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Genomic databases of allele frequency are extremely helpful for evaluating clinical variants of unknown significance; how-

ever, until now, databases such as the Genome Aggregation Database (gnomAD) have focused on nuclear DNA and have

ignored the mitochondrial genome (mtDNA). Here, we present a pipeline to call mtDNA variants that addresses three tech-

nical challenges: (1) detecting homoplasmic and heteroplasmic variants, present, respectively, in all or a fraction of mtDNA

molecules; (2) circular mtDNA genome; and (3) misalignment of nuclear sequences of mitochondrial origin (NUMTs). We

observed that mtDNA copy number per cell varied across gnomAD cohorts and influenced the fraction of NUMT-derived

false-positive variant calls, which can account for the majority of putative heteroplasmies. To avoid false positives, we

excluded contaminated samples, cell lines, and samples prone to NUMT misalignment due to few mtDNA copies.

Furthermore, we report variants with heteroplasmy ≥10%. We applied this pipeline to 56,434 whole-genome sequences

in the gnomAD v3.1 database that includes individuals of European (58%), African (25%), Latino (10%), and Asian

(5%) ancestry. Our gnomAD v3.1 release contains population frequencies for 10,850 unique mtDNA variants at more

than half of all mtDNA bases. Importantly, we report frequencies within each nuclear ancestral population and mitochon-

drial haplogroup. Homoplasmic variants account for most variant calls (98%) and unique variants (85%). We observed that

1/250 individuals carry a pathogenic mtDNA variant with heteroplasmy above 10%. These mtDNA population allele fre-

quencies are freely accessible and will aid in diagnostic interpretation and research studies.

[Supplemental material is available for this article.]

The genetic material of human cells is contained in the nucleus
andmitochondria. Themitochondrial genome (mtDNA) is a circu-
lar molecule of 16,569 bp containing 37 genes that encode 13 pro-
teins, 22 tRNAs, and two rRNAs (Anderson et al. 1981), all essential
to mitochondrial electron transport and energy homeostasis.
Depending on the tissue, human cells contain hundreds to thou-
sands of copies of mtDNA. Because the maternally inherited
mtDNAdoes not recombine and exhibits a 10× greater rate of poly-
morphism than nuclear DNA, it has been extremely useful in
tracking human biogeography (Brown et al. 1979; Cann et al.
1987; Cavalli-Sforza 1998).

Pathogenic variants in the mtDNA account for ∼80% of
adult-onset and ∼20% of pediatric-onset mitochondrial disease
(Lott et al. 2013; Gorman et al. 2015, 2016). Pathogenic mtDNA
variants can cause disease at homoplasmy or when heteroplasmy

rises to high levels (Craven et al. 2017). These latter disorders are
particularly challenging to diagnose because pathogenic variants
can sometimes be observed at lower heteroplasmy levels and
even absent in blood versus affected tissue and can decrease over
time (Grady et al. 2018). For both homoplasmic andheteroplasmic
variants, distinguishing those that are pathogenic from those that
are benign is a challenge, especially as commercial and research en-
tities now provide routine sequencing of the entire mtDNA.

Population frequency data are extremely helpful for the clini-
cal interpretation of variants of uncertain significance (VUS) (Mc-
Cormick et al. 2020). Until now, mtDNA variants have not been
included in most large databases of genomic variation such as the
Exome Aggregation Consortium (ExAC) (Lek et al. 2016), the Ge-
nome Aggregation Database (gnomAD) (Karczewski et al. 2020),
and the BRAVO server (https://bravo.sph.umich.edu). Instead,
four specialized databases provide easily accessiblemtDNApopula-
tion frequencies across humans: (1) MITOMAP (Lott et al. 2013)
provides population frequencies from theNCBIGenBank database
(which has heterogeneous data quality and is known to include
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individuals with disease); (2) HmtDBprovides population frequen-
cies fromGenBankand frommitochondrial diseasepatients (Clima
et al. 2017); (3) MSeqDR compiles population frequency data in-
cluding MITOMAP, HmtDB, and GeneDx (Shen et al. 2018); (4)
HelixMTdb uses proprietary exome technology on saliva samples
to report homoplasmic and heteroplasmic variants for nearly
200,000 individuals (mainly of European ancestry), despite rela-
tively low (∼180×)meanmtDNAcoverage that canmake it difficult
to call heteroplasmic variants (Bolze et al. 2020). The first three
mtDNA databases report only homoplasmic variants.

The Genome Aggregation Database is a widely used resource
of human genomic variation developed by an international con-
sortium which has aggregated whole-genome sequence (WGS)
data from large-scale sequencing projects (see Methods). The
data in gnomAD are analyzed jointly using a single pipeline and
are depleted for Mendelian or severe pediatric diseases, as well as
for cryptically related individuals, allowing for the computation
of accurate and high-quality allele frequencies. Summary gene
and variantmetrics aremade public for a range of diverse ancestral
groups, including individuals of African and African-American,
Amish, Latino and admixed American, Ashkenazi Jewish, East
Asian, Finnish, non-Finnish European, Middle Eastern, and South
Asian descent. gnomAD v2 contains 125,748 exomes and 15,708
genomes aligned to the GRCh37 human reference. gnomAD v3
contains 76,156WGS samples aligned to the GRCh38 human ref-
erence and includes cohorts derived from controls and biobanks
(∼16.5 K), the Trans-Omics for Precision Medicine (TOPMed)
data set (∼35.7 K), nonpediatric neurological disease cohorts
(∼8.7 K, including individuals with schizophrenia, Alzheimer’s
disease, migraines, bipolar, and affective and psychotic disorders),
and others. Although not a random population sampling and the
enrollment percentages from common diseases do not exactly rep-
resent the general population prevalence of these disorders, the
population frequency data within gnomAD are useful for assessing
involvement in severe pediatric disease and in later onset condi-
tions when prevalence in the general population is taken into ac-
count. Unlike other large genomic databases such as UK Biobank
(Bycroft et al. 2018; Yonova-Doing et al. 2021), gnomAD is an
easily accessible public database that does not require fees, applica-
tions, or login and for which the allele frequencies are computed.
The gnomAD resource has been widely used for both basic and
clinical research, with ubiquitous adoption in clinical genetic diag-
nostic pipelines worldwide. However, analysis of the mtDNA has
not been included in gnomAD until now.

The main challenge for mtDNA variant calling from WGS
data is to distinguish low heteroplasmy variants from sample con-
tamination, sequencing errors, and misalignment. Specifically,
misalignment from nuclear sequences of mitochondrial origin
(NUMTs) is particularly problematic because the reference genome
contains several hundred ancient NUMTs (Li et al. 2012) and hun-
dreds of “polymorphic NUMTs” not present in the reference ge-
nome (Dayama et al. 2014), including rare instances of large,
tandemly repeated mega-NUMTs (Wei et al. 2020; Lutz-Bonengel
et al. 2021). In addition, the circular mtDNAmolecule can present
alignment challenges, and many alignment algorithms show a
drop of coverage at the artificial ends of the linearized mtDNA.
Because nuclear variant pipelines are not suitable for mtDNA var-
iant calling, the mtDNA has not been routinely analyzed by many
WGS projects.

Multiple tools exist to call mtDNA variants. Tools such as
mtDNA-Server (Weissensteiner et al. 2016a), MToolBox (Calabrese
et al. 2014), and mity (Puttick et al. 2019) have been designed spe-

cifically to call heteroplasmic and homoplasmic variants. mtDNA-
Server specifically identifies contamination, and MToolBox aims
to avoid misalignment of NUMTs in the reference assembly but
cannot avoid polymorphic NUMTs. Other tools not specifically
designed formtDNA can be adapted to call heteroplasmic variants,
such as GATKMutect2 (Benjamin et al. 2019), which was original-
ly designed to identify subclonal variants in cancer. Many of
these tools are easy to run; however, by themselves, they do not ad-
dress issues such as contamination and false positives from
misalignment.

Here, we describe the methods used to accurately call mito-
chondrial variants in gnomAD WGS samples and create an easily
accessible database of population frequency useful for clinicians
and researchers at gnomad.broadinstitute.org.

Results

mtDNA coverage varies across cohorts in gnomAD

WGS provides even coverage across themtDNA for all 70,375 gno-
mAD v3 samples available for analysis (Fig. 1A). However, we find
that mtDNA coverage, as well as mtDNA copy number per cell
(mtCN), vary widely across gnomAD cohorts, independent of nu-
clear coverage (Fig. 1B–E). This variation likely depends on source
material (e.g., blood, buffy coat, cell line, tissue) and DNA extrac-
tion protocol; however, such annotations are available only for a
subset of samples. A typical blood sample with 30× nuclear cover-
age shows ∼2700× mtDNA coverage. We estimate mtCN as 2 m/n
where m is mean mtDNA coverage and n is median nuclear cover-
age. As expected, mtCN varies by source material. Blood samples
show two distinct peaks (median 40 for TOPMED COPD and 207
for NHLBI cohorts) possibly associated with DNA extraction kits
or blood cell types collected (Fig. 1E). Cell lines typically have
500–1200 mtDNA copies per cell. A small number of samples
with outlier mtCN>2000 are derived from tissue samples such as
heart, adrenal, and kidney.

Pipeline for mtDNA variant calling in individual samples

Wedeveloped a high-throughputGATK pipeline to call homoplas-
mic and heteroplasmic variants inmtDNA fromwhole-genome se-
quence data (Fig. 2A). WGS was aligned to the reference genome
using BWA-MEM (Li 2013). Only mate-pairs with both reads map-
ping to Chr M were used for variant calling, after excluding dupli-
cate pairs. Variants were called using the GATK Mutect2 variant
caller (Benjamin et al. 2019), parameterized via a specific “mito-
chondriamode” designed to account for high coverage and poten-
tial low-heteroplasmy variants. To call variants in the control
region that spans the artificial break in the circular genome (coor-
dinates ChrM: 16,024–16,569 and ChrM: 1–576), we extracted all
Chr M reads and realigned them to a mtDNA reference that was
shifted by 8000 bases, called variants on this shifted alignment,
and then converted coordinates back to their original positions.
Variants showing weak evidence or strand bias were then filtered.
Variant allele fraction (VAF) was calculated as the fraction of alter-
nate reads to total reads for each variant and sample. We denote
variants with VAF 0.95–1.00 as homoplasmic or near homoplas-
mic, and variants with VAF<0.95 as heteroplasmic.

We assessed the reproducibility of our pipeline using 91 sam-
ples for which replicate WGS was available (Fig. 2B). We observed
99.3% concordance for all variants with VAF≥0.01, where concor-
dance is defined as the number of variants detected in both sam-
ples/number of variants detected in either sample. Some of the
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highly discordant calls were derived from cell lines, which may
have accumulated mutations over the times sampled.

To assess sensitivity and precision at different heteroplasmy
levels, we created in silico mixtures of samples (Fig. 2C) to model
variants at specific VAF levels (0.01, 0.05, 0.50, 0.90, 0.99). We
mixed truth data from cell line NA12878 with each of 22
African-haplogroup samples to increase the total number of vari-
ants (1200 variants at 286 positions, including eight indels). For
VAF≥0.05, we observed excellent sensitivity (99%–100%) and
precision (98.9%–99.7%), where sensitivity indicates the percent
of true variants that are detected, and precision indicates the per-
cent of detected variants that are true positives. Sensitivity
dropped to 32% for variants at 0.01 VAF. Compared to the
mtDNA-Server algorithm, GATK Mutect2 had higher precision at
all heteroplasmies, similar sensitivity for VAF 0.05–0.99, but re-
duced sensitivity for VAF 0.01 variants (Supplemental Fig. S1).

We note that this in silico approach uses cell lines and does
not account for possible NUMT-misalignment, which we show is
very problematic for samples with low mtDNA copy number.

NUMT-derived false positives anticorrelate with sample mtDNA

copy number and VAF

When we applied this variant calling pipeline to 70,375 available
whole genomes in gnomAD v3.1, we observed that the number
of candidate heteroplasmies per sample was anticorrelated
with sample mtCN (Fig. 2D). This observation was consistent

with false positives derived from
NUMT-misalignment. Theoretically, a
misaligned heterozygous NUMT will
have VAF approximately 0.5 n/(0.5 n+
m) or 1/(1 +mtCN), where n is nuclear
coverage and m is mtDNA coverage and
mtCN=2 m/n. We observed several doz-
en common variants whose VAF correlat-
ed with 1/(1 +mtCN) (e.g., m.16293A>
C) (Fig. 2E) and that were often linked
in cis to each other (Supplemental Table
S1). We hypothesized that these were de-
rived from polymorphic NUMTs, that is,
NUMTs present in some individuals but
not in the reference genome assembly.
We validated two polymorphic NUMTs
using long-read Pacific Biosciences (Pac-
Bio) data: numtA (871-bp insertion from
Chr M: 12,361–13,227 into Chr 21:
9,676,568), andnumtB (536-bp insertion
from Chr M: 16,093–Chr M: 59 into
Chr 11: 49,862,017). When misaligned
to the reference mitochondrial genome,
these two NUMTs together yielded 25
common false-positive calls that we
term NUMT-derived false positives
(NUMT-FPs) (Supplemental Fig. S2; Sup-
plemental Table S1). Some of the false
positives were properly filtered out by
strand bias, but others passed our variant
filters. Using unfiltered variant calls, we
estimate numtA and numtB are each pre-
sent in ∼40% of individuals in our data
set (Supplemental Table S1; Supplemen-
tal Fig. S2).

Next, we aimed to estimate the extent of NUMT-misalign-
ment and how it relates to sample mtCN and VAF. As a lower
bound, we can assess the percent of variants at each VAF level lo-
cated at these 25 NUMT-FP sites (requiring each NUMT to be sup-
ported by at least two NUMT-FP per sample). As expected, the 25
NUMT-FPs were more problematic for samples with low mtCN
and for variants with low VAF (Fig. 2F). Samples with extremely
low mtCN (<50) showed substantial NUMT-FP exceeding 0.15
VAF. For mtCN 50–75, there were detectable NUMT-FP variants
up to 0.10 VAF. For samples with mtCN 75–100, there were sub-
stantial NUMT-FPs up to 0.05 VAF. For samples with mtCN>
500, there were almost no NUMT-FPs with VAF≥0.01. As expect-
ed, shorter WGS insert sizes also cause greater misalignment
(Supplemental Fig. S3). The true extent of NUMT-derived false pos-
itives (NUMT-FPs) is likely to be much higher, and this analysis
considers only two common NUMTs, whereas there are hundreds
of known polymorphic NUMTs (Dayama et al. 2014) and hun-
dreds of NUMTs yet to be identified.

Given these large numbers of false positive calls for variants
with VAF<0.10, for the initial release we chose to exclude samples
withmtCN<50 and to report only variants with VAF≥0.10, as we
have greater confidence that such variants represent genuine het-
eroplasmies and not NUMT-derived false positives (Fig. 2F).

We note that misalignment due to NUMTs not only causes
false-positive calls at low VAF but also can cause truly homoplas-
mic variants to appear heteroplasmic, with the reference alleles de-
rived from the misalignment of a NUMT. Because of this, we term
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Figure 1. Coverage statistics for 70,375 gnomADWGS samples. (A) Per-base mean depth of coverage
across mtDNA, with coverage dips at positions 303–315 (Tan et al. 2016) and 3107 (Bandelt et al. 2014)
due to homopolymeric tract and Chr M reference deletion, respectively. (B) For each cohort within
gnomAD, a scatterplot shows the mean nuclear (nDNA) and mtDNA coverage ± standard deviation.
Three example cohorts are shown in color: 1000 Genomes and Human Genome Diversity Project cell
lines (1KG/HGDP), NHLBI, and TOPMed Chronic Obstructive Pulmonary Disease (TOPMED COPD).
(C) Histogram shows mean mtDNA coverage for all samples, and overlaid histograms show three select-
ed cohorts (806 outliers with coverage 15,000–97,000 excluded). We note mean and median mtDNA
coverage statistics are extremely similar (Pearson’s r = 0.99997). (D) Histogram showsmedian nDNA cov-
erage for all samples, and overlaid histograms show three selected cohorts (84 outliers with coverage 60–
94 excluded). (E) Histogram shows mtDNA copy number per cell (2 ×mean mtDNA coverage/ median
nDNA coverage) for all samples, and overlaid histograms show three selected cohorts (223 outliers with
mtCN 1250–7000 excluded). Only samples with mtCN 50–500 (dashed lines) were included in the re-
leased mtDNA call set (56,434/70,375).
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all variants with VAF 0.95–1.00 as “homoplasmic” or “near-homo-
plasmic” (Supplemental Fig. S4).

Cell lines show excess deleterious heteroplasmies

Whereas not all samples have annotations of source material, the
3436 known cell lines account for the majority of the 5633 sam-
ples with mtCN>500 (Figs. 1E, 2G). Samples annotated to be
cell lines show significantly elevated numbers of heteroplasmies
(VAF 0.10–0.95), with a particular excess of potentially deleterious

variants (loss of function,missense, tRNA, and rRNA) compared to
synonymous and noncoding variants (Fig. 2H). These data show
that cell lines accumulate mutations and suggest that deleterious
mtDNA variants may be tolerated in cell culture.

Filtering gnomAD samples and variants

We performed stringent filtering of samples to create a high-qual-
ity mtDNA variant call set (Fig. 2I). Specifically, we excluded: (1)
6505 samples with mtCN<50 to avoid excessive misalignment

E F
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Figure 2. mtDNA call set is designed to exclude NUMT-derived false positives (NUMT-FPs), cell line artifacts, and contaminants. (A) Schematic shows
GATK pipeline for calling mtDNA variants in single WGS samples. The control region spans the artificial break in Chromosome M sequence. (B)
Reproducibility of GATK pipeline on 91WGS replicate samples shows 99.3% concordance of calls (2533/2551), and density plot at top shows 87% variants
are homoplasmic. (C) Accuracy of single-sample pipeline in samples with mtCN>500 based on “in silico”mixing data. Note these are valid only for sam-
ples with highmtCN. (D) Bar chart shows that themean number of putative heteroplasmies per sample depends onmtDNA copy number (mtCN), as does
the subset occurring at 25 validated NUMT-FP sites (red). (E) Scatterplot shows the observed VAF for a single NUMT-FP (m.16293A >C) across 6844 sam-
ples versus the theoretical VAF if theNUMTswere heterozygous and all readsmisaligned to themtDNA. (F) Plot shows VAF levels for NUMT-FP sites decrease
with mtCN (colored lines). Y-axis indicates the percent of detected variants that occur at 25 NUMT-FP sites. (G) Density plot shows mtCN for known cell
lines and all other samples. (H) Bar plot shows that known cell lines have increased number of heteroplasmic variants in all categories compared to samples
with mtCN 50–500 (enrichment shown with ∗∗∗ indicates P-value < 1×10−5 based on Fisher’s exact test); pLOF indicates predicted loss-of-function. (I)
Schematic shows steps for combining and filtering single-sample variant calls into the gnomAD mtDNA call set, designed to exclude NUMT-derived false
positives, cell line artifacts, and contaminants. (J) Number of unique variants that pass filters (bold black) versus those filtered out based on VAF (black) or
not released (gray). The 19,137 variants are partitioned into mutually exclusive categories; for example, VAF 0.10–0.95 excludes variants also detected VAF
0.95–1.00. (K) For each VAF level, bar chart shows the fraction of variants at 25 NUMT-FP sites before sample filtering (red) or after filtering (orange, shown
overlaid). (L) Histogram of VAF (after sample filtering) shows that below 10% VAF, there are a large number of variants and a substantial fraction present at
25 validated NUMT-FP sites (red). X-axis label indicates upper bound of VAF bin.
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due to NUMTs; (2) 5633 samples with mtCN>500, because these
were primarily cell lines and enriched with what appear to be cell
culture-derived variants; and (3) 1803 sampleswith contamination
exceeding 2% based on estimates from the nuclear DNA or mito-
chondrial DNA, because samples with low nuclear contamination
can still have substantial mtDNA contamination. No data from
these excluded samples are provided in the release.

In the remaining 56,434 samples, we conservatively report
only mtDNA variants with VAF≥0.10 (Supplemental Table S2).
Of this number, 10,850 unique variants pass our thresholdswhere-
as the remainder (including variants VAF 0.01–0.10) (Fig. 2J) are
available as filteredvariants indownload files andon thewebportal
but are plaguedwith false positives (Fig. 2K). Using just twovalidat-
ed NUMTs, we calculate a lower bound for NUMT-misalignment,
which accounts for 43% of all variant calls VAF 0.01–0.05, 1% of
all variants VAF 0.05–0.10, and virtually 0% of variants in other
heteroplasmy bins (Fig. 2L). Variants enriched for false positives
are annotated andhighlighted in thewebbrowser, for example, us-
ing the “common_low_heteroplasmy” flag (variants detected at
VAF 0.001–0.50 in >56 individuals), “artifact_prone_site” filter,
“indel_stack” filter, or “no pass genotype” filter (see Methods;
Supplemental Table S2). Because variants with VAF 0.10–0.95
have few false positives, we refer to these as heteroplasmies.

mtDNA variants across 56,434 gnomAD samples

We release high-confidence mtDNA variants for 56,434 samples
that pass our quality control filters. These samples exhibitedmedi-
an 2700× mtDNA coverage and 184mtCN (Supplemental Fig. S5).
Overall, 8793 of the 16,569 mtDNA nucleotides had a variant
(53%) (Fig. 3A). We observed 10,850 unique variants, including

10,434 SNVs (96%) and 416 indels (4%), with SNVs being predom-
inantly transitions rather than transversions (Fig. 3A). Of the 1.9M
total variant calls, 98% were homoplasmic or near-homoplasmic
and 2% were heteroplasmic (40,706 variant calls 10%–95% heter-
oplasmy) (Fig. 3A; Supplemental Fig. S5D). The 9209 unique
homoplasmic variants include known haplogroup markers (46%)
as well as a large number of rare variants. Homoplasmic variants
showed a range of population frequencies (Fig. 3B,C).

The majority of samples had no heteroplasmies with VAF
0.10–0.95 (Fig. 3D). We note that 5205 (48%) unique variants
were observed only at homoplasmy, 4004 (37%) were observed
both as homoplasmic andheteroplasmic, and 1641 (15%)were ob-
served only at heteroplasmy (Fig. 3A). Most unique variants ob-
served only at heteroplasmy were found in only one or two
samples (Fig. 3B,C). Heteroplasmic variants detected in at least
two individuals were rarely from the same haplogroup (Supple-
mental Fig. S4G), consistentwith recurrentmutations.Variants ob-
served only at heteroplasmy showed increased nonsynonymous
and RNA gene changes, whereas variants observed at homoplasmy
showedhigher prevalence of synonymous andnoncoding variants
(Fig. 3E).

This gnomAD release contains 997 variants not previously
observed in MITOMAP or HelixMTdb databases. Compared to
MITOMAP (51,836 samples, 11,903 unique variants), gnomAD
contains 1222 additional homoplasmic SNVs (10% increase), and
the 7682 homoplasmic SNVs detected in both databases show
highly similar allele frequencies (Pearson’s correlation 0.98) (Sup-
plemental Fig. S5E). Similarly, compared to HelixMTdb (195,983
samples, 14,324 unique variants), gnomADcontains 712 addition-
alhomoplasmicvariants (6%increase), and the8497homoplasmic
variants detected in both databases show highly similar allele fre-

quencies (Pearson’s correlation 0.97)
(Supplemental Fig. S5F,G).

Haplogroups versus nuclear ancestry

BecausemtDNA does not recombine and
is inherited maternally, closely related
mtDNA sequences have historically
been grouped together in “haplogroups.”
There are 5184 haplogroups from diverse
populations available in thePhylotreeda-
tabase (van Oven and Kayser 2009) and
broadly associated with African, Asian,
and European ancestry (Lott et al. 2013).
Samples in gnomAD v3.1 spanned 61%
of the haplogroups defined by Phylotree
and provide representation from 29/33
of the top-level haplogroups (missing
L6, Q, O, S) (Fig. 4A). Forty-six percent
of gnomAD v3.1 homoplasmic unique
variants were known haplogroup mark-
ers, and 4250/4571 (93%) of all hap-
logroup markers were observed in the
data set, emphasizing the haplogroup
and population diversity of the samples
included in the current release. The
mtDNA reference sequence in hg38, also
known as the revised Cambridge Refer-
ence Sequence (rCRS), belongs to the Eu-
ropean top-level haplogroup H (Andrews
et al. 1999). Accordingly, the number of
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Figure 3. gnomAD mtDNA variant statistics. (A) Pie charts summarize statistics on mtDNA bases with
variants, unique variants, and total variant calls. (B) Bar plot shows the proportion of unique mtDNA var-
iants detected at different population allele frequencies in gnomAD v3.1. (C) Bar chart shows the propor-
tion of variants that are observed only at 10%–95% heteroplasmy (gray) or observed at homoplasmy
(blue) including those that are known haplogroupmarkers in Phylotree (dark blue). (D) Histogram shows
number of heteroplasmies per sample (VAF 0.10–0.95). (E) Stacked bar charts show the distribution of
variant annotations in the entire mtDNA and for unique variants that are homoplasmic or only observed
at heteroplasmy.
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homoplasmicmtDNAvariants per person in gnomAD increased as
distance from the reference haplogroup in the phylogenetic tree
increased, where individuals of European haplogroups typically
had0–50variants,Asianhaplogroups typicallyhad25–50variants,
and African haplogroups typically had 50–100 variants (Fig. 4B).
In contrast, the number of heteroplasmic variants was similar
across haplogroups (Supplemental Fig. S6).

gnomAD annotates sample ancestry based on principal com-
ponents analysis of the nuclear genome (Fig. 4C–E; Karczewski
et al. 2020). The 56,434 samples were predominantly of European
(58%) and African (25%) ancestry with lower representation from
Latino and admixed American (10%), East Asian (3%), and South
Asian (3%) ancestral populations (Fig. 4E). The mtDNA hap-
logroups were largely concordant with nuclear ancestry (Fig. 4C,
F), consistent with previous studies (Wei et al. 2019).

Patterns of variation in mtDNA genes

Unlike thenuclear genome,∼90%of themtDNAencodes proteinor
RNA genes, and only 10% is intergenic. The proportion of possible
SNVs observed was consistent with selection against nonsynony-
mous and RNA variation. Specifically, 55% of all possible synony-
mous variants were observed, but only 10% of possible missense
and RNA variants, and 1% of possible stop gain variants were ob-

served (Fig. 5A). We also observed fewer possible SNVs in the non-
coding control region compared to synonymous variants (Fig. 5A),
and this held true within the hypervariable region and when limit-
ing to transitions (Supplemental Fig. S7A). The proportion of vari-
ants observed at homoplasmy and the median maximum
heteroplasmy of heteroplasmic variants decreased as the predicted
severity of the variant type increased (Fig. 5B; Supplemental Fig.
S7B–D). SNV and indel variants in the RNA genes showed a similar
pattern of heteroplasmy to each other. Only two predicted loss-of-
function variants were homoplasmic in gnomAD (one stop gain
and one frameshift). However, manual inspection revealed neither
is likely a true loss-of-function, as the frameshift can result in a pro-
tein of the same length, and the stop gain is rescued by a multinu-
cleotide variant in the same codon (Supplemental Table S3).

Transitions predominate over transversions across themtDNA,
where T>CandG>Amutations are associatedwith thehighestmu-
tability (Ju et al. 2014). Approximately 95%ofpossible synonymous
T>C and G>A variants were observed at homoplasmy (Fig. 5C),
suggestingthat the sizeof thisdata set isnear saturationfor thishigh-
ly mutable, weakly negatively selected variant type. We note that
nearly all of the possible G>A synonymous variants not seen at
homoplasmywerewithinAUGcodonsthatwere either a start codon
(c.3G>A) or the third codon of a gene with an AUA start codon
(Supplemental Table S4). In the mitochondria, AUG and AUA

E F
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Figure 4. gnomAD v3.1 samples by mtDNA haplogroup and nuclear ancestry. (A) The number of samples is shown by mtDNA top-level haplogroup.
Color indicates mtDNA haplogroups phylogenetically associated with African (purple), Asian (green), or European (blue) origin (Lott et al. 2013). (B) For
each haplogroup, box plots show the number of homoplasmic SNVs per sample compared to the GRCh38 reference genome (haplogroup H) with the
median shown in color. (C) For each haplogroup, stacked bar charts show nuclear ancestry from nuclear genome analysis, with colors as in panel E. (D)
For each haplogroup, the percentage of samples from each inferred nuclear ancestry is shown in a heat map. Dash indicates 0 samples, and 0 indicates
a percentage between 0–1. (E) The number of samples is shown by inferred nuclear ancestry. (F ) For each inferred nuclear ancestry shown in panel D,
stacked bar chart showsmtDNA haplogroups phylogenetically associated with African (purple), Asian (green), or European (blue) origin (Lott et al. 2013).
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both code formethionine, althoughmodification of themitochon-
drial tRNAMet is required topairwithAUA (VanHaute et al. 2017). In
the nine genes with AUG start codons, a c.3G>A variant was never
observed at homoplasmy in gnomAD, nor in HelixMTdb, and was
absent or seen once in MITOMAP (Supplemental Table S4; Lott
etal. 2013;Bolzeetal. 2020).Collectively, theseobservations suggest
selection against AUA at AUG start codons.

To provide insight into gene-level tolerance of variation, we as-
sessed the proportion of nonsynonymous codon changes in pro-
tein-coding genes and base changes in RNA genes. Among
protein-coding genes, the proportion of codons with a nonsynony-
mous variant ranged from30%–90%, suggesting that someproteins
are more tolerant of variation (Fig. 5D). For example, complex V
genesMT-ATP8 andMT-ATP6 showed the highest proportion of co-
donswithnonsynonymous variation,whereas complex I genes had
the lowestproportion.Among theRNAgenes, theproportionofbas-
es with a variant ranged from 20%–85%, indicating that specific
RNAsmaybemore tolerantofvariation, especiallyMT-TT (Fig. 5E,F).

Prevalence of known pathogenic mtDNA variants in gnomAD

We calculated the carrier frequency of the 94 variants listed as
“confirmed” pathogenic in MITOMAP, including 56 reported to

cause disease at heteroplasmy (typically > 60% heteroplasmy)
and 38 reported to cause disease at homoplasmy or both at homo-
plasmy and heteroplasmy (Lott et al. 2013; Craven et al. 2017). In
gnomAD, we observe 26 pathogenic variants in 231/56,434 indi-
viduals, equating to a total carrier frequency of ∼1 in 250 individ-
uals (Fig. 6). Fewer variants associated with disease only at
heteroplasmy were observed in gnomAD relative to those associat-
ed with disease at homoplasmy (16% vs. 45%), consistent with the
expectation that the latter group includes milder mutations
(Supplemental Fig. S8A; Craven et al. 2017). Eleven pathogenic
variantswere observed at homoplasmy,most ofwhich are reported
to be incompletely penetrant and/or associated with adult-onset
disease when homoplasmic (including nonsyndromic hearing
loss, aminoglycoside-induced hearing loss, Leber Hereditary
Optic Neuropathy (LHON), or reversible myopathy). One of these
variants seen at homoplasmy in gnomAD was not associated with
disease at homoplasmy in MITOMAP (m.8993T>C); however, it
has recently been described in adult-onset cases at homoplasmy
(Stendel et al. 2020). Across all pathogenic variants, m.1555A>G
had the highest carrier frequency (1 in ∼750) (Fig. 6), and
m.3243A>G andm.8344A>G variants had the highest carrier fre-
quency among those only observed at heteroplasmy (∼1 in
10,000) (Fig. 6).
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Figure 5. Patterns of variation in the mtDNA in gnomAD. (A) The bar chart shows the proportion of possible SNVs observed, partitioned into those ob-
served at homoplasmy (black), only at 10%–95% heteroplasmy (gray), or not observed (white). (B) The box plot shows the maximum heteroplasmy of
variants observed only at heteroplasmy. Protein indels include frameshift and in-frame variants. “Control reg.” represents the noncoding control region
m.16024-576 in A and B. (C ) The bar chart shows the proportion of possible synonymous variants observed in gnomAD for transversions (Tv) and all pos-
sible transitions (A >G, C> T, G>A, T >C) on the reference strand. (D) The bar chart shows the proportion of codons in protein-coding genes with non-
synonymous SNVs observed. (E,F) The proportion of bases in tRNA and rRNA genes with SNVs. Panels C–F follow the color legend in A.
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Mitochondrial DNA specifications of the AmericanCollege of
Medical Genetics and Association ofMolecular Pathology (ACMG/
AMP) guidelines for sequence variant interpretation state that al-
lele frequency in population databases <0.00002 or >0.005 can
provide evidence of pathogenicity or benign impact, respectively,
where analysis of homoplasmic databases was used to determine
these thresholds (McCormick et al. 2020). Consistent with this
guideline, none of the pathogenic mtDNA variants in gnomAD
had a homoplasmic allele frequency (AF_hom) that satisfied
benign variant frequency criteria (AF_hom>0.005 for benign
strong BS1, or AF_hom>0.01 for benign stand-alone BA1).
Approximately 90% of the 94 known pathogenic variants had
AF_hom<0.00002, satisfying the pathogenic supporting criteria
PM2_supporting for variant frequency; this included all of the var-
iants only associated with disease at heteroplasmy (Supplemental
Fig. S8B). All pathogenic variants also had AF_hom<0.005 within
haplogroups and populations (Supplemental Fig. S8B). Analysis of
the heteroplasmic allele frequency (AF_het) of pathogenic variants
showed that all were <0.005 and that ∼85% were <0.00002
(Supplemental Fig. S8B). Consistent with recent observations in
the UK Biobank and HelixMTdb, the AF_hom of m.14484T>C
was greater than the maximum credible population AF reported
by Bolze et al. (0.00053 vs. 0.00023), lending support to the sug-
gestion that this variant alone may not cause LHON (Bolze et al.
2020).

Discussion

Here, we present a pipeline for calling homoplasmic and hetero-
plasmic mtDNA variants and its application to gnomAD v3.1.

To our knowledge, this represents the first easily accessible data-
base of both nuclear and mtDNA variants from WGS data and
the only database with heteroplasmic variants aside from
HelixMTdb. We present a conservative set of variants based on
WGS from 56,434 individuals, after stringent filtering of samples
with low mtDNA copy number, samples derived from cell lines,
and samples with high contamination. Moreover, we have chosen
to report heteroplasmic variants that are occurring at a level of 10%
or greater. As expected, the vast majority of variant calls were
homoplasmic, including nearly all known haplogroup markers
and thousands of additional rare homoplasmic variants. Most het-
eroplasmies occurred at variants that were observed at homo-
plasmy in at least one individual. The gnomAD data set and web
browser provide detailed information for each variant, including
predicted functional consequence, distribution of heteroplasmy
levels, maximum observed heteroplasmy, and population allele
frequencies (both aggregated per haplogroup and per nuclear an-
cestry population).

Our analyses show that misalignment of polymorphic
NUMTs contributes to high false-positive mtDNA variant calls in
WGS, particularly for variants with low putative heteroplasmy
and for samples with low mtDNA copy number (Fig. 2D,K).
Using two polymorphic NUMTs not in the reference human ge-
nome assembly that we validated using PacBio sequencing, we es-
timate a lower bound for NUMT-derived false positives. In samples
with mtCN<50, NUMT-FPs account for the majority of putative
heteroplasmies VAF 0.01–0.10 (Fig. 2F). Conversely, in samples
with mtCN>500 (e.g., tissues and cell lines), NUMT-FPs show pu-
tative heteroplasmy substantially less than 0.01 and thus are typi-
cally not a problem. Even after excluding samples with mtCN<50

Figure 6. Known pathogenic variants in gnomAD. Shown are the 26 pathogenic variants observed in gnomAD along with their heteroplasmy levels,
haplogroup distribution, carrier frequency, MITOMAP-curated disease phenotypes, and indicator showing whether disease occurs at homoplasmy
(Hom. reported; note this includes variants only associated with disease at homoplasmy, or at both homoplasmy and heteroplasmy). The carrier frequency
is calculated as the high-quality allele count divided by the number of individuals with high-quality sequence at the position. The dark gray line at the 95%
heteroplasmy level represents the threshold used to define homoplasmic variant calls. Haplogroups are ordered by their position in the phylogenetic tree
and colored by their association with African (purple), Asian (green), or European (blue) ancestry. (AMDF) Ataxia, myoclonus, and deafness, (COX) cyto-
chrome c oxidase, (DEAF) maternally inherited deafness or aminoglycoside-induced deafness, (EXIT) exercise intolerance, (LHON) Leber Hereditary Optic
Neuropathy, (LS) Leigh syndrome, (MELAS) mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes, (MERRF) myoclonic epilepsy and
ragged redmuscle fibers, (MLASA) mitochondrial myopathy, lactic acidosis, and sideroblastic anemia, (MM)mitochondrial myopathy, (NARP) neurogenic
muscle weakness, ataxia, and retinitis pigmentosa, (SNHL) sensorineural hearing loss, (other) other phenotypes listed for this variant in MITOMAP.
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and mtCN>500, we observe that 50% of variants with VAF 0.01
are NUMT-FPs (Fig. 2K). These NUMT-FPs are also called by tools
such as mToolBox that exclude reads mapping to both mitochon-
drial and nuclear genomes, because such approaches cannot ac-
count for polymorphic NUMTs. Our data suggest that, for
Illumina WGS data, with insert sizes ∼375 bp, the NUMTs in the
reference genome do not cause substantial false positives, whereas
reads fromNUMTs that are not found in the reference genomewill
misalign to the mtDNA genome. To our knowledge, there are no
estimates of NUMT-FPs from HelixMTdb or WGS studies focusing
on heteroplasmies (Wei et al. 2019).

Given these findings, and to avoid NUMT-FPs, we employ
stringent sample filtering and release only variants with hetero-
plasmy≥10%. Future releases may develop more sophisticated
approaches to define a sample-specific heteroplasmy threshold
to exclude NUMT-derived artifacts or may reduce the threshold
to 5%. Ultimately, long-read sequencing technologies will be re-
quired to fully address the NUMT misalignment problem.

Our data show that known cell lines harbor excess hetero-
plasmies, including excess deleterious variants (Fig. 2H). These
findings likely result from relaxed selection pressures in high-glu-
cose cell culture conditions that may be permissive for accumula-
tion of mtDNA variants that are deleterious in vivo. We note
that this finding is of particular importance, given emerging
technologies that culture patient-derived cells ex vivo before
transplantation into the individuals (e.g., CAR-T and stem cell
therapies), and may warrant further study (Perales-Clemente
et al. 2016).

Our pipeline has several limitations. The pipeline is available
and easy to run within a scalable cloud-based framework but may
need modifications to deploy on local compute resources.
However, the Mutect2 “mitochondria-mode” variant caller is
easy to run and provides comparable results to other stand-alone
tools such as mtDNA-Server and mToolBox. These tools show dif-
ferent trade-offs; for example, mtDNA-Server shows higher sensi-
tivity for variants with 1% heteroplasmy at the cost of reduced
precision. For analysis of other cohorts, less stringent sample and
heteroplasmy filtering may be more appropriate depending on
mtCN observed in the cohorts. This reported pipeline only calls
SNVs and indels but does not report larger structural variation
such as duplications, deletions, and inversions.

Analyses of variants in gnomAD are broadly consistent with
previous studies of human mtDNA variation. We observed a car-
rier frequency of ∼1 in 250 individuals (VAF 0.10–1.00), consis-
tent with estimates from other studies (Elliott et al. 2008; Wei
et al. 2019). Our observed patterns of variation suggest negative
selection against variants that impair gene function, as reported
by others (Stewart et al. 2008; Wei et al. 2019; Bolze et al.
2020). Missense, tRNA, and rRNA variants showed similar occur-
rence and heteroplasmy distributions, suggesting that they may
be removed from the population at a similar rate by negative se-
lection. We observed less variation within the noncoding control
region compared to synonymous variants at transition variants
(but not at transversion variants) (Supplemental Fig. S7A); how-
ever, this may be explained by the higher prevalence of the
most mutable trinucleotides at synonymous sites (Zhou et al.
2014). To our knowledge, our analyses are the first to reveal a
lack of putative synonymous variants at start codons, changing
AUG>AUA, implying such mutations may impair mitochondrial
function and fitness. Studies in bacteria and yeast mitochondria
have shown that AUG is a more efficient initiation codon than
AUA (Romero and García 1991; Mulero and Fox 1994). The iden-

tification of a c.3G>A variant in an individual with mitochondri-
al disease may thus warrant further investigation.

We anticipate that gnomADmtDNA variants will be of broad
use in the clinical interpretation of variants; however, we want to
emphasize key limitations for interpretation of heteroplasmic var-
iants detected in patients. The mitochondrial specifications of the
ACMG/AMP guidelines provide clearmethods for variant interpre-
tation based on homoplasmic allele frequency (AF_hom): specifi-
cally, AF_hom>0.005 provides evidence for benign classification
whereas AF_hom<0.00002 is supporting evidence for pathogenic-
ity (McCormick et al. 2020). However, for variants never detected
at homoplasmy, no such guidelines for heteroplasmic allele fre-
quency (AF_het) have yet been developed. In the default browser
setting, we have chosen to only include variants that we observe
at heteroplasmy≥10% because, below this threshold, we observed
thousands of variants that are enriched for NUMT-derived false
positives and sequencing errors. It is important to note that if clin-
ical sequencing of a patient detects a low heteroplasmy variant
(e.g., heteroplasmy <10%–15%) that is apparently absent from
gnomAD based on the browser view, we caution against using
the absence to support pathogenicity and urge gnomAD users to
select the “Include unfiltered variants” option to view these arti-
fact-prone sites and other excluded variants. These filtered variants
are also included in downloadable gnomAD data files with the rel-
evant flags. This scenario applies specifically to low heteroplasmy
variants, which are prone to sequencing errors and NUMT-mis-
alignments that are not typically problematic for high hetero-
plasmy mtDNA variants or nuclear variants. Another limitation
of the gnomAD data set is that nearly all samples are derived
from blood and do not include tissue-specific data—which are of
particular importance for diagnosis of mitochondrial diseases, giv-
en that tissue differences in heteroplasmy influence variant
interpretation.

Given the challenge and extent of NUMT-derived false posi-
tives, we urge confirmatory studies of putative low level hetero-
plasmy variants detected by clinical diagnostics. We note that
many clinical sequencing methods (appropriately) aim to avoid
NUMT-derived artifacts, using specialized methods to enrich for
circular DNA or long-range PCR that selectively amplifies intact
mtDNA. However, even such specialized methods may inadver-
tently report NUMT-derived false positives, as may be the case in
the controversial report of paternally inherited mtDNA (Luo
et al. 2018; Lutz-Bonengel and Parson 2019; Lutz-Bonengel et al.
2021).

The gnomAD database is not a random sampling of popula-
tions. As described in Methods, in addition to controls and bio-
banks samples, gnomAD v3 also includes samples from studies
of diseases known to be common in the population (e.g., cardio-
vascular disease, cancer, and neurological diseases), although co-
horts of rare pediatric diseases are excluded. It is possible that if
certain mtDNA variants causally contribute to the diseases
enriched in these common disease cohorts, the population fre-
quencies reported in gnomADmay be different from random pop-
ulation sampling.

gnomAD’s diverse population representation, exclusion of
individuals known to have severe pediatric disease, and capture
of homoplasmic and heteroplasmic variation offer value for
mtDNAvariant interpretation. As the first large-scalemtDNAdata-
base built from WGS data via a publicly available pipeline, this
study has provided both open-source tools and data that will sup-
portmtDNA analysis in addition to nuclear variants as part of clin-
ical WGS testing.
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Methods

gnomAD database composition

The gnomADv3 database aggregates data from largeWGSprojects.
gnomAD includes WGS samples from the National Heart, Lung,
and Blood Institute (NHLBI, 17 K samples), TOPMed projects (36
K samples), the Centers for Common Disease Genomics (CCDG,
7 K samples), The Cancer Genome Atlas (TCGA, 2 K samples),
the Genotype-Tissue Expression project (GTEx, 1 K samples),
and many others. All individuals known to be affected by severe
pediatric disease, as well as their first-degree relatives, have been re-
moved. gnomAD v3 contains samples enrolled as controls or
through general population biobanks (24% of samples) as well as
cases from a wide spectrum of diseases that are known to be com-
mon in the population, including 11% neurological disease (e.g.,
Alzheimer’s, schizophrenia, bipolar, and other neuropsychiatric
disorders, though autism and other pediatric neurological disease
are excluded), 3% cardiac disease (e.g., coronary artery disease, atri-
al fibrillation), 3% inflammatory bowel disease, and 3% cancer.
The remaining 56% of samples are not annotated with case/con-
trol status, including some disease studies and population-based
observational cohort studies, with the following breakdown by
study disease domain: 38% cardiac; 16%pulmonary; 2%neurolog-
ical; and <1% other/unknown.

Mitochondrial variant calling pipeline in single samples

WGS data were aligned to reference genome GRCh38, which in-
cludes Chr M (identical to the revised Cambridge Reference
Sequence, GenBank NC_012920.1) using BWA-MEM version
0.7.15-r1140 (parameters -K 100000000 -p -v 3 -t 2 -Y). For each sam-
ple CRAM, Terra MitochondrialPipeline version 25 was run (https://
portal.firecloud.org/?return=terra#methods/mitochondria/Mitocho
ndriaPipeline/25). Briefly, GATK version 4.1.2.0 (McKenna et al.
2010) tools were used to estimate the median nuclear genome
coverage (Picard CollectWgsMetrics), to exclude duplicates
(PicardMarkDuplicates), to pull reads fromChrM (GATK PrintReads
‐‐read-filterMateOnSameContigOrNoMappedMateReadFilter ‐‐read-
filterMateUnmappedAndUnmappedReadFilter), and to call variants
(GATK Mutect2 ‐‐mitochondria-mode ‐‐annotation StrandBiasBy-
Sample ‐‐max-reads-per-alignment-start 75 ‐‐max-mnp-distance 0).
For calling variants in the control region (coordinates Chr M:
16,024–16,569 and Chr M: 1–576), reads originally aligning to Chr
M were realigned to a Chr M reference genome shifted by 8000 nu-
cleotides, and then variants called on the shifted reference were
mapped back to standard coordinates (Picard liftOver) and com-
bined with variants from the noncontrol region. Mutect2 variants
were then filtered (GATK FilterMutectCalls ‐‐stats raw_vcf_stats
‐‐max-alt-allele-count 4 ‐‐mitochondria-mode ‐‐autosomal_coverage
nDNA_MEDIAN_COV ‐‐min_allele_fraction 0.01); multi-allelic sites
were split into different variants (LeftAlignAndTrimVariants ‐‐split-
multi-allelics ‐‐dont-trim-alleles ‐‐keep-original-ac); and Haplo-
Grep/HaploCheck (v1.0.5) was run to assign haplogroup (Weissen-
steiner et al. 2016b) and estimate mtDNA contamination
(Weissensteiner et al. 2021). The min_vaf_threshold was set to
0.01 and calls below 0.01 VAF were later set to homoplasmic refer-
ence. For each input sample, a VCF with mtDNA variants was pro-
duced. We note that GATK left-aligns all indel calls, unlike calls
from mtDNA-Server and variants in the Phylotree database.

WedevelopedMutect2 “mitochondriamode,”which, in con-
trast to its original use in calling somatic mutations in cancer, sets
parameters and filters specialized for calling low VAF variants in
high-coverage mtDNA. Mutect2 performs local read realignment
(using the same realignment algorithm as GATK’s HaplotypeCal-
ler), performs a local assembly of haplotypes, prunes these haplo-

types, and then calls SNVs and short insertions/deletions via a
Bayesian somatic genotyping model. To increase sensitivity,
Mutect2 “mitochondria mode” lowers the threshold for ActiveRe-
gions (regions to be considered by the variant caller) and the
threshold for omitting variants based on quality. Additionally,
“mitochondria mode” implements a specialized adaptive ap-
proach to prune paths from the assembly graph, which is neces-
sary due to extremely high mtDNA coverage. Adaptive pruning
uses both the local coverage and observed sequencing error rate
to determine appropriate paths to prune from the graph to reduce
false-positive calls. Finally, “mitochondria mode” removes several
standardMutect2 filters (including clustered events, filtered haplo-
types, and multiallelic) that operate with the assumption that var-
iants do not typically occur near each other, which does not apply
to mtDNA.

A predefined list of artifact-prone sites (positions 301, 302,
310, 316, 3107, 16182) was provided as input into this pipeline,
and any variant overlapping these sites was filtered (“artifact_
prone_site”), similar to other tools (Weissensteiner et al. 2016a;
Wei et al. 2019). Sequence context at these specific artifact-prone
sites makes it difficult to distinguish true variants from technical
artifacts. The homopolymer tracts at location Chr M: 300–317
(AAACCCCCCCTCCCCCGC) cause Illumina sequencing errors
in all samples and cause (1) a large coverage dip in this region,
(2) reads with many apparent indels near position Chr M: 310T,
and (3) apparent substitutions of Chr M: 301A>C, Chr M: 302A>
C, Chr M: 310T>C, and Chr M: 316G>C. Similarly, homopolymer
tracts at locationChrM:16,180–16,193 (AAAACCCCCTCCCC) cause
errors and apparent indels at position ChrM: 16,182–16,183. The ref-
erence genome contains “N” at position Chr M: 3107 (Bandelt et al.
2014), which causes misalignment of many reads. We note that this
artifact-prone site filter was re-implemented at the cohort level after
variants were combined across samples (see below).

Reproducibility

Duplicate samples were determined as described in Karczewski
et al. (2020). For Mutect2, we ran version 25 of the Terra
MitochondrialPipeline, filtered artifact-prone sites, and set any fil-
tered genotypes to homoplasmic reference. To measure how simi-
lar variant calls were between duplicate samples for each tool, we
calculated the Jaccard index for all variants as well as only variants
with VAF>0.10, 0.50, and 0.90.We output the results of this com-
parison for both SNVs and indels, but we note that mtDNA-Server
is focused on calling SNVs and that their method for calling indels
is in beta testing.

Assessing accuracy on truth data sets

Sample NA12878 and 22 samples from diverse L haplogroups were
selected for in silicomixing experiments to create a large truth data
set compared to the reference ChrM (totaling 1200 variants at 286
positions, including eight indels). For each L haplogroup sample,
the number of mtDNA reads per sample was counted (SAMtools
v1.8 idxstats [Li et al. 2009]), and then downsampling was per-
formed (SAMtools v1.8) to create five BAM files containing a pre-
defined ratio of reads from the L haplogroup sample and
NA12878 (1%, 5%, 50%, 90%, 99%). For eachmixture, total cover-
agewas set to the L haplogroup sample’s original coverage. GATK’s
HaplotypeCaller version 4.0.3.0 was used to call homoplasmic var-
iants on the original BAMs before downsampling, with the ploidy
argument set to 100. For each L haplogroup sample, a truth set was
defined as variants present in the L haplogroup sample (allele
count >94/100) but absent in NA12878 (based on manual review
using overlapping read pair data, with padding of 1 bp around
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each NA12878 variant). For each L haplogroup sample mixture,
true- and false-positive calls were calculated against the sample-
specific truth set and then summed across all 22 Lhaplogroup sam-
ples to create sensitivity and precision metrics.

mtDNA-Server comparison

We used Hail’s Batch service (Hail 0.2, Hail Team, https://github
.com/hail-is/hail) to run mtDNA-Server on sample mixtures and
sample duplicates. We ran mutserve v1.3.4 using “analyse-local”
with the heteroplasmy level threshold set to 0.01 and parameters
outputting deletions and insertions. Consecutive deletion calls
were merged (if VAF differed <0.10) and summarized with mean
depth and heteroplasmy. Output was reformatted to match
Mutect2 calls. BCFtools (v1.10.2) (Li 2011) was used to left-align
and normalize the variants.

NUMT-derived false positives

We identified candidate NUMT-FPs (Supplemental Table S1) as fol-
lows: we identified 122 common heteroplasmic mtDNA variants
(unfiltered variants with VAF 0–0.50 in ≥1000 samples), of which
67 had heteroplasmy levels that correlated with 1/(1 +mtCN)
(Spearman’s correlation> 0.45), of which over half co-occurred
with another common heteroplasmy in the same samples (Pear-
son’s correlation>0.45). For each candidateNUMT-FP, we generat-
ed a 20-mer sequence centered on the variant, then searched the
derived 20-mer (and its reverse complement) against PacBio SAM
files corresponding to three cell lines (NA12891, NA19239,
NA19238), with read lengths ∼10 kb. PacBio reads that contained
the 20-mers were aligned to GRCh38 via BLAT (Kent 2002). For
two NUMTs, exact NUMT sequence and break points were identi-
fied that give rise to 25 validated NUMT-FPs (Supplemental Table
S1). We defined “linked NUMT-FPs” as those where at least two
of the 25 NUMT-FPs derived from the same NUMT were present
in the same sample with heteroplasmy levels within 0.05 (unfil-
tered variants, VAF 0–0.50). For Figure 2F, all PASS variants were
binned byVAF (e.g., 0.01–0.02); all sampleswere binnedby sample
mtCN (e.g., 25–50); and then the fraction of all variants in those
bins that were “linked NUMT-FPs” was calculated and plotted.

PacBio sequencing and data processing

We performed long-read sequencing using the Pacific Biosciences
(PacBio) circular consensus sequencing (CCS) protocol. Briefly, for
library preparation, we obtained 5 μg of highmolecular weight ge-
nomic DNA (>50% of fragments≥40 kb) and sheared fragments to
∼10 kb using the Megaruptor 3 (Diagenode B06010003), followed
by DNA repair and ligation of PacBio adapters using the SMRTbell
Template Prep kit v1.0 (PacBio 100-991-900). Each library was sub-
sequently size selected for 10 kb±20% using the SageELF with
0.75% agarose cassettes (Sage Science). Libraries were quantified
with the Qubit dsDNA High Sensitivity Assay kit (Thermo Fisher
Scientific Q32854), subsequently diluted to 50 pM per single mol-
ecule, real-time (SMRT) cell, hybridized with PacBio v2 sequencing
primer, and bound with SMRT sequencing polymerase using a
Sequel II Binding kit 1.0 (PacBio 101-731-100). Sequencing was
performed in CCS mode on the Sequel II instrument using 8 M
SMRT Cells (PacBio 101-389-001) and Sequel II Sequencing 1.0
kit (PacBio 101-717-200), with a 2-h pre-extension time and 30-
h movie time per SMRT cell. Initial quality filtering, base calling,
and adapter marking were performed automatically on-board
the Sequel II to generate an initial raw “subreads.bam” file.
CCS reads were generated using CCS software v.3.4.1 from
PacBio (https://github.com/PacificBiosciences/ccs) with parame-
ters “‐‐minPasses 3 ‐‐minPredictedAccuracy 0.99 ‐‐maxLength

21000.”CCS reads weremapped to the “GRCh38_noalt” reference
sequence (GRCh38 without decoy sequences, HLA sequences, and
alternative loci representations) using minimap2 (Li 2018) (ver-
sion 2.17-r941 with parameters “-ayYL ‐‐MD ‐‐eqx -x map-pb”).

Cell line analyses

Selected gnomAD cohorts were annotated as cell lines including
samples from the 1000 Genomes Project and the Human
Genome Diversity Project (n= 3277), and Osaka University
(n = 246). Variant subtypes for known cell lines and samples
with mtCN 50–500 were annotated via the Variant Effect
Predictor (VEP) and categorized as pLOF (if VEP consequence=
stop_gained|frameshift_variant), missense (VEP consequence =
missense_variant), synonymous (VEP impact = LOW), or rRNA/
tRNA (VEP biotype=Mt_tRNA|Mt_rRNA); otherwise, they were
categorized as noncoding.

gnomAD sample and variant filtering

gnomAD v3.1 contains 76,156 samples passing filters, of which
70,375 had read data available for analysis. For mtDNA analysis,
we analyzed 56,434 samples after excluding 6505 samples with
mtCN<50, 5633 samples with mtCN>500, and 1803 samples
with contamination>2% based on nuclear contamination (Veri-
fyBamID v1, v2) (Jun et al. 2012; Zhang et al. 2020), mtDNA con-
tamination (Haplocheck v1.0.5) (Weissensteiner et al. 2021), or an
internal algorithm (mt-high-hets). Mt-high-hets utilizes the PASS
haplogroup-defining variants which should be homoplasmic
(VAF=1.00) but in contaminated samples show multiple alleles
with VAF 0.85–0.998. Mt-high-hets calculates contamination= 1
−mean(VAF 0.85–0.998) if three such variants are present; other-
wise, contamination=1−mean(VAF 0.85–1.00).

To distinguish betweenmissing calls and homoplasmic refer-
ence sites after combining the samples, we set the genotype of a
sample that lacked a call at a site to homoplasmic reference if the
depth of coverage at the respective site was greater than 100×.
The genotype was otherwise set to missing.

Problematic variants were filtered or flagged as follows. Flag
“common_low_heteroplasmy” was applied to variants found
with PASS genotypes in >56 individuals (allele frequency>0.001)
at VAF 0–0.50. (Note that this includes PASS variants 0–0.01 VAF,
which are subsequently filtered.) Filter “indel_stack” was applied
to any indel allele where all samples with a variant call had at least
two different heteroplasmic indels called at that position. The Hail
pipeline re-implemented the “artifact_prone_site” filter, and any
variant overlapping positions 301, 302, 310, 316, 3107, or 16182
was filtered. The original single-sample pipeline assigned filters
“possible_numt” and “mt_many_low_hets” which were found to
be unreliable and were ignored in the gnomAD release. Filter
“npg” (no pass genotype) was applied to variants that had no pass-
ing genotype across all samples.

gnomAD annotations

All variant annotations were implemented in Hail. Annotations
from VEP (v101) (McLaren et al. 2016) were added using the
same pipeline which was used for gnomAD v3.1 nuclear annota-
tions, with the modification of changing the distance parameter
to 0 to avoid “upstream” and “downstream” annotations. Some
annotations generated by LOFTEE were edited because the as-
sumptions for the nuclear genome do not apply to the mtDNA.
We removed the “SINGLE_EXON” flag because all mtDNA tran-
scripts are single-exon. We also removed the “END_TRUNC” filter
and converted “LC” (low confidence) loss-of-function variants due
to “END_TRUNC” to “HC” (high confidence) because all mtDNA
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transcripts are short, single-exon genes not subject to nonsense-
mediated decay. We obtained rsIDs from dbSNP (b154) and added
in silico prediction annotations for tRNA variants from PON-mt-
tRNA (download date 08-27-2020) (Niroula and Vihinen 2016),
MitoTIP (download date 08-27-2020) (Sonney et al. 2017), and
HmtVar (Preste et al. 2019). We define heteroplasmic variants as
variants with VAF 0.10–0.95 and homoplasmic variants as variants
with VAF 0.95–1.00. We generated allele frequency information
for bothhomoplasmic andheteroplasmic variants and also provid-
ed this information for each top-level haplogroup and population.

Multinucleotide variants (MNVs)

Homoplasmic MNVs that were found adjacent in at least 90% of
samples were flagged on theweb portal. Specifically, homoplasmic
MNVs were defined as variants where AC_hom_MNV/AC_hom>
0.90, where AC_hom_MNV indicates the number of samples
where this homoplasmic variant was adjacent to any other
homoplasmic variant, and AC_hom indicates the number of sam-
ples with this homoplasmic variant. For example, adjacent
variants Chr M: 5185G>A (homoplasmic in one sample) and
Chr M: 5186A>T (homoplasmic in 80 samples) were observed
together in one sample and thus the former was flagged MNV
(AC_hom_MNV/AC_hom=1/1) whereas the latter was not
(AC_hom_MNV/AC_hom=1/80).

Haplogroups

Haplogroups were downloaded from the rCRS-orientated version
of PhyloTree Build 17 (van Oven and Kayser 2009), and variants
were extracted using custom Python scripts. As Phylotree repre-
sents a right-alignment of indels, we manually inspected hap-
logroup indel variants and inferred the equivalent left-alignment
that would be expected in gnomAD, with the exception of hap-
logroup insertions of unknown length (denoted by ‘.X’).

Inferred nuclear ancestry

Each sample was assigned to a predefined set of continental ances-
tries (Fig. 4E) based on principal component analysis of nuclear
SNVs (Karczewski et al. 2020).

Proportion possible observed

A “synthetic” VCF with all possible mtDNA SNVs was generated
using an in-house script and annotated by VEP (v97). This was
used to calculate the proportion of possible SNVs observed in
gnomAD. For variants within two genes (with two consequences),
both consequences were included in the possible variant counts.
The proportion of codons in each protein-coding genewith homo-
plasmic or only heteroplasmic nonsynonymous SNVs (all SNVs
except those with consequence “synonymous_variant”), and the
proportion of bases in each RNA gene with homoplasmic or only
heteroplasmic SNVs in gnomAD were calculated using a custom
script.

Pathogenic variants and other variant annotations

Pathogenic variants with a “Confirmed” status were downloaded
from the MITOMAP database (disease table, download date 02-
02-2021) (Lott et al. 2013); indel variantsweremanually inspected,
and the equivalent left-alignment that would be expected in
gnomAD was inferred. APOGEE in silico predictions were down-
loaded from MitImpact (v3.0.6) (Castellana et al. 2017). HmtVar
in silico predictions were retrieved from the HmtVar database
(download date 11-18-2020) (Preste et al. 2019). Data from
HelixMTdb were downloaded from Helix (https://www.helix

.com) (version dated 03-27-2020) (Bolze et al. 2020).
Comparison to HelixMTdb and to MITOMAP variants with
GenBank count >0 (polymorphisms and disease tables, download
date 02-02-2021) was used to identify gnomAD variants not previ-
ously observed in either database.

Data access

Variants and population frequencies generated by this study are
available in gnomAD v3.1 (https://gnomad.broadinstitute.org). A
user-friendly website provides variant annotations, including distri-
butions across heteroplasmy levels, populations, haplogroups,
and age. Data are available for download inmultiple formats, includ-
ing VCF, Hail Table, and simple tab-delimited files (https://gnomad
.broadinstitute.org/downloads#v3-mitochondrial-dna). The Mutect2
pipeline is available through GATK at GitHub (https://github
.com/broadinstitute/gatk/blob/master/scripts/mitochondria_m2_
wdl/MitochondriaPipeline.wdl) (the data available in gnomAD
v3.1 were generated using https://portal.firecloud.org/?return=
terra#methods/mitochondria/MitochondriaPipeline/25), and the
Hail scripts used for combining theVCFs, filtering samples and var-
iants, adding annotations, and performing analyses can be found at
GitHub (https://github.com/broadinstitute/gnomad-mitochondria).
We also released a simplified MitochondriaPipelineSlim.wdl
(https://portal.firecloud.org/?return=terra#methods/mitogenomics2/
MitochondriaPipelineSlim/17) (with parameter “‐‐min-median-map-
ping-quality 0”) that omits the realignment step to reduce com-
plexity, input parameters, and cost, without substantial differences
to the output VCF. Scripts are also available for download in
Supplemental Code.
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