoprotein cholesterol in
adults [13]. After absorption, fenofibrate is rapidly metabolized in tissues and plasma to its
active metabolite, fenofibric acid, which is an agonist of peroxisome proliferator–activated
receptor-α (PPARα) [14]. In addition to its lipid-lowering effects, fenofibrate is known to
regulate other pathways involved in inflammation, angiogenesis, and cell survival [15–17].
The Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study reported that
fenofibrate oral administration (200 mg/day) reduced the need for laser treatment for DR
and reduced DME in people with type 2 diabetes [18]. This finding was further confirmed
by an independent clinical study, the Action to Control Cardiovascular Risk in Diabetes
(ACCORD)-Lipid trial, which provided evidence that fenofibrate added to simvastatin
therapy in people with type 2 diabetes slowed down the progression of DR [19]. Our recent
study has demonstrated that fenofibrate also reduced vascular leakage and downregulated
the expression of inflammatory factors in neovascular AMD models [20,21].

Due to fenofibrate’s low aqueous solubility, it is difficult to formulate into a classic eye
drop. Hence, this study aimed to develop a nano-emulsion-based fenofibrate eye drop that
can deliver significant amounts into the retina. We also explored the therapeutic potential
of the fenofibrate eye drop as a future convenient and non-invasive approach to reducing
retinal vascular leakage and retinal inflammation in neovascular AMD and DR.

2. Materials and Methods
2.1. Preparation and Therapeutic Regimen of Fenofibrate Eye Drops

The fenofibrate nano-emulsion eye drops were prepared to treat animal models. The
ingredients in the eye drops contained fenofibrate (Sigma-Aldrich, St. Louis, MO, USA),
polysorbate 20 (Millipore Co., Bellerica, MA, USA), polysorbate 80 (Nanjing Well Chemical
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Co., Ltd, Nanjing, China), and isopropyl myristate (Millipore Co., Bellerica, MA, USA) and
distilled water. According to the percentage of weight, 100 mL 0.1% fenofibrate eye drop
included 0.1 g fenofibrate, 3.6 g isopropyl myristate, 22 g polysorbate 20, 22 g polysorbate
80, and 52.3 g distilled water. The reagents were mixed and stirred overnight. The viscosity
index was measured to be 314.8. The average size of nanoparticles of fenofibrate was
determined to be 2.192 nm with Malvern Nanosizer (Malvern Panalytical Ltd, Westborough,
MA, USA) in Charlesson, LLC, Oklahoma City, OK, USA.

For therapeutic effects, experimental animals were randomized into two groups: (a) a
group that received vehicle eye drop and (b) a group that received 0.1% fenofibrate eye
drop for mice and 0.5% fenofibrate eye drop for rats. All treated groups received topical
eye drops on the same daily regimen (dose volume for mice: 10 µL/eye; dose volume for
rats: 20 µL/eye); bilaterally twice a day for 7 days. After applying eye drops, animals were
held for at least 1 min to prevent them from claw scratching.

2.2. Animals

2.2.1. Very Low-Density Lipoprotein Receptor Knockout (Vldlr−/−) Mice

Breeding pairs of Vldlr−/− mice in the C57BL/6J background were originally pur-
chased from Jackson Laboratories. The breeding colony was maintained in standardized
conditions. Male Vldlr−/− mice (28 days) were used in the experiments.

2.2.2. Laser-Induced CNV

CNV was induced by laser photocoagulation in male wild-type (WT) C57BL/6J mice
(10 weeks old; Jackson Laboratories, Bar Harbor, ME, USA). After anesthesia, the fundus
was viewed with an imaging camera, and laser photocoagulation was induced using the
image-guided laser system (Micron IV, Phoenix Research Laboratories, Pleasanton, CA,
USA). Four laser burns at equal distance of approximately 2 optic disc diameters from the
optic nerve were applied to each eye by a green argon laser pulse with a wavelength of
532 nm, a spot size of 50 µm, a duration of 100 ms, and a power level of 260 mW. Production
of a cavitation bubble at the laser point was considered a sign of disruption of Bruch’s
membrane, which leads to the formation of CNV. Therefore, only burns with bubbles were
included in this study [22].

2.2.3. Streptozotocin (STZ)-Induced Diabetic Rats

Rats were used for induction of diabetes as described previously [21]. Briefly, male
Brown Norway (BN) rats (8 weeks old; Charles River Laboratories International, Inc.,
Wilmington, MA, USA) received a single intraperitoneal injection of STZ (Sigma-Aldrich
Corp, St. Louis, MO, USA) with the dosage of 50 mg/kg body weight dissolved in 10 mM
of citrate buffer (pH 4.5) after overnight fasting. The blood glucose was measured with a
glucose analyzer (Beckman Instruments, Zürich, Switzerland), 3 days after the STZ injection
and weekly thereafter. Only the animals with blood glucose higher than 350 mg/dL were
used as diabetic models in this study. At 3 weeks after STZ injection, animals were treated
with fenofibrate eye drop or vehicle eye drop twice daily for 7 days [23].

In all procedures, rodents were anesthetized with an intraperitoneal injection of a
mixture of ketamine (50 mg/kg, Zetamine, MWI, Boise, ID, USA) and xylazine (5 mg/kg,
AnaSed LA, MWI, Boise, ID, USA), and pupils were dilated with topical administration
of 1% tropicamide ophthalmic solution (Bausch + Lomb, a division of Bausch Health US,
LLC, Bridgewater, NJ, USA).

2.3. Tissue Distribution of the Drug

For tissue distribution study, C57BL/6J mice received 0.1% fenofibrate eye drops or
vehicle eye drops at a dose volume of 10 µL/eye in both eyes. BN rats received 0.5%
fenofibrate eye drops or vehicle eye drops at a dose volume of 20 µL/eye in both eyes. In
comparison, the systemic treatment group of animals received intraperitoneal injections
of fenofibrate with a dose of 2 mg/kg, once a day for 7 days in animals. Contents of
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fenofibrate and fenofibric acid in various animal tissues were measured by LC-MS 6 h after
the final dose of fenofibrate.

Analysis was performed using an AB Sciex 4000 liquid chromatography–mass spec-
trometer (LC-MS) system (Atlantic Lab Equipment, Inc., Salem, MA, USA). It was cou-
pled to a Nexera X2 ultra high-performance liquid chromatograph system (Shimadzu
Corporation, Columbia, MD, USA), which delivers high-performance quantitation and
identification across a wide range of LC flow rates. The analytical column was an Accucore
C18 column 2.6 µm (50 mm × 2.1 mm) (Thermo Fisher Scientific Inc., Waltham, MA, USA).
Mobile Phase A consisted of 0.1% formic acid dissolved in deionized water, and Mobile
Phase B consisted of 0.1% formic acid dissolved in methanol. The analysis was performed
using a simple isocratic mobile phase consisting of 80% phase B. The flow rate was 300 µL
per minute, and the column temperature was maintained at 40 ◦C. The MS detector was
operated in MRM mode at unit mass resolution with a dwell time of 100 ms for all test
compounds. The optimized mass spectrometric parameters, MRM transitions for fenofi-
brate, and fenofibric acid were m/z 361.0 to 121 in positive ESI mode and m/z 319.0 to 232.9
in negative ESI mode, respectively. The ion source parameters were Curtain Gas (CUR) 20,
Turbo Gas 1 (GS1) 30, Turbo Gas 2 (GS2) 60, Temperature (TEM) 400 ◦C, Entrance Potential
(EP) 10, and Cell Exit Potential (CXP) 6 for maximum sensitivity [24].

2.4. Fundus Fluorescein Angiography (FFA)

FFA was performed with the retinal imaging microscope (Micron IV, Phoenix Re-
search Laboratories, Pleasanton, CA, USA) at 5 and 10 min after 5% sodium fluorescein
(100 µL/mouse) intraperitoneally injection. The difference in integrated intensity between
5 and 10 min was recorded as an indicator of vascular leakage as described previously [22].
The lesion areas were measured using ImageJ (National Institutes of Health, Bethesda, MD,
USA). For Vldlr−/− mice, the numbers of fluorescein leakage spots at 5 min after injection
were used for analysis.

2.5. Optical Coherence Tomography (OCT)

OCT (EnvisuTM R-series SDOIS system, Bioptigen, Inc., Morrisville, NC, USA) imaging
was performed after animals were anesthetized with pupils dilated. The corneal and retinal
thickness were measured at 500 µm intervals temporal and nasal to the optic nerve head
in all images obtained from both horizontal and vertical scans, using the system software
(InVivoVU, Bioptigen, Inc.), and averaged [25]. For laser-induced CNV mice, the CNV
volume was quantified using ImageJ based on the volume formula as described [20,26].

2.6. RPE/Choroidal Flat-Mount Preparation and CNV Area Quantification

For laser-induced CNV mice, eyes were enucleated and fixed with 4% paraformalde-
hyde solution for 2 h. The CNV lesions were stained with Isolection B4 (IB4, 10 µg/mL,
Life Technologies, New York, NY, USA) as described previously [22]. Fluorescence images
were taken with Cytation 1 Cell Imaging Multi-Mode Reader (BioTek, Winooski, VT, USA),
and the staining areas of CNV lesions were calculated using ImageJ.

2.7. Retinal Vascular Permeability Assay in Vldlr−/− Mice and STZ-Induced Diabetic Rats:

Anesthetized animals were injected with Evans blue (30 mg/mL) (Sigma-Aldrich,
St. Louis, MO, USA) over 10 s through the femoral vein using a glass capillary under
microscopic inspection at the dosage of 1 µL/g body weight after anesthesia, as described
previously [27]. The animals were placed on a warm pad to allow the circulation of Evans
blue for 2 h. Then, the animals were perfused via the left ventricle with 1% paraformalde-
hyde in a citrate buffer (pH 4.2). Immediately after the perfusion, the eyeballs were
enucleated, and the retinas were carefully dissected. Each retina was placed in an ultra-
centrifuge tube containing 200 µL formamide (Sigma-Aldrich, St. Louis, MO, USA), then
incubated for 18 h at 70 ◦C. After incubation, the extract was ultracentrifuged (Beckman
Coulter Optima TLX Ultracentrifuge, Indianapolis, IN, USA) at 70,000 rpm for 30 min at
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4 ◦C. The supernatant was taken into a disposal cuvette. Absorbance was measured at
620 nm with a spectrophotometer (Beckman Coulter DU 800, Indianapolis, IN, USA). PBS
was added into each ultracentrifuge tube, which had 100 µL left. The sample was homoge-
nized and then centrifuged at 13,500 rpm for 20 min at 4 ◦C. The supernatant was taken
into a disposal cuvette containing 900 µL Coomassie brilliant blue reagent (ThermoFisher,
Waltham, MA, USA). Then, the whole mix was vortexed for 1 min, and absorbance was
measured at 595 nm with the spectrophotometer. After calculating the concentration of
protein from a standard curve, the concentrations of Evans blue dye in the retinal extracts
were normalized by total retinal protein concentration.

2.8. Retinal Leukostasis Assay

Immediately after euthanasia, animals were perfused with 500 mL/kg of pre-warmed
PBS to remove circulating blood cells and nonadherent leukocytes from the retinal vas-
culature. Then, the animals were perfused with fluorescein isothiocyanate-conjugated
concanavalin A (FITC-ConA) (20 µg/mL in PBS; total volume of 250 mL/kg body weight;
Vector Laboratory Inc., Burlingame, CA, USA) to label adherent leukocytes. An additional
perfusion with 250 mL/kg of PBS was used to wash out the excess concanavalin A in the
vasculature [28,29]. The enucleated eyeballs were fixed in 4% paraformaldehyde solution
for 2 hs, and then, the retinas were flat-mounted in the anti-fading mounting media (Vector
Laboratory Inc., Burlingame, CA, USA). Fluorescence images of FITC-labeled leukocytes
in flat-mounted retinas were captured using Cytation 1 Cell Imaging Multi-Mode Reader.
Numbers of adherent leukocytes in the main vessels and its primary vessel branch per
retina were counted in a double-blind manner and compared among groups.

2.9. ELISA for VEGF, ICAM-1, and TNF-α

Protein levels of VEGF, ICAM-1, and TNF- α were individually measured in ho-
mogenates of the RPE/choroid complex of laser-induced CNV mice and retina of STZ-
induced diabetic rats using DuoSet ELISA Development kits (R&D Systems Inc., Minneapo-
lis, MN, USA) according to the manufacturer’s protocol.

2.10. Western Blot Analysis for PPARα:

Western blot analysis was performed as described previously [30]. Eyecups without
the retina of laser-induced CNV mice and the retina of STZ-induced diabetic rats were
dissected and homogenized. Protein concentrations in the homogenates were measured
using the Bradford assay. The equal amount (50 µg) of total protein from each sample
was resolved for analysis. Primary antibody dilutions were 1:1000 for the rabbit anti-
PPARα antibody (600–636; Novus) and 1:5000 for a mouse anti–β-actin antibody (A5441;
Sigma-Aldrich, St. Louis, MO, USA). The secondary antibody dilution was 1: 2000 for the
horseradish peroxidase-labeled secondary antibody (1:2000 dilution, Santa Cruz Biotech-
nology, Dallas, TX, USA). Densitometry was performed using the ImageJ software and
normalized by β-actin levels.

2.11. Electroretinography (ERG) Recording

ERG was recorded using the Espion Visual Electrophysiology System (Diagnosys,
Lowell, MA, USA). Rats were dark-adapted for 16 h for scotopic ERG. The full ERG
responses of both eyes were simultaneously recorded at the flash intensity of 600 cd·s/m2,
and the data in both eyes were recorded, and the average of the left and right eyes were
used for the analysis [31].

2.12. Intra-Ocular Pressure (IOP) Measurement

Icare tonometer (Icare Finland Oy, Vantaa, Finland) was used for the measurement of
IOP. The animals were under anesthesia. No topical anesthetic is needed. The probe was
made a gentle and brief contact with the eye while taking the measurement. The values
were averaged in three independent measurements.
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2.13. Histology

The eyeballs of animals were immersed for 24 h in Davidson fixative (35% distilled
water, 20% formaldehyde (4%), 10% glacial acetic acid, and 35% absolute ethanol). The
eyeball was washed with PBS, followed by gradient ethanol dehydration. The eyeball was
then transferred to 70% ethyl alcohol, embedded in paraffin, and 5 µm thickness sections
were cut [32]. The slides were also stained with hematoxylin and eosin according to the
procedure. Photographs were taken under Olympus Microscope (BX43, Olympus, Tokyo,
Japan) attached to a digital camera (U-TV0.5XC-3, Olympus, Tokyo, Japan). For all eyes,
retinal images were obtained at the same distance (1500 µm) from the optic nerve.

2.14. Statistical Analysis

The results were analyzed using GraphPad Prism 8 (GraphPad Software, Inc., La Jolla,
CA, USA). Data were expressed as mean ± standard error (SEM). Quantitative data were
analyzed and compared using an unpaired t-test. For data sets with two or more groups,
statistical analyses were performed with analysis of variance (ANOVA) following a Tukey’s
multiple comparisons test. p value < 0.05 indicates statistical significance.

3. Results
3.1. Tissue Distribution Studies

The tissue distributions of fenofibrate and fenofibric acid in tissues of mice after the eye
drop treatment are illustrated in Table 1 and Figure 1. Six hours following the last topical ad-
ministration, fenofibrate and fenofibric acid, the active form of fenofibrate, were measured
in six ocular tissues (cornea, lens, vitreous/retina, choroid, and sclera), two organs (kidney
and liver), and plasma. As quantified by mass spectrometry, fenofibrate and fenofibric acid
concentrations in the vitreous/retina were 0.033 ± 0.014 and 0.140 ± 0.044 ng/mg of total
protein in the intraperitoneal injection group and 1.402 ± 0.341 and 0.472 ± 0.064 ng/mg
in the fenofibrate eye drop group, demonstrating significantly higher drug delivery to the
retina by the eye drop compared to the systemic administration (Figure 1D). Meanwhile,
in all ocular tissues, the concentrations of fenofibrate and fenofibric acid in the eye drop
group were significantly higher than in the intraperitoneal injection group (Figure 1A–E).
Fenofibrate abundance was higher in the choroid followed by sclera, cornea, plasma, vitre-
ous/retina, lens, kidney, and the liver. For fenofibric acid, however, the highest amount
was observed in the plasma, followed by the cornea, sclera, choroid, and vitreous/retina.
Despite the higher concentrations of the drug in ocular tissues by the fenofibrate eye drop;
however, there was no statistically significant difference of the drug concentrations in
plasma between these two administration routes (Figure 1).

Table 1. The concentration of fenofibrate and fenofibric acid in various tissues of mice.

Tissue
Fenofibrate (ng/mg) Fenofibric Acid (ng/mg)

IP-FF ED-0.1%FF IP-FF ED-0.1%FF

Cornea 0.000 ± 0.000 1.095 ± 0.117 **** 0.258 ± 0.063 7.619 ± 1.489 **
Lens 0.000 ± 0.000 0.501 ± 0.032 **** 0.000 ± 0.000 0.136 ± 0.022 ***

Choroid 0.000 ± 0.000 8.469 ± 1.877 ** 0.000 ± 0.000 1.828 ± 0.482 **
Vitreous/Retina 0.033 ± 0.014 1.402 ± 0.341 ** 0.140 ± 0.044 0.472 ± 0.064 ***

Sclera 0.009 ± 0.004 4.694 ± 0.544 **** 0.138 ± 0.052 2.737 ± 0.489 **
Kidney 0.013 ± 0.003 0.011 ± 0.001 0.049 ± 0.011 0.598 ± 0.198 *
Liver 0.026 ± 0.005 0.009 ± 0.001 * 0.373 ± 0.194 0.372 ± 0.072

Plasma 1.510 ± 0.161 1.726 ± 0.183 86.304 ± 22.780 157.840 ± 62.235

IP: Intraperitoneal injection, ED: Eyedrop. mean ±SEM.; * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001 compared with intraperitoneal
injection. n = 5−12 eyes or organs in each group).
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Figure 1. The tissue distribution of fenofibrate (FF) and fenofibric acid in mice following fenofibrate intraperitoneal injection
(IP) and topical application of eye drops (ED). The fenofibrate and fenofibric acid levels were determined using LC-MS
in tissues as indicated. (A–H) Left graph: The tissue distribution of fenofibrate. Right graph: The tissue distribution of
fenofibric acid. The data were presented as mean ± SEM, analyzed by unpaired Student’s t test, n = 5–12 eyes or organs in
each group.

3.2. Fenofibrate Eye Drop Alleviated Retinal Vascular Leakage in Vldlr−/− Mice

To determine whether the fenofibrate eye drop reduced vascular leakage in Vldlr−/−

mice, the eye drops were administrated twice a day for 7 days from P28. As shown by FFA,
the eyes administrated with the vehicle eye drop developed multiple leakage spots and
large vascular leakage areas. In contrast, the mice with the fenofibrate eye drop treatment
showed alleviated vascular leakage (Figure 2A,B). In addition, retinal vascular permeability
was quantified using Evans blue permeability assay, and the result showed that retinal
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permeability was reduced by 25.73% in the fenofibrate eye drop group compared with the
vehicle group (Figure 2C).
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Fundus fluorescein angiography was performed, and retinal vascular permeability was quantitated
using Evans blue as a tracer. (A) Representative images showed the fundus vascular leakage
(hyperfluorescent spots) corresponding to the areas of increased choroidal and retinal permeability.
(B) The vascular leakage was quantified by the number of hyperfluorescent spots and the percentage
of hyperfluorescent area in total retinal area in the 0.1% FF group (n = 26 eyes in each group) and
the vehicle group (n = 22 eyes in each group). (C) The permeability of the retinal vasculature was
measured in the 0.1% FF eye drop group (n = 22 eyes in each group) and vehicle group (n = 18 eyes
in each group) using Evans blue dye as a tracer. The extracted Evans blue dye was normalized to the
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3.3. Fenofibrate Eye Drop Inhibited Leukocyte Adhesion to Retinal Vasculature in Vldlr−/− Mice

To evaluate the effect of the fenofibrate eye drop on suppressing retinal inflammation
in Vldlr−/− mice, leukocytes adherent to the retinal vasculature were viewed and quantified
following FITC-ConA perfusion. Fewer adherent leukocytes were observed in the retinal
vasculature in Vldlr−/− mice treated with fenofibrate eye drop compared with the vehicle
group (Figure 3A,B), suggesting that the fenofibrate eye drop alleviates retinal leukostasis
in a neovascular AMD model.
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mice. (A) Representative images of retinal leukostasis assay in Vldlr−/− mice treated with vehicle
(n = 8 animals per group) and 0.1% fenofibrate (FF) eye drops (n = 8 animals in each group). The
arrows indicate the adherent leukocytes in retinal vessels. Scale bar: 100 µm. (B) Adherent leukocytes
were quantified in flat-mounted retinas. Data were expressed as mean ± SEM, analyzed by an
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3.4. Fenofibrate Eye Drop Suppressed Laser-Induced CNV

We also evaluated the effect of the fenofibrate eye drop on laser-induced CNV.
Histopathology performed on hematoxylin and eosin stains from paraffin cross-sections
confirmed that there were successful laser burns with visible rupture of Bruch’s membrane
in the laser-induced CNV model at 7 days after the laser photocoagulation (Figure 4A).
Fundus fluorescein angiography was performed to evaluate the evolution of CNV leakage
area in laser-induced CNV mice on Day 6 after laser photocoagulation (Figure 4B) in the
groups with the vehicle treatment and the fenofibrate eye drop treatment. Analysis of
FFAs revealed that the CNV leakage area in the fenofibrate eye drop group was 53.49%
of that in the vehicle group (Figure 4C). The retinal structure and CNV volume were
quantified by OCT (Figure 4D). The volume of CNV was significantly decreased in mice
treated with the fenofibrate eye drop (0.008 ± 0.001 mm3) compared to vehicle control mice
(0.020 ± 0.001 mm3) (Figure 4E).

Furthermore, 7 days post-CNV induction, CNV lesions were stained with IB4, and the
CNV area was quantified in RPE/choroid flat-mounts (Figure 4F). Fenofibrate-treated mice
showed a significantly smaller CNV area (0.039 ± 0.010 mm2) than in that vehicle-treated
mice (0.187 ± 0.035 mm2) (Figure 4G). These results suggest that CNV was significantly
suppressed by the treatment with the fenofibrate eye drop in laser-induced CNV mice.

3.5. Fenofibrate Eye Drop Increased PPARα Protein Levels While Attenuating Overexpression of
VEGF, ICAM-1 and TNF-α in the Eyecups of Both Laser-Induced CNV Mice and the Retina of
STZ-Induced Diabetic Rats

Western blot analysis demonstrated that PPARα protein levels in the RPE-choroid
complex of laser-induced CNV mice (Figure 5A,B) and the retina of STZ-induced rats at
4 weeks after diabetes onset (Figure 5F,G) were significantly higher in the fenofibrate eye
drop group compared with vehicle-treated animals at Day 7 of the treatment, indicating
that fenofibrate activated PPARα, which upregulated its own expression in the CNV model
and STZ-induced diabetic model. Full Western blots and original measurement data can be
found in Supplementary Materials (Figure S1, Tables S1 and S2).

ELISA showed that inflammatory factors VEGF, ICAM-1, and TNF-α were signifi-
cantly downregulated in the fenofibrate treatment group, indicating that topical administra-
tion of fenofibrate attenuated overexpression of inflammatory factors in the eyecups of the
laser-induced CNV model (Figure 5C–E) and the retina of the diabetic model (Figure 5H–J).
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Figure 4. Fenofibrate eye drops suppressed laser-induced CNV. Laser-induced CNV was examined after the fenofibrate eye
drop (FF) treatment for 7 days. (A) Representative section of laser-induced CNV lesion (labeled by yellow dashed lines)
stained with hematoxylin and eosin. Scale bar: 50 µm. (B) Representative FFA images of the vehicle group and 0.1% FF
group. (C) The percentage difference of CNV leakage was compared between the vehicle group (n = 18 animals per group)
and 0.1% FF group (n = 12 animals per group). (D) Representative OCT images showing CNV (brackets). (E) Quantification
of CNV lesion volumes in the vehicle group (n = 9 animals per group) and 0.1% FF group (n = 9 animals per group).
(F) Representative images of flat-mounted RPE/choroid with IB4 staining (red; upper panels). Scale bar: 1000 µm. ON,
optic nerve. The lower panels show higher magnification of the laser-induced CNV lesion highlighted (blue rectangle) in
upper panels. Scale bar: 100 µm. (G) The area of CNV lesions was quantified in flat-mounted RPE/choroid with IB4 in the
vehicle group (n = 5 animals per group) and 0.1% FF group (n = 5 animals per group). Data were expressed as mean ± SEM,
analyzed by an unpaired Student’s t test.
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Figure 5. Fenofibrate eye drops increased PPARα protein expression while attenuating overexpression of VEGF, ICAM-1,
and TNF-α in the eyecup of laser-induced CNV mice and in the retina of STZ-induced diabetic rat. After the eye drop
administration for 7 days, the eyecup (RPE/choroid) was isolated from laser-induced CNV mice, and the retina was isolated
from STZ-diabetic rats. (A) A representative Western blot of PPARα and β-actin in the eyecup of laser-induced CNV mice.
(B) PPARα protein levels in the eyecup of laser-induced CNV mice were quantified by densitometry and normalized by
β-actin levels (n = 3 animals per group). (C) ELISA kits were used to quantify VEGF levels in the eyecup of laser-induced
CNV mice (n = 5 animals per group). (D) ICAM-1 levels in the eyecup of laser-induced CNV mice (n = 5 animals per group).
(E) TNF-α levels in the eyecup of laser-induced CNV mice (n = 5 animals per group). (F) A representative Western blot
of PPARα in the retina of STZ-induced diabetic rats. (G) PPARα protein levels in the retina of STZ-induced diabetic rats
were quantified by densitometry and normalized by β-actin levels (n = 3 animals per group). (H) VEGF levels in retina of
STZ-induced diabetic rats (n = 5 animals per group). (I) ICAM-1 levels in retina of STZ-induced diabetic rat (n = 5 animals
per group). (J) TNF-α levels in retina of STZ-induced diabetic rats (n = 5 animals per group). Data were expressed as
mean ± SEM, analyzed by an unpaired Student’s t test.
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3.6. Fenofibrate Eye Drops Ameliorated Retinal Inflammation and Retinal Vascular Leakage in
STZ-Induced Diabetic BN Rats

We subsequently evaluated the therapeutic effect of the fenofibrate eye drop on
DR in STZ-induced diabetic rats. Diabetic rats with 2 weeks of diabetes received 0.5%
fenofibrate eye drops (twice/day, 7 days). As shown by the leukostasis assay, fenofibrate-
treated diabetic rats showed significantly reduced adherent leukocytes in the retinal vessels
compared to the vehicle-treated diabetic rats (Figure 6A,B).
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Figure 6. Fenofibrate eye drops ameliorated retinal vascular permeability and retinal inflammation in
STZ-induced diabetes rats. Two weeks after STZ injection, diabetic rats received 0.5% fenofibrate (FF)
eye drops (twice/day, 7 day). (A) Representative images of retinal leukostasis assay in STZ-induced
diabetic rats treated with vehicle (n = 8 animals per group) and the FF eye drop (n = 8 animals
per group). The arrows indicated the adherent leukocytes in retinal vessels. Scale bar: 100 µm.
(B) Adherent leukocytes were quantified in flat-mounted retinas. (C) The vascular permeability was
measured by spectroscopy using Evans blue dye as tracer in the vehicle group (n = 18 eyes per group)
and 0.5% FF group (n = 22 eyes per group). The extracted Evans blue dye was normalized to the total
retina protein concentration. Data were expressed as mean ± SEM and analyzed by an unpaired
Student’s t-test.

We also evaluated the effects of fenofibrate eye drops on retinal vascular leakage in
the diabetic rats. Fenofibrate topical application decreased retina vascular permeability by
17.36% relative to vehicle-treated STZ-diabetic rats (Figure 6C). The results suggest that
the fenofibrate eye drop inhibits the retinal inflammation and reduces vascular leakage in
STZ-induced diabetic rats.

3.7. Fenofibrate Eye Drops Had No Toxic Effects on Cornea or Retinal Structure and Function

After the topical application of the fenofibrate eye drop, all animals showed clear
cornea appearance, limpid anterior chamber, transparent lens, and lack of conjunctival
congestion (Figures 7C and 8C). Histology examination using H&E staining showed no
detectable changes in the cornea or retina histology in the fenofibrate treatment group,
relative to the vehicle control (Figures 7A and 8A). As measured by OCT, no changes in
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central corneal thickness or total retinal thickness were detected in the fenofibrate-treated
rats compared to the control (Figures 7B,D and 8B,D). Furthermore, for functional studies,
no significant differences in intraocular pressure (IOP) were observed in fenofibrate-treated
diabetic rats (Figure 7E) and Vldlr−/− mice (Figure 8E). ERG was recorded to evaluate the
influence of fenofibrate eye drops on retinal function. There was no significant difference
in amplitudes of a or b waves of cone or rod ERG between the treatment groups and the
vehicle group in rats (Figure 7F).
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Figure 7. Fenofibrate eye drop had no toxic effects on cornea or retinal morphology and function
in rats. (A) Representative H&E retinal images of the vehicle control group and 0.5% fenofibrate
(FF) group. No cornea or retina structural changes were observed in the groups. Scale bar: 100 µm.
(B) Representative OCT images of the vehicle group and 0.5% FF group. (D) Quantitative measures
of central corneal and total retinal thickness using OCT. Values were expressed as mean ± SEM,
analyzed by unpaired Student’s t test. (C) Representative images showing a perfectly clear cornea
without lesion after the eye drop administration. (E) The measurement of intraocular pressure (IOP)
after the treatment with the eye drop. (F) Quantification of ERG a and b wave amplitudes. Data in (E)
and (F) were expressed as mean ± SEM, n = 12 eyes in each group, analyzed by two-way ANOVA.



Biology 2021, 10, 1328 14 of 19Biology 2021, 10, x FOR PEER REVIEW 14 of 19 
 

 

 
Figure 8. Fenofibrate eye drop had no toxic effects on cornea or retinal structure and function in 
mice. (A) Representative H&E images of the vehicle control group and the 0.1% fenofibrate (FF) 
group. No cornea or retina structural changes were observed. Scale bar: 100 μm. (B) Representative 
OCT images of the vehicle group and 0.1% FF group. (C) Representative images showing perfectly 
clear cornea without lesion after the eye drop administration. (D) Quantitative measures of central 
corneal and total retinal thickness using OCT. Data were expressed as mean ± SEM, n = 12 eyes in 
each group, analyzed by an unpaired Student’s t test. (E) The measurement of intraocular pressure 
(IOP) after the treatment with the eye drops. Data were expressed as mean ± SEM, analyzed by two-
way ANOVA. 

4. Discussion 
Macular edema is the leading cause of vision loss in DR and neovascular AMD 

[1,2,23]. Retinal inflammation and subsequent BRB breakdown play a causative role in 
macular edema [5,33,34]. Currently, there is no non-invasive drug treatment for macular 
edema. In this study, we formulated fenofibrate, a PPARα agonist, into a novel, nano-
emulsion-based eye drop, which delivered substantially higher amounts of the drug to 
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Figure 8. Fenofibrate eye drop had no toxic effects on cornea or retinal structure and function in mice.
(A) Representative H&E images of the vehicle control group and the 0.1% fenofibrate (FF) group. No
cornea or retina structural changes were observed. Scale bar: 100 µm. (B) Representative OCT images
of the vehicle group and 0.1% FF group. (C) Representative images showing perfectly clear cornea
without lesion after the eye drop administration. (D) Quantitative measures of central corneal and
total retinal thickness using OCT. Data were expressed as mean ± SEM, n = 12 eyes in each group,
analyzed by an unpaired Student’s t test. (E) The measurement of intraocular pressure (IOP) after the
treatment with the eye drops. Data were expressed as mean ± SEM, analyzed by two-way ANOVA.

4. Discussion

Macular edema is the leading cause of vision loss in DR and neovascular AMD [1,2,23].
Retinal inflammation and subsequent BRB breakdown play a causative role in macular
edema [5,33,34]. Currently, there is no non-invasive drug treatment for macular edema. In
this study, we formulated fenofibrate, a PPARα agonist, into a novel, nano-emulsion-based
eye drop, which delivered substantially higher amounts of the drug to the retina, compared
to the systemic fenofibrate administration. Topical administration of fenofibrate eye drops
conferred therapeutic effects on retinal inflammation and vascular leakage in DR and AMD
models and alleviated laser-induced CNV. Further, the fenofibrate eye drop did not result in
any detectable side effects to retinal function and histology. This study represents the first
approach using nanoparticle-based eye drops to improve penetration of topical fenofibrate
to the retina. These findings suggest that topical administration of fenofibrate eye drops
has the potential to become a non-invasive therapeutic strategy for DR and AMD.

Fenofibrate is converted to its active metabolite fenofibric acid, which is a PPARα
agonist. PPARα is a ligand-activated nuclear receptor that functions to control inflam-
matory responses by suppressing the activity of pro-inflammatory transcription factors,
including nuclear factor-κB (NF-κB) and c-jun [35]. In addition, PPARα negatively regu-
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lates acute phase response (APR) signaling by reducing IL-6-induced expression of human
fibrinogen genes [36,37]. Furthermore, several studies showed that PPARα agonists down-
regulate the biosynthesis of epoxyeicosatrienoic acids, expoxygenase products, which
are pro-angiogenic. Altogether these data indicate that fenofibrate inhibits the vascular
inflammatory response and NV via the PPARα pathway.

Compared to the anti-VEGF-centered treatments, accumulating evidence has indicated
that fenofibrate can confer anti-angiogenic, anti-fibrotic, neuroprotective, anti-inflammatory,
and anti-oxidant effects [14–17,38]. However, the therapeutic effect of systemic delivered
fenofibrate is not as potent as desired, as systemic administration delivers limited amounts
of the drug to the retina due to BRB, which represents a major limiting factor for improving
the efficacy of fenofibrate on DR [39]. Systemic administration of fenofibrate is limited by
its dose, as higher doses are associated with side effects. A recent population-based study
showed a rapid raising serum creatinine level among fenofibrate users with chronic kidney
disease [40]. Although the risk is low, in some cases, the therapy may increase the incidence
of myopathy in diabetic patients [41]. Thus, increasing the intraocular bioavailability of
fenofibrate without systemic drug overloading is critical for improving the efficacy of
fenofibrate. Fenofibrate is a small molecule drug and, as such, intravitreal injection will
have a short drug availability in the retina and vitreous. Our previous studies showed
that PPARα agonist administration such as intravitreal injection of fenofibrate-loaded
biodegradable nanoparticles effectively reduced vascular leakage and inhibited ocular
NV in murine models [21]. However, IVT injection is associated with safety concerns and
higher costs. Therefore, the present study attempted to develop a topic administration of
fenofibrate as a noninvasive and long-term treatment of DR and AMD.

Eye drops are prescribed for long-term treatment of eye conditions. However, a major
technical hurdle in topical administration of fenofibrate is its poor water solubility and
ocular barriers for drug delivery to the retina. To overcome this hurdle, we designed and
screened thousands of pharmaceutical formulations, from which a nano-emulsion-based
formulation was identified that can deliver the drug to the retina and prolong the drug
availability in the retina. In this formulation, fenofibrate in eye drops was made into a
nano-emulsion. The formulation has flexible drug loading capacities for fenofibrate and
is colorless and stable over six months at room temperature. The nanometer size-ranges
of delivery systems offer certain distinct advantages for drug delivery [42]. In addition,
nanoparticles have relatively higher intracellular uptake after delivery to tissues [43,44].
The reagents such as polysorbate added to the recipe facilitate the infiltration of fenofibrate.
An early challenge faced by these technologies was their rapid clearance by the eyelids and
tears. The formulation was improved by increasing the viscosity of the eye drop to keep
the gel drop in the conjunctival sac for a longer time to improve the drug penetration.

As shown by pharmacokinetic studies, this nano-emulsion eye drop mediated efficient
fenofibrate penetration through the ocular barriers and delivered significantly higher
amounts of the drug into the retina and vitreous without overloading the drug to the liver
and kidney, compared to systemic administration of a clinical dose of fenofibrate. The
increased drug concentrations to the retina suggest a more potent drug effect relative to
systemic administration. It is known that fenofibrate is converted to its active metabolite
fenofibric acid in the plasma and tissues by esterases and becomes an active PPARα agonist.
Our mass spectroscopy detected both fenofibrate and fenofibric acid in the retina and
vitreous, suggesting that these tissues contain the esterases to convert fenofibrate to its
active metabolite, fenofibric acid. After topical administration, the drug concentrations
appeared to be a concentration gradient: sclera>choroid>retina/vitreous>lens, suggesting
the drug was delivered through a periocular path and trans-sclera delivery to reach the
retina and vitreous. This gradient does not seem to support that a drug delivery route of
fenofibrate eye drops through penetration of the cornea, which is a very important obstacle
for intraocular drug delivery. The pharmacokinetic results identified that the concentration
of fenofibrate in the choroid is approximately five-fold higher than the concentration in the
peripheral blood, suggesting that the drug in the posterior ocular tissues is not transported
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from the circulation. The trans-scleral drug delivery with periocular administration route
might be a likely path mediating fenofibrate delivery to the retina.

The intact BRB is essential for preventing leakage of macromolecules and fluid from
the blood vessels or choroid into the retina [45]. Increasing evidence supports that the BRB
breakdown, which is regulated by multiple factors and involves different mechanisms, is a
major cause of visual loss in a variety of ocular disorders [2,45–47]. In DR, the breakdown
of BRB results in vascular leakage and subsequent DME [48]. Similarly, the alteration of
the outer BRB triggers the progression to atrophic AMD [49]. Various methods have been
developed for the quantitative and qualitative assessment of the BRB integrity, but each
method has its particular limitations [34]. In this study, we used multiple approaches
including fluorescein angiography, a permeability assay using Evans blue as the tracer,
and immunocytochemical staining to evaluate the efficacy of the fenofibrate eye drop in
preventing the BRB breakdown.

Our results demonstrated the effect of fenofibrate eye drops on the BRB breakdown in
three distinct models: Vldlr−/− mice, the laser-induced CNV model, and the STZ-induced
diabetic model. Vldlr−/− mice develop the most phenotypes of human AMD such as
retinal vascular leakage, inflammation, and subretinal NV [50]. Laser-induced CNV is
appealing for its ability to efficiently generate CNV lesions similar to the CNV that occurs
in human AMD [50]. Previous research reported that this model of acute injury and
inflammation could help to establish proof of concept for pharmacotherapy of CNV [51,52].
The STZ-induced diabetic rat model is widely used for studies of non-proliferative DR.
Documented studies reported that the STZ-diabetic model develops retinal leukostasis and
BRB breakdown [53]. Our previous study also showed that retinal vascular leakage occurs
earlier and lasts longer in STZ-induced diabetic BN rats, suggesting that the diabetic BN
rat is a good model of vascular leakage in the retina [54]. In addition, multiple studies
suggested that the increase in leukocyte adhesion is a critical factor in early retinopathy
or inflammatory fundus disease causing decreases in retinal blood flow and increases
in inflammatory factor expression, such as vascular endothelial growth factor [28,55,56].
The present study demonstrated that the fenofibrate eye drop effectively reduced retinal
vascular leakage and numbers of leukocytes in Vldlr−/− mice and STZ-diabetic BN rats,
suggesting potential effects on anti-inflammation and macular edema in DR and AMD.

To establish the safety profile of the fenofibrate eye drop, we further assessed its
ocular toxicities. The measurements include the clinical general apparent evaluation,
measurement of IOP, ERG recording, quantification of retinal thickness using OCT, and
histopathological examination. No detectable changes were observed in the retinal function
and histology, suggesting topical administration of fenofibrate eye drops lacks severe
toxicities at doses required for treatment.

5. Conclusions

In conclusion, it is necessary to explore new effective and noninvasive therapeutic
modalities for macular edema in DR and AMD. The present study demonstrated that
nano-emulsion-based eye drops can mediate efficient delivery of fenofibrate to the retina
to reach higher concentrations than systemic administration of fenofibrate. The fenofibrate
eye drop confers therapeutic effects on retinal inflammation and vascular leakage in both
DR and AMD models. These findings suggest that topical application of fenofibrate or
other PPARα agonists has therapeutic potential for DR and AMD.

6. Patents

Ronald A Wassel is an inventor of the patent covering the nano-emulsion eye drop
formulation. The formulation is covered by patent number US8968775.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/biology10121328/s1. Figure S1: Full Western blots, Table S1: Figure 5A Original measurement,
Table S2: Figure 5F Original measurement.
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