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Objectives: We aimed to develop a prospective prediction tool on CrimeaneCongo haemorrhagic fever
(CCHF) to identify geographic regions at risk. The tool could support public health decision-makers in
implementation of an effective control strategy in a timely manner.
Methods: We used monthly surveillance data between 2004 and 2015 to predict case counts between
2016 and 2017 prospectively. The Turkish nationwide surveillance data set collected by the Ministry of
Health contained 10 411 confirmed CCHF cases. We collected potential explanatory covariates about
climate, land use, and animal and human populations at risk to capture spatiotemporal transmission
dynamics. We developed a structured Gaussian process algorithm and prospectively tested this tool
predicting the future year's cases given past years' cases.
Results: We predicted the annual cases in 2016 and 2017 as 438 and 341, whereas the observed cases
were 432 and 343, respectively. Pearson's correlation coefficient and normalized root mean squared error
values for 2016 and 2017 predictions were (0.83; 0.58) and (0.87; 0.52), respectively. The most important
covariates were found to be the number of settlements with fewer than 25 000 inhabitants, latitude,
longitude and potential evapotranspiration (evaporation and transpiration).
Conclusions: Main driving factors of CCHF dynamics were human population at risk in rural areas,
geographical dependency and climate effect on ticks. Our model was able to prospectively predict the
numbers of CCHF cases. Our proof-of-concept study also provided insight for understanding possible
mechanisms of infectious diseases and found important directions for practice and policy to combat
against emerging infectious diseases. Ç. Ak, Clin Microbiol Infect 2020;26:123.e1e123.e7
© 2019 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All

rights reserved.
Introduction

CrimeaneCongo haemorrhagic fever (CCHF) is a tick-borne viral
infection usually transmitted by tick bites, or through contact with
tissues, blood or other bodily fluids from infected people and
animals [1]. Turkey has the highest case counts among other
countries where it remains endemic. Hyalomma marginatum ticks
are the primary vectors, and they feed on animals at each devel-
opmental stage. Both wild and domesticated animals are important
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in the disease transmission cycle, serving as reservoirs for the
continuation of tick re-infection.

People working or living close to livestock or to habitats of the
vector ticks are particularly at risk. Human-to-human transmission
is possible, typically among health-care workers or care-givers.
When the possibility for enzootic transmission exposure in-
creases, the risk of CCHF virus infection for humans increases as
well [2]. Environmental changes can influence both the survival
and reproduction of H. marginatum ticks, then may trigger
community outbreaks. For example, neglect of agricultural lands
and agricultural reforms causing landscape alterations may be an
important factor for the emergence of CCHF. The investigation of
those environmental factors that may influence the cycle of CCHF is
relevant for outbreak preparedness and response.
blished by Elsevier Ltd. All rights reserved.
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Some of the seasonal and climatic covariates were previously
reported as important predictors of CCHF virus infections [3e5].
Areas with higher temperatures, precipitation and humidity were
linked with high CCHF occurrence in Bulgaria and Iran [4,5]. Suit-
able habitat for H. marginatum ticks was reported as fragmented
agricultural lands, forested lands and grass cover in Turkey and
Bulgaria, and non-irrigated agricultural land (e.g. pasture) was
found to be correlated with CCHF case counts in Turkey [5e7].

The use of spatiotemporal modelling tools might help us better
understand the characteristics of established outbreaks to develop
different types of interventions to prevent and treat diseases. Pre-
dicting the emergence is not realistic because there are so many
variables; nevertheless predicting the spatial and temporal trajec-
tory is feasible and probably more effective [8]. Such studies were
carried out for Ebola, Zika, H1N1 influenza, and severe acute
respiratory syndrome viruses and the results of these studies
helped decision-makers to plan bed capacity [9], anticipate travel-
related spread [10] and plan vaccine trials [11].

World-wide CCHF retrospective risk maps were reported using
the published cases [12], however, a prospective risk analysis based
on a comprehensive set of data including climatic, environmental
and husbandry parameters is still lacking. Turkey has the highest
number of laboratory-confirmed CCHF cases. Monthly data
covering 14 years and comprising >10 000 cases could be valuable
for understanding the spatiotemporal dynamics of disease spread.
We have already presented the improved performance of a struc-
tured Gaussian process (GP), against frequently used machine-
learning algorithms used in ecological and epidemiological appli-
cations [13]. Here we describe the spatiotemporal dynamics of
CCHF and extract the important covariates for CCHF virus infection
using a structured GP method on the surveillance data set for
Turkey. We tested the generalization capability of our approach by
predicting where and how many CCHF cases will be observed in
each month in 2016 and 2017 prospectively.

Methods

The surveillance data consist of monthly case counts (i.e. ob-
servations) for each province. Our regression model takes the past
case counts and covariate information as inputs and outputs a
numeric value as the future case count.

Surveillance data

The date (i.e. month and year) and location (i.e. province) of the
laboratory-confirmed CCHF cases in Turkey between January 2004
and December 2015 were obtained from the Ministry of Health to
train our predictive model. Wewere provided with the surveillance
data between January 2016 and December 2017 after we made our
predictions for those years. In our study, the province centres were
used as the case locations.

Agricultural, demographic, geographic, meteorological and temporal
covariates

We collected over 50 potentially related spatial and temporal
covariates for use as input in our model. These covariates are listed in
the Supplementarymaterial (Table S1). Detailed interpretations of the
covariates are presented at http://midas.ku.edu.tr/ProspectiveCCHF.

Latitudes, longitudes and altitudes of province centres were
taken from the website of the General Directorate of Highways
(http://www.kgm.gov.tr). The remaining spatial covariates were
obtained from the Census of Agriculture Agricultural Holdings
(Households) of Turkey, which can be found on the website of the
Turkish Statistical Institute (http://www.turkstat.gov.tr). Year and
month information was extracted from the surveillance data given.
CCHF cases had been observed frequently during hot months (e.g.
May, June and July), moderately during warm months (e.g. April,
August and September) and rarely during cold months (e.g.
October, November, December, January, February and March). We
encoded each time period by three temporal covariates: the year,
month and seasonal group (i.e. hot, warm or cold) to which it
belonged.

Climate covariates were taken from the Climatic Research Unit
database [14], and other temporal covariates were obtained from
the website of the Turkish Statistical Institute. The number of
households was divided by the total population of each province
and land-related covariates were divided by the total area of each
province to make these covariates comparable across different
provinces.
Gaussian processes

Gaussian process regression is a machine-learning algorithm
that finds a relation between an output y (e.g. CCHF cases) and a set
of inputs x (e.g. longitude, latitude, date, etc.). Themain assumption
of this model is that there is an unobserved or latent function f that
depends on x, but for which we only have access the version with
some noise, y. This unobserved variable is a GP with the mean
vector m and covariance matrix S, which depends on the inputs
[15]. In this study, we formulated a GP model with a Kronecker
decomposition approach for spatiotemporal modelling, named
structured GP, to learn covariance functions for both knowledge
extraction and prediction. Our main hypothesis about the spatio-
temporal processes is that response values depend on both time
and location. We need a kernel function (i.e. covariance function)
that makes nearby observations in time and/or space produce
similar values. Each spatial and temporal covariate is fed into a
kernel function for structured GP, (see Supplementary material,
Appendix S1, for a detailed description).

We get a better understanding about the underlying dynamics
of the process to be modelled when data can be explained with
fewer covariates, which may be hidden or latent factors that in
combination play greater roles in the observed dynamics. To find
these fewer but important covariates, we optimized each cova-
riate's relative importance.

For the 2016 prediction, we used the years 2004e2015 as
training sets (81 provinces � 144 months). We then used the
trained model to predict case counts of 81 provinces for 2016 (81
provinces � 12 months). For the 2017 prediction, we used the years
2004e2016 as training sets (81 provinces � 156 months). We then
used the trained model to predict case counts of 81 provinces for
2017 (81 provinces � 12 months).

A study in Turkey found that areas with CCHF cases had lower
mean temperatures in the late autumn and thewinter [16]. We used
the fact that vector-borne disease dynamics are affected by the
previous year's weather conditions, animal population, etc. because
vector abundance is also affected by these. Hence, covariates of this
year will be used to make predictions for the case counts of next
year. We trained our model using all spatial covariates, the temporal
covariates between 2003 and 2014 and the case counts for years
2004e2015; then given all the spatial covariates and temporal
covariates of the year 2015 and the learned parameters from our
trained model we predicted the cases for 2016. The same approach
was applied for the 2017 predictions. We focused on prospective
predictions of the years 2016 and 2017. Prediction for any given year
can be done given the covariates of the previous year.

The Pearson's correlation coefficient and normalized root mean
squared error were used to measure the prediction performance.

http://midas.ku.edu.tr/ProspectiveCCHF
http://www.kgm.gov.tr
http://www.turkstat.gov.tr
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Computational modelling was performed using the statistical
software package R [17].

Source codes

The input covariates, nationwide CCHF surveillance data set
and our computational results reported in this study can be
publicly explored and downloaded at http://midas.ku.edu.tr/
ProspectiveCCHF/.

Results

Spatial and temporal distribution of cases

In Turkey, 10 411 confirmed CCHF cases were reported between
years 2004 and 2017, mainly from April to October, and yearly
epidemic curves peaked around June and July (Fig. 1a). Most of
these confirmed CCHF cases were reported in north and northeast
regions of Anatolia (Fig. 1b). Detailed interpretations of the case
counts are presented at http://midas.ku.edu.tr/ProspectiveCCHF/.

Prospective prediction for 2016 and 2017

We predicted the nationwide annual case count for 2016 as 438,
whereas the observed case count was 432 (Fig. 2). Similarly, we
predicted the nationwide annual case count for 2017 as 341,
(a)

(b)

Fig. 1. Summary of Turkish nationwide CrimeaneCongo haemorrhagic fever (CCHF) surve
December 2017. (b) Total confirmed CCHF case counts for each province between years 20
numbers of observed cases in provinces between 2004 and 2017. Yearly case count maps c
whereas the observed case count was 343 (Fig. 3). Pearson's cor-
relation coefficient and normalized root mean squared error values
for the 2016 prediction scenario are 0.83 and 0.58, respectively. For
the 2017 prediction, Pearson's correlation coefficient is 0.87 and
normalized root mean squared error is 0.52. Each month's predic-
tion for all provinces on a map can be seen at http://midas.ku.edu.
tr/ProspectiveCCHF/.

Covariate importance

Latitude and number of settlements with <25 000 inhabitants
covariates of provinces (i.e. spatial covariates) and monthly po-
tential evapotranspiration (evaporation and transpiration) mea-
surements (i.e. temporal covariate) were found to be the most
explanatory covariates for the 2016 prediction (see Supplementary
material, Figure S1a,b). In the 2017 prediction, number of settle-
ments with <25 000 inhabitants and longitude covariates of
provinces (i.e. spatial covariates) and monthly potential evapo-
transpiration measurements (i.e. temporal covariate) were the
most important covariates (see Supplementarymaterial, Fig. S1c,d).

Discussion

Turkey has the highest number of laboratory-confirmed CCHF
cases, and we included all 10 441 CCHF cases into our computa-
tional analyses. We used a unified model including a rich collection
illance data set. (a) Monthly confirmed CCHF case counts between January 2004 and
04 and 2017. Numbers in the key of (b) correspond to the minimum and maximum
an be seen at http://midas.ku.edu.tr/ProspectiveCCHF/.

http://midas.ku.edu.tr/ProspectiveCCHF/
http://midas.ku.edu.tr/ProspectiveCCHF/
http://midas.ku.edu.tr/ProspectiveCCHF/
http://midas.ku.edu.tr/ProspectiveCCHF/
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(b)

(c)

Fig. 2. Prediction results obtained by our structured Gaussian process algorithm for 2016. Observed cases are shown in blue and predicted cases are shown in red. (a) Monthly
observed and predicted CrimeaneCongo haemorrhagic fever (CCHF) case counts for 2016. (b) Annual observed CCHF case counts for each province in 2016. (c) Annual predicted
CCHF case counts for each province in 2016. Numbers in the keys of (b) and (c) correspond to the minimum and maximum numbers of observed and predicted cases in provinces for
2016. Monthly prediction maps can be seen at http://midas.ku.edu.tr/ProspectiveCCHF/.
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(a)

(b)

(c)

Fig. 3. Prediction results obtained by our structured Gaussian process algorithm for 2017. Observed cases are shown in blue and predicted cases are shown in red. (a) Monthly
observed and predicted CrimeaneCongo haemorrhagic fever (CCHF) case counts for 2017. (b) Annual observed CCHF case counts for each province in 2017. (c) Annual predicted
CCHF case counts for each province in 2017. Numbers in the keys of (b) and (c) correspond to the minimum and maximum numbers of observed and predicted cases in provinces for
2017. Monthly prediction maps can be seen at http://midas.ku.edu.tr/ProspectiveCCHF/.
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of spatial and temporal data sources to determine the relative
importance of each data source. We evaluated our approach by
performing monthly predictions for each province in a prospective
manner.

The latitude, longitude and number of settlements with<25 000
inhabitants were found to be the most important spatial covariates
for predicting CCHF case counts prospectively. Potential evapo-
transpiration and season were found to be the most informative
temporal covariates for both the 2016 and the 2017 predictions.

The importance of number of settlements with <25 000
inhabitants could be related to the human population at risk living
close to the habitat of ticks and animals as these settlements are
usually situated in rural areas where people are engaged in agri-
cultural activities. The number of settlements with <25 000 in-
habitants is important for both years, but positions of latitude and
longitude switched their rankings in terms of importance. This
finding is in line with the increased number of CCHF cases in
eastern parts in later years, which can be better captured by
longitude rather than latitude.

Evapotranspiration is a climate variable and is defined as the
total water vapour produced in the water basin as a result of the
growth of plants in the water basin. Potential evapotranspiration is
evapotranspiration at the time when there is sufficient water
available to provide for a surface completely covered with plants.
This term refers to providing the ideal amount of water to plants. It
is also obvious that season covariate determines the temporal
behaviour of CCHF or other seasonal infectious diseases in general.
These two important temporal covariates confirm the role of the
climate for the underlying mechanism of CCHF. Careful follow up of
these covariates may provide possible warnings in the short term
instead of having to wait for yearly predictions from our model.
Higher temperature was previously found as a main driver for the
abundance of H. marginatum [1,12,16,18] because high tempera-
tures may accelerate the life cycle of ticks and so increase host
questing.

In our study, we found that yearly changes in the land involving
olive trees, fallow land and forest land were more important than
the animal population (see Supplementary material, Fig. S1b,d).
Our findings were parallel with those of another report in which
the land cover, rather than climate and animal population, was
found to be the main driver for world-wide distribution of CCHF.
Those authors commented that these factors might be more
important in predicting finer-scale prevalence patterns [12].

We used the annual data of husbandry from the Turkish Sta-
tistical Institute for the first time, and our model was able to reveal
the importance of different animal groups (see Supplementary
material, Fig. S1b,d). In our model for the 2017 prediction, goats,
cattle and sheep were found to be the most significant animals for
CCHF dynamics and spread, respectively. These findings contradict
the observations of veterinarians in the field, who claim that
bovine/cattle livestock are more important than goat livestock in
the transmission cycle of the virus. This contradiction implies that
there are some other underlying reasons such as the farmers; those
caring for the goats might come into hand contact with them with
or without protection. We must take into account the possible
reasons why a covariate is chosen and take precaution against it
respectively. The importance of covariates that may be related to
human action indicates that awareness is lacking in some parts of
the country about the presence of CCHF or precautions against
CCHF. Our model identifies the directions to which we should pay
close attention with high priority. For instance, in the areas with
high goat, cattle or sheep density, agricultural workers and others
working with animals should also be monitored and must be
informed about CCHF. For further investigation, tick abundance
studies in the field should be developed and improved.
Annual predictions for 2016 and 2017 are accurate, but the
predictions for individual provinces are not as much accurate
(Figs. 2 and 3). Predicting the total number of cases from overall
seasonality is easier than capturing spatial dependencies because
time-series data are dependent on whether there is seasonality
behaviour of the data. One limitation of this study is that our model
may not predict an outbreak if the reason for the outbreak is not
related to the covariates that we used to train our model. However,
when the first data of the outbreak arrive, the model will update
itself accordingly, although there might be some delay for accurate
predictions. Another limitation is that even if the surveillance data
are ready, covariate data (e.g. livestock statistics) might be pub-
lished much later or might be incomplete at the time of prediction.
Then, the model would not be able to benefit from all information
sources to better capture the progress of disease dynamics.
However, these problems are valid for all data-driven models.

Our proof-of-concept study provided insights for understanding
possible mechanisms of infectious diseases and found directions
with high priority for practice and policy to combat against
emerging infectious diseases.We tested our tool on a single disease,
but the same framework can be extended towards other vector-
borne infectious diseases, as well as other infectious diseases.
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