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Artificial intelligence applied to coronary
artery calcium scans (AlI-CAC)
significantly improves cardiovascular
events prediction
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Coronary artery calcium (CAC) scans contain valuable information beyond the Agatston Score which
is currently reported for predicting coronary heart disease (CHD) only. We examined whether new
artificial intelligence (Al) applied to CAC scans can predict non-CHD events, including heart failure,
atrial fibrillation, and stroke. We applied Al-enabled automated cardiac chambers volumetry and
calcified plaque characterization to CAC scans (AI-CAC) of 5830 asymptomatic individuals (52.2%
women, age 61.7 = 10.2 years) in the multi-ethnic study of atherosclerosis during 15 years of follow-up,
1773 CVD events accrued. The AUC at 1-, 5-, 10-, and 15-year follow-up for Al-CAC vs. Agatston
score was (0.784 vs.0.701), (0.771 vs. 0.709), (0.789 vs. 0.712) and (0.816 vs. 0.729) (p < 0.0001 for all),
respectively. Al-CAC plaque characteristics, including number, location, density, plus number of
vessels, significantly improved CHD prediction in the CAC 1-100 cohort vs. Agatston Score. AI-CAC
significantly improved the Agatston score for predicting all CVD events.

Coronary artery calcium (CAC) scoring is the strongest predictor of risk
for atherosclerotic cardiovascular disease (ASCVD) in asymptomatic
individuals'. Although CAC scoring is used for prediction of coronary heart
disease events, it is not used for prediction of other cardiovascular disease
(CVD) events such as stroke, heart failure (HF) and atrial fibrillation (AF).
Beyond risk factor assessment, screening tools for overall CVD event pre-
diction are limited due to cost-effectiveness and feasibility barriers.

The usage of CAC scans has increased significantly since the ACC/
AHA Guideline on the Management of Blood Cholesterol in 2018° included
CAC score in the algorithm for consideration of statin therapy, among those
at borderline and intermediate risk for ASCVD. It is estimated that 45-50%
of the US population aged 40-80 would fall in these groups defined as 5-20%
risk of ASCVD events over 10 years™. The possibility of applying artificial

intelligence (AI) to predict CVD has been previously published by some of
our team members using the support vector machine algorithms in MESA®.
We have sought to further enrich the value of CAC scans by applying Al that
automatically measures all cardiac chamber volumes and left ventricular
(LV) mass without using any contrast agent. For this manuscript, we refer to
Al-enabled automated cardiac chambers volumetry from CAC scans as AI-
CAGC, and the AI-CAC model incorporates Agatston CAC Score, left atrial
(LA), right ventricular (RV), left ventricular (LV) volume and mass.

We have recently shown that AI-CAC volumetry alone enabled the
prediction of HF in the Multi-Ethnic Study of Atherosclerosis (MESA)®’.
Additionally, we have demonstrated that AI-CAC LA volume alone
improved the predictive value of CHARGE-AF Risk Score and NT-proBNP
for the detection of individuals at high risk of AF*”. Such an add-on
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measurement can offer valuable insights into a patient’s overall CVD risk
beyond the CAC score. In this study of MESA participants, we compared the
performance of AI-CAC over the traditional Agatston CAC Score for the
prediction of all CVD events (stroke, myocardial infarction, angina, resus-
citated cardiac arrest, all cardiovascular disease-related deaths, HF, and AF)
plus all-cause mortality. This approach broadens the scope and clinical
significance of comparing AI-CAC vs. the Agatston CAC score

Results

The mean (SD) age of our subjects was 62 * 10 years, 52% were female, 40%
were non-Hispanic White, 26% non-Hispanic Black, 22% Hispanic, and
12% Chinese. Table 1 shows the baseline characteristics of MESA partici-
pants who experienced a CVD event vs. those who did not over the 15 years
of follow-up, during which 1773 CVD events accrued. In univariate com-
parisons, participants experiencing CVD events were older, more likely
male, and more likely non-Hispanic White. The cases that experienced a
CVD event had higher cardiac chamber volumes for LA, LV, RA, and
LV mass.

Figure 1 shows examples of three participants with enlarged LA and LV
volumes with CAC score 0 and low risk ( <5%) ASCVD risk score who
experienced CVD events. A significant number of low-risk participants with
CAC 0 have enlarged cardiac chambers. With a higher CAC score category,
there was a higher proportion of patients with LA and LV volumes in the
highest quartile (p-trend =0.0001). 17.7% of cases with CAC 0 who are
considered low risk have enlarged LA volume that puts them at high risk for
AF and stroke (Fig. 2a). Similarly, 22.7% of cases with CAC 0 have enlarged
LV volume that puts them at risk of HF (Fig. 2b).

The median C-statistic (95% CI) for all CVD events over 15 years for
pooled sexes between AI-CAC vs. Agatston CAC score was 0.742 (CL:
0.723-0.761) vs. 0.709 (CI: 0.688-0.728) (p < 0.0001). For females, the C-
statistic between AI-CAC volumetry vs. Agatston CAC Score was 0.751
(0.738-0.778) vs. 0.705 (0.683-0.720) (p < 0.0001), respectively, and 0.701
(0.674-0.723) vs. 0.672 (0.651-0.693) (p = 0.0012), respectively, for males.
AI-CAC had significantly higher discrimination than Agatston CAC Score
for CVD events prediction across 1-, 5-, 10-, and 15-year follow-up (Fig. 3),
including AF, HF, stroke, hard CVD, and All-cause mortality prediction

Table 1 | Baseline characteristics of the multi-ethnic study of atherosclerosis (MESA) participants, including cases with and

without cardiovascular events at 15 years of follow-up

15-year follow-up outcome data Overall (N = 5830) Cardiovascular events p-value
No (N =4057) Yes (N=1773)

Age (years) 62.2+10.3 60.1+10.0 67.1+9.1 <0.0001

Female sex (%) 52.2% 55.7% 43.8% <0.0001

Body Surface Area 1.90+0.24 1.89+0.24 1.93+0.24 <0.0001

Race (%)
Non-Hispanic White 39.7% 37.7% 43.8% 0.0321
Chinese 12.1% 12.2% 11.0% 0.2054
Non-Hispanic Black 26.1% 27.2% 24.5% 0.0935
Hispanic 22.0% 22.9% 20.7% 0.8569

Al-CAC volumetry
LA volume (cc) 102.5+25.4 58.8+14.5 67.3+18.1 <0.0001
LV volume (cc) 61.4+16.1 100.8 +24.4 106.6 +27.0 <0.0001
RA volume (cc) 134.3+34.4 69.4+17.1 74.4+19.7 <0.0001
RV volume (cc) 77.0+18.9 133.2+34.1 136.7 £35.0 0.1254
LV mass (g) 107.8 +26.4 103.2+25.0 110.9+27.4 <0.0001
Total heart volume (cc) 482.3 +108.7 465.4 +104.6 495.9+113.2 <0.0001

Coronary artery calcium (CAC)
Agatston score 0.93 (0-90.66) 0(0-36.9) 51.04 (0-280.4) <0.0001
Number of plaques 0(0-5) 0 (0-3) 5 (0-15) <0.0001
Number of affected vessels 0(0-2) 0(0-1) 2(0-3) <0.0001
Mean CAC density 0(0-79) 0 (0-48) 89 (0-399) <0.0001

Risk factors
Diabetes 12.7% 10.2% 18.7% <0.0001
Hypertension 44.7% 38.5% 59.5% <0.0001
Current smoking 13.0% 12.2% 13.3% 0.1765
Current alcohol usage 68.6% 69.7% 65.9% <0.0001
Family history of coronary heart disease (%) 42.7% 40.5% 48.5% <0.0001
LDL cholesterol (mg/dL) 117.2+31 117.8+31.1 1156.5+32.2 0.3017
HDL cholesterol (mg/dL) 51.0+14 51.2+14.9 50.1+15.1 0.1087
Total cholesterol (mg/dL) 194.2+35 195.0+35.4 192.5+36.8 <0.0001
Systolic blood pressure (mmHg) 126.5+£21.4 123.7+£20.4 133.4+£22.0 <0.0001
Diastolic blood pressure (mmHg) 71.9+10.2 71.4+£10.1 73.0+10.3 <0.0001
Blood pressure lowering Rx 37.0% 31.8% 49.7% <0.0001
Lipid-lowering Rx 16.6% 14.6% 21.3% <0.0001
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Case Example 1
Female

Age: 57

CAC Score: 0

10-Year ASCVD Risk: 1.4%
(Low Risk)

This case developed HF and AFib

LA Volume (cc): 84.6
LV Volume (co): 121.7
CTR: 0.5

Case Example 2

Male

Age: 55

CAC Score: 0

10-year ASCVD Risk: 4.8%
(Low Risk)

This case developed HF.

Te:
| — ] "r‘

This case developed Afib and stroke.

o
v
RA
RV
Lvw

LA-Volume(cc): 82.2
LV-Volume (cc): 132.5
CTR: 0.48

Case Example 3

Female
Age: 60

CAC:0 O
10-year ASCVD Risk: 4.1% v
(Low Risk) Ora

LA Volume (cc): 76.2
LV Volume (ce): 117.1
CTR: 0.49

Abbreviations & Definitions
ASCVD
CAC
CTR Cardiothoracic Ratio
LA Left Atrium

Atherosclerotic cardiovascular disease v
Lvw
RA
RV

Left Ventricle

Coronary Artery Calcium Left Ventricular wall

Right Atrium
Right Ventricle

Fig. 1 | Al-enabled automated cardiac chambers volumetry and calcified plaque
characterization to CAC scans (AI-CAC) definition and case examples. AI-CAC
component diagram derived from coronary artery calcium (CAC) scan and

Automated

Characterization

Al-CAC™

CAC Scan

Automated
Agatston CAC
Score

Plaque

AutoChamber™

examples of AI-CAC volumetry detection of high-risk individuals with enlarged
cardiac chambers in coronary artery calcium (CAC) scans with a calcium score of
zero and low ASCVD risk.
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Fig. 2 | Quartiles of Al-enabled automated cardiac chambers volumetry and
calcified plaque characterization to CAC scans (AI-CAC) Left Atrial (LA) and
Left ventricular (LV) Volume by Agatston Coronary Artery Calcium (CAC)
Score Quartiles. a AI-CAC LA volume vs. CAC score. Stacked bar chart of quartiles
of AI-CAC LA volume by CAC score categories (0, 1-100, 101-400, over 400).
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Despite the correlation, 17.7% of cases with CAC 0 who are considered low risk have
enlarged LA volume that puts them at high risk for atrial fibrillation (AF) and stroke.
b AICAC LV volume vs. CAC score. Stacked bar chart of quartiles of AI-CAC LV
volume by CAC score categories (0, 1-100,101-400, over 400). 22.7% of cases with
CAC 0 have enlarged LV volume that puts them at risk of heart failure (HF).

(Table 2). Category-free NRI showed improvement across all follow-up
periods for AF, HF, stroke, hard CVD, and All-Cause Mortality.

AI-CAC volumetry significantly added to a CVD risk factors-based
model for all CVD event prediction (Supplementary Table 1). The AI-CAC
biomarker model coefficients and hazard ratios for CVD, AF, and HF have
been provided in Supplementary Tables 2, 3, 4. A significant increase in C-
statistic for All CVD events was observed when adding AI-CAC measure-
ments to basic risk factor models (0.745 (0.655-0.836) vs. 0.774
(0.693-0.852)) (Supplementary Table 5). A notable increase in dis-
crimination for CVD prediction was demonstrated over 1-, 5-, 10-, and 15-
year follow-ups. AI-CAC measurements demonstrated significant incre-
mental value when added to CVD risk factors for 1-year CVD prediction

(0.803 vs. 0.749, p < 0.0001) (Supplementary Fig. 6a), 5-year CVD predic-
tion (0.786 vs. 0.752, p < 0.0001) (Supplementary Fig. 6b), 10-year CVD
prediction (0.801 vs. 0.774), p < 0.0001 (Supplementary Fig. 6¢), and 15-year
CVD prediction (0.823 vs. 0.816, p < 0.0001) (Supplementary Fig. 6d).
AI-CAC plaque characterization significantly improved CHD pre-
diction in the CAC 1-100 cohort. AI-CAC plaque characteristics included
the number of plaques, location, density, plus number of vessels affected.
The addition of AI-CAC RV volume, LV volume, and LV mass further
improved discrimination for CHD in this cohort. The AI-CAC composite
model included LA volume, RV volume, LV volume, LV mass, AI-CAC
derived plaque characterization, and Agatston CAC Score. Over 5- and 10-
year follow-up, the time-dependent AUC for the AI-CAC composite model
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Fig. 3 | Time-dependent receiver operating curve (ROC) area under curve (AUC)
for all cardiovascular events between Al-enabled automated cardiac chambers
volumetry and calcified plaque characterization to CAC scans (AI-CAC) vs.
Agatston coronary artery calcium (CAC) Score over 15 years. a Time-dependent
AUC for AI-CAC vs. CAC score at 1-year follow-up. AI-CAC had significantly
higher discrimination than Agatston CAC score for CVD events prediction over
1-year follow-up. The AUC at 1-year follow-up for AI-CAC vs. Agatston Score was
0.784vs.0.701 (p < 0.0001). b Time-dependent AUC for AICAC vs. CAC score over
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5-years follow-up. At a 5-year follow-up, AI-CAC continued to demonstrate
superior discrimination compared to the Agatston CAC score. The AUC for Al-
CAC vs. Agatston score was 0.771 vs. 0.709 (p < 0.0001). ¢ Time-dependent AUC for
AI-CAC vs. CAC score over 10-years follow-up. For a 10-year follow-up, AI-CAC
maintained a higher AUC compared to the Agatston score (0.789 vs. 0.712,

P <0.0001). d Time-dependent AUC for AI-CAC vs. CAC score over 15-years
follow-up. At the 15-year follow-up, AI-CAC achieved the highest discrimination,
with an AUC of 0.816 vs. 0.729 for the Agatston score (p < 0.0001).

vs. Agatston CAC Score was 0.654 vs. 0.557 (p < 0.0001) and 0.688 vs. 0.556
(p <0.0001), respectively (Supplementary Fig. 8a, b).

Discussion

Our study primarily demonstrates the utility of applying Al to CAC scans to
extract more actionable information than currently reported, which is the
Agatston CAC score only. We found that AI volumetry significantly
improves upon traditional CAC scoring for the prediction of risk for total
CVD events as well as the prediction of individual CVD events of HF, stroke,
AF, and all-cause mortality in a large multi-ethnic cohort. The plaque
characterization component of AI-CAC specifically improved the predictive
value of the Agatston score for CAC scores 1-100. Moreover, we show the
value of this technique not only for longer-term event prediction (10-15

years) but also for nearer-term events (1 to 5-year follow-up). This is the first
multi-ethnic outcome study of an easily implemented Al technology that
can be applied to non-contrast CAC scans without additional radiation
exposure to identify patients at risk of such events who would otherwise not
be identified by Agatston CAC score. The potential utility of non-coronary
findings in CAC scans has been reported previously using manual 2D
measurements of LV'*™"* and LA sizes'*". Our study corroborates findings
from the Heinz Nixdorf Recall Study and others and further brings to light
the value of non-coronary findings in CAC scans for a comprehensive CVD
risk assessment beyond CHD'™"*. Kizer et al. showed that LA size was an
independent predictor of CVD events'”. Mahabadi et al.”” showed in the
longitudinal Heinz Nixdorf Recall Study that two-dimensional LA size and
epicardial adipose tissue from non-contrast CT were strongly associated
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Table 2| Time-dependent area under the curve (AUC) and category-free net reclassification index (NRI) at 1-, 5-, 10-, and 15-year
follow-up between AI-CAC and Agatston CAC score (CAC) for individual and all cardiovascular event and mortality prediction

MESA outcomes CAC AUC (95% CI) AI-CAC® AUC (95% Cl) AUC p-value Al-CAC NRI over CAC NRI p-value
1-year follow up
AF 0.67 (0.58,0.75) 0.80(0.71,0.88) <0.0001 0.77 <0.0001
HF 0.65 (0.52,0.77) 0.91(0.84,0.97) <0.0001 1.17 <0.0001
CHD® 0.78(0.72,0.85) 0.80(0.72,0.87) 0.41 0.19 0.05
Stroke 0.67 (0.56,0.79) 0.79 (0.66,0.87) <0.0001 0.65 <0.0001
Hard CVD° 0.68 (0.59,0.79) 0.77 (0.68,0.85) <0.0001 0.34 <0.0001
All CVD events® 0.69 (0.65,0.75) 0.77 (0.73,0.83) <0.0001 0.40 <0.0001
All-cause mortality 0.64 (0.52,0.68) 0.71(0.58,0.82) <0.0001 0.61 <0.0001
5-year follow up
AF 0.67 (0.64,0.70) 0.74 (0.70,0.77) <0.0001 0.36 <0.0001
HF 0.71 (0.65,0.75) 0.83(0.79,0.88) <0.0001 0.64 <0.0001
CHD® 0.79 (0.76,0.82) 0.81(0.78,0.84) 0.18 0.18 0.006
Stroke 0.66 (0.60,0.72) 0.76 (0.70,0.81) <0.0001 0.58 <0.0001
Hard CVD° 0.73(0.70,0.77) 0.78 (0.75,0.80) <0.0001 0.33 <0.0001
All CVD events® 0.71(0.69,0.74) 0.75(0.74,0.78) <0.0001 0.28 <0.0001
All-cause mortality 0.67 (0.63,0.70) 0.70(0.66,0.73) <0.0001 0.32 <0.0001
10-year follow up
AF 0.69 (0.67,0.71) 0.76 (0.74,0.78) <0.0001 0.43 <0.0001
HF 0.71 (0.68,0.75) 0.81(0.78,0.84) <0.0001 0.52 <0.0001
CHD® 0.79 (0.77,0.81) 0.80(0.78,0.83) 0.09 0.16 0.002
Stroke 0.66 (0.63,0.70) 0.75(0.71,0.79) <0.0001 0.45 <0.0001
Hard CVD° 0.72(0.70,0.75) 0.77 (0.74,0.79) <0.0001 0.33 <0.0001
All CVD events® 0.71(0.70,0.73) 0.76 (0.75,0.78) <0.0001 0.29 <0.0001
All-cause mortality 0.68 (0.65,0.70) 0.71(0.69,0.73) <0.0001 0.33 <0.0001
15-year follow up
AF 0.69 (0.67,0.71) 0.75(0.74,0.77) <0.0001 0.33 <0.0001
HF 0.75(0.71,0.78) 0.83 (0.79,0.86) <0.0001 0.50 <0.0001
CHD® 0.81(0.78,0.83) 0.82 (0.80,0.85) 0.73 0.17 0.002
Stroke 0.69 (0.66,0.73) 0.75 (0.70,0.79) <0.0001 0.30 <0.0001
Hard CVD°® 0.75(0.72,0.78) 0.79(0.77,0.82) <0.0001 0.24 <0.0001
All CVD events® 0.72 (0.70,0.74) 0.76 (0.74,0.78) <0.0001 0.23 <0.0001
All-cause mortality 0.68 (0.66,0.71) 0.72(0.70,0.74) <0.0001 0.29 <0.0001

AF atrial fibrillation, HF heart failure.

?Al-CAC model: LA indexed by BSA, RV indexed by BSA, LV volume and mass indexed by BSA, log-transformed CAC.
°CHD: myocardial infarction, definite angina, probable angina, resuscitated cardiac arrest, CHD death.

°Hard CVD: myocardial infarction, resuscitated cardiac arrest, stroke, CHD death, stroke death.

“All cardiovascular events: stroke, myocardial infarction, angina, resuscitated cardiac arrest, all cardiovascular disease-related deaths, heart failure, and atrial fibrillation.

with prevalent and incident AF and that LA size diminished the link of
epicardial adipose tissue with AF, and was also associated with incident
major CVD events independent of risk factors and CAC-score'’.
Although there are multiple automated CAC scoring tools available,
currently, there is no clinically available tool to clinicians for automated
cardiac chamber volumetry in CAC scans that is validated against outcomes.
Here, we provide evidence of the feasibility of using Al for automated 3D
volumetry of cardiac chambers that takes on average 20 s. Currently, such
measurements are only possible on contrast-enhanced CT scans, which
require more radiation plus injection of an X-ray contrast agent that is
burdensome™. In contrast, AI-CAC volumetry can be applied to any new or
existing non-contrast CAC scan for automated cardiac chamber measure-
ment. Standalone cardiac MRI and echocardiography are not comparable to
our solution, which is an opportunistic add-on to chest CT scans. While
echocardiography and cardiac MRI provide valuable information on car-
diac chamber volume, they are not indicated for the asymptomatic popu-
lation and are usually performed in cardiovascular clinics. However, Al-

enabled cardiac chamber volumetry can be done on any chest CT scan,
including lung cancer screening scans. This approach opens the door to
identifying high-risk asymptomatic patients in non-cardiovascular clinics.
AI-CAC volumetry not only works on ECG-gated CAC scans but also
non-gated lung CT scans™’. Non-contrast chest CT scans are prime candi-
dates for opportunistic Al-enabled cardiac chamber volumetry for the
identification of patients at increased risk for AF** and HF. The Al approach
can enable automatic screening of the over 10 million chest CT scans done
each year in the US alone™. Such an Al tool can run in the background of
radiology picture archiving and communication systems (PACS) and alert
providers to cases with enlarged cardiac chambers. Unfortunately, many
high-risk patients with enlarged cardiac chambers are currently undetected
and, therefore, untreated. Early detection of these cases can allow for close
monitoring of progression to AF for stroke prevention and guideline-
directed medical therapy for HF prevention. In our study, we have found the
unadjusted correlations between Agatston CAC score and LA and LV
volumes to be low (R=0.20 and R=0.10, respectively) (Supplementary
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Figs. 1 and 2), hence a substantial portion of the population with enlarged
LA and LV chambers are found in low-risk CAC categories. The combi-
nation of the automated cardiac chambers volumetry component of AI-
CAC plus automated AI-CAC plaque characterization showed a greater
incremental AUC value over the Agatston score vs. each alone.

Finally, the lack of coverage for CAC scans by Medicare and healthcare
insurance carriers has contributed to healthcare inequity in the US. Ikram
and Williams™ have shown that low-income people in the Chicago area are
less likely to get CAC scans compared to people in higher-income zip codes.
We hope that by applying AI to CAC scans and providing incremental
value, the payers will be more likely to cover CAC scans.

Our study has several strengths and limitations. The multi-ethnic
nature of MESA recruited from six field centers around the US provides for
greater generalization of our findings than single-center studies. MESA
included standardized methods of data collection, laboratory measurement,
follow-up, as well as adjudication of CVD events. Internal validation was not
performed with hold-out due to the low sample size of several events.

One limitation is that the MESA Exam 1 baseline CT scans were
performed between 2000 and 2002 using electron-beam computed tomo-
graphy (EBCT) or earlier generation multidetector CT scanners, and cur-
rent CAC scanning utilizes more advanced multidetector CT scanning.
However, since our Al training was done completely outside of MESA and
used a modern multidetector (256 slices) scanner, we do not anticipate this
to affect the generalizability of our findings.

Another limitation is the potential impact of different ECG gating
methods (RR-interval) used in MESA for multidetector CT (50%) and
EBCT (80%). This discrepancy resulted in significant differences in LA
volume between participants scanned with EBCT vs. MDCT (57.4 cc vs.
65.4 cc, respectively, p < 0.0001). However, LV volume, LV mass, and RV
volume measurements were not affected by scanner type (Supplementary
Table 7). The cumulative incidence of AF between LA volumes measured by
different scanners showed similar results (Supplementary Figs. 10 and 11).
Although interaction terms between LA volume and scanner type were
tested and found to be non-significant for outcome prediction, questions
remain on the extent of the impact of scanner type on our findings.

Since MESA does not distinguish between HF subtypes (heart failure
with reduced ejection fraction (HFrEF) vs. heart failure with preserved
ejection fraction (HFpEF)), we were unable to compare the prediction of HF
subtypes. However, in a preliminary study, we obtained data from 75
patients who underwent both a cardiac CT scan and echocardiography at
Harbor UCLA medical center”. AI-CAC LV volume index (LVVI) defined
as LV volume divided by BSA was able to distinguish HFrEF vs. HFpEF
comparably to echocardiography LVVI (Supplementary Fig. 9).

Finally, our study excluded 771 cases who did not consent to the use of
their data by commercial entities. However, the baseline characteristics of
these cases did not differ systematically with respect to the remaining par-
ticipants, and we do not anticipate this to affect our findings.

In this study, we presented AI-CAC data on cardiac chambers volu-
metry and calcified plaque characterization obtained from existing CAC
scans in a large multi-ethnic prospective study and compared it to Agatston
CAC Score alone for prediction of all cardiovascular events (stroke, myo-
cardial infarction, angina, resuscitated cardiac arrest, all CVD-related
deaths, HF, and AF), over 15 years. AI-CAC significantly improved upon
the Agatston CAC score for all cardiovascular events prediction (including
all CHD in CAC 1-100 cohort), as well as total mortality. Moreover, sig-
nificant improvement in risk prediction and reclassification of events was
not only seen for longer-term (e.g., 10- and 15-year) events but also for
nearer-term (e.g., 1- and 5-year) events, advancing the status quo to help
identify individuals at risk of near-term CVD events and death.

The projected impact of our study lies in AI's ability to provide
opportunistic screening of enlarged cardiac chambers in all types of chest
CT scans, including lung cancer screening and non-cardiac thoracic diag-
nostic CT scans. This manuscript primarily demonstrates the utility of
applying Al to CAC scans to extract more actionable information than the
Agatston CAC score that is currently reported. Additionally, AI-CAC can

measure chamber volume much faster and cheaper and is operator-
independent compared to manual methods.

Methods

Study population

MESA is a prospective, population-based, observational cohort study of
6814 men and women without clinical CVD at the time of recruitment. Six
field centers in the United States participated in the study: Baltimore,
Maryland; Los Angeles, California; Chicago, Illinois; Forsyth County, North
Carolina; New York City, New York; and St. Paul, Minnesota. As part of the
initial evaluation (2000-2002), participants received a comprehensive
medical history, clinic examination, and laboratory tests. Demographic
information, medical history, and medication use at baseline were obtained
by self-report. An ECG-gated non-contrast CT was performed at the
baseline examination to measure CAC (see below).

Outcomes
The primary outcome was a composite of all CVD events comprised of
stroke, myocardial infarction, angina, HF, AF, resuscitated cardiac arrest,
and all CVD-related deaths. Participants were contacted by telephone every
9-12 months during follow-up and asked to report all new CVD diagnoses.
International Classification of Disease (ICD) codes were obtained. For
participant reports of HF, coronary heart disease, stroke, and CVD mor-
tality, detailed medical records were obtained, and diagnoses were adjudi-
cated by the MESA Morbidity and Mortality Committee. Incident AF was
identified by ICD codes 427.3x (version 9) or 148.x (version 10) from
inpatient stays and, for participants enrolled in fee-for-service Medicare,
from Medicare claims for outpatient and provider services. Hard CVD was
defined as myocardial infarction, resuscitated cardiac arrest, stroke, CHD
death, and stroke death. Angina was classified, except in the setting of MI, as
definite, probable, or absent. Definite or probable angina requires symptoms
of typical chest pain or atypical symptoms. Probable angina requires, in
addition to symptoms, a physician's diagnosis of angina, and medical
treatment for it. Definite angina required one or more additional criteria,
including CABG surgery or other revascularization procedures; 70% or
greater obstruction on coronary angiography; or evidence of ischemia by
stress tests or by resting ECG. A detailed study design for MESA has been
published elsewhere™. MESA participants have been followed since the year
2000. Incident AF has been identified through December 2018. 70 cases with
AF diagnosed prior to MESA enrollment were removed from the analysis.
From the 6814 MESA participants, we excluded 771 who did not
consent to the use of their data by commercial entities, leaving 6043 parti-
cipants at baseline. Among the remaining participants, 125 participants with
missing slices in CAC scans and 88 participants with missing event or time
follow-up data were excluded, resulting in data from 5830 participants for
final analysis. Of the 125 cases with missing slices in CAC scans were, 49.8%
male and 50.2% female, with age 60.8 + 10.1. These errors were random, and
our investigations did not reveal any association between cases with missing
slices and any of the dependent or independent variables in our study.

The Al tool for automated cardiac chamber volumetry

The automated cardiac chambers volumetry tool in AI-CAC referred to in
this study is called AutoChamber™ (HeartLung.AI, Houston, TX). The
deep learning model used TotalSegmentator’” as the base input and was
further developed to segment each of the four cardiac chambers: LA, LV,
RA, RV also in addition to several other components such as automated
CAC score and plaque characterization, which are not presented here
(Fig. 1). The core machine learning component of AI-CAC is adapted from
TotalSegmentator which is a widely used anatomical model published and
validated by investigators independent from our group. The source code for
the TotalSegmentator base model is available publicly. The base architecture
of the TotalSegmentator model was trained on 1139 whole-body CT cases
with 447 cases of coronary CT angiography (CCTA) independent from
MESA using nnU-Net, a self-configuring method for deep learning-based
biomedical image segmentation®. The initial input training data were
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matched to non-contrast and contrast-enhanced ECG-gated cardiac CT
scans with 1.5 mm slice thickness. Because the images were taken from the
same patients in the same session, registration was done with good align-
ment. Following this transfer of segmentations, a nnU-Net deep learning
tool was used for training the model. Additionally, iterative training was
implemented whereby human supervisors corrected errors made by the
model, and the corrected data were used to further train the model, leading
to improved accuracy. To standardize the comparison in MESA, cardiac
chambers were indexed by body surface area (BSA).

We developed a post-processing pipeline to identify instances of poor-
quality segmentations where the region of interest was absent. Furthermore,
we employed connected components analysis to eliminate ectopic seg-
mentation islands. These methods were implemented to ensure quality
control and optimize the model’s performance. Expert rules built into the AI
model excluded 125 cases due to missing slices in image reconstruction,
which occurred with some of the electron-beam CT scanners used in MESA
at baseline.

Agatston CAC score measurement
Three study sites used cardiac-gated electron-beam CT scanners, whereas
the other three sites used multidetector CT scanners. Each participant was
scanned twice at baseline examination, with a mean Agatston score used for
analysis”. All scans were phantom-adjusted and read by two trained CT
image analysts at a central MESA CT reading center, with high reprodu-
cibility and comparability between electron-beam CT and multidetector CT
scanning™*"". Detailed information on CT scan methods and interpretation
has been provided previously™.

CAC area and density were derived from total Agatston and volume
scores, which were provided in the original MESA data set. The methods for
this derivation are elsewhere™.

Al-CAC plaque characterization beyond Agatston CAC score

In addition to AI-CAC cardiac chamber volumetry, AI-CAC enables cal-
cified plaque characterization that currently is not reported by the Agatston
CAC Score. These characteristics include the number of plaques, the
number of vessels with plaques, plaque density, and location. In this study,
we have only used these characteristics for calcified plaques, however, efforts
are underway to characterize non-calcified (soft plaques) in non-contrast
CAC scans using AI-CAC.

In MESA-1, human experts generated reports on plaque characteristics
for each patient. For these reports, each expert manually identified plaques
by clicking on them, extracting x, y, and z coordinates for each point, and
measuring surface area using a connected components algorithm. This
algorithm identified connected pixels that were adjacent side-by-side but
excluded those connected diagonally. From these reports, we were able to
extract information on plaque location, number of plaques, plaque density,
and the number of vessels affected by plaques. We have chosen to use
MESA’s plaque characterization due to excessive noise in the coronary
arteries in MESA-1 CT scans.

Statistical analysis

We used SAS (SAS Institute Inc., Cary, NC) and Python 3.10 for statistical
analyses. All values are reported as means + SD except for CAC and plaque
characteristics, which did not show normal distribution and are presented as
median with interquartile range (IQR). All tests of significance were two-
tailed, and significance was defined at Type I error (&) = 0.05 and Type II
error () =0.20. All analyses met the appropriate sample size and power
considerations. Instances where these requirements were not met have been
excluded and noted.

Survival analysis was performed using Cox proportional hazards
regression. Model assumptions were tested using Schoenfeld and Martin-
gale residuals and no violations of proportional hazards or non-linearity
were detected in any variables. Discrimination was assessed using the time-
dependent receiver operator characteristic (ROC) area under the curve
(AUC)” and Uno’s C-statistic*’. The time-dependent AUC was calculated

using the inverse probability of censoring weighting (IPCW) estimator
without competing risks to determine discrimination at specific follow-up
times. AUC confidence intervals were obtained using 1000 bootstrapped
samples. Significance in the AUC difference between predictors was cal-
culated based on the variance of the difference using the independent and
identically distributed (iid)-representation of the AUC estimator. Uno’s C-
statistic was calculated to account for significant right censoring over 15
years of follow-up for all CVD predictions (70%). Significance in con-
cordance discrimination was determined using 1000 bootstrapped samples.

Category-free (continuous) net reclassification index (NRI) was cal-
culated using the sum of the differences between the proportions of upward
reclassifications and downward reclassifications events and non-events,
respectively. P(up|event) and P(down|nonevent) form the positive com-
ponents of the NRI in expression, while events that move down and non-
events that move up are mistakes introduced by the new marker. NRI was
developed as a statistical measure to evaluate the improvement in risk
prediction models when additional variables are incorporated into a base
model®.

The AI-CAC model, as presented, is comprised of the LA volume
index, RV volume index, LV volume index, LV mass index, plaque char-
acterization, and MESA-reported phantom-adjusted Agatston CAC score.
Cardiac chamber volumetry was indexed by body surface area to standar-
dize measurements. Because MESA participants were entirely asympto-
matic without overt HF, LV volume and LV mass index demonstrated high
collinearity and were combined into a composite variable. Correlation and
variance inflation factor analysis showed low multicollinearity among the
remaining predictors. Agatston CAC score was natural logarithm-
transformed (In-transformed + 1) to improve the interpretability of
hazard ratios and avoid undue influence of large values. All predictors were
modeled continuously and exhibited a linear relationship with outcomes.

The focus of this manuscript is comparing AI-CAC over Agatston
CAC Score alone; therefore, no risk factors or other covariates were included
in either model presented in the figures of this manuscript. However,
incremental value of AI-CAC measurements over CVD risk factors have
been provided in the Supplementary Information.

Data availability

No datasets were generated or analysed during the current study.

Code availability
SAS and Python codes used for statistical analysis in this study are available
within a reasonable time from the publication date.
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