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The LCK-14-3-3ζ-TRPM8 axis regulates TRPM8 function/
assembly and promotes pancreatic cancer malignancy
Yuan Huang1,8, Shi Li1,8, Qinfeng Liu1, Zhijie Wang2, Shunyao Li1, Lei Liu1, Weiwei Zhao1, Kai Wang1, Rui Zhang1, Longfei Wang3,
Ming Wang4, Declan William Ali5, Marek Michalak6, Xing-Zhen Chen7, Cefan Zhou 1✉ and Jingfeng Tang 1✉
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Transient receptor potential melastatin 8 (TRPM8) functions as a Ca2+-permeable channel in the plasma membrane (PM).
Dysfunction of TRPM8 is associated with human pancreatic cancer and several other diseases in clinical patients, but the underlying
mechanisms are unclear. Here, we found that lymphocyte-specific protein tyrosine kinase (LCK) directly interacts with TRPM8 and
potentiates TRPM8 phosphorylation at Y1022. LCK positively regulated channel function characterized by increased TRPM8 current
densities by enhancing TRPM8 multimerization. Furthermore, 14-3-3ζ interacted with TRPM8 and positively modulated channel
multimerization. LCK significantly enhanced the binding of 14-3-3ζ and TRPM8, whereas mutant TRPM8-Y1022F impaired TRPM8
multimerization and the binding of TRPM8 and 14-3-3ζ. Knockdown of 14-3-3ζ impaired the regulation of TRPM8 multimerization
by LCK. In addition, TRPM8 phosphotyrosine at Y1022 feedback regulated LCK activity by inhibiting Tyr505 phosphorylation and
modulating LCK ubiquitination. Finally, we revealed the importance of TRPM8 phosphorylation at Y1022 in the proliferation,
migration, and tumorigenesis of pancreatic cancer cells. Our findings demonstrate that the LCK-14-3-3ζ-TRPM8 axis for regulates
TRPM8 assembly, channel function, and LCK activity and maybe provide potential therapeutic targets for pancreatic cancer.
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INTRODUCTION
Pancreatic cancer is an aggressive malignancy with high mortality,
and only 5–7% of patients live longer than five years after
diagnosis [1]. Although recent advances in radiotherapy and
chemotherapy have shown promising results, the overall prog-
nosis and survival rates of pancreatic cancer patients are limited
[2]. Therefore, understanding the biology of pancreatic cancer and
identifying putative therapeutic targets in clinical treatment are
urgently needed. Transient receptor potential melastatin 8
(TRPM8), the first identified prostate-specific gene, was function-
ally characterized as a cold receptor due to its activation by cold
temperature and substances that mimic cold sensation such as
menthol and icilin, and plays a central role in thermosensation [3].
Recently, several studies revealed that TRPM8 exhibits aberrant
expression and contributes to the development and progression
of pancreatic cancer [4, 5]. Identification of the mechanisms by
which TRPM8 mediates its biological functions is expected to
develop into a molecular biomarker and therapeutic target in
pancreatic cancer.
TRPM8 belongs to the TRP channel family and functions as a

nonselective, voltage-gated, and Ca2+-permeable channel that
must be correctly expressed and assembled in the plasma

membrane (PM). Previous studies showed that four monomers
were assembled to form a homologous tetramer of functional
TRPM8 channels [6–8]. Although the C-terminal coiled coil (K1066-
K1104) of TRPM8 has been implicated in channel multimerization
[6–8], the mechanism remains obscure. In addition, several
molecules, such as PIP2, PKA, PKC, TRP channel-associated factors
(TACF1 and TACF2), tripartite motif‐containing 4 (TRIM4), and
ubiquitin-like modifier activating enzyme 1 (UBA1), modulate
TRPM8 channel expression and activity in the PM [9–14]. Earlier
studies revealed that 4-amino-5-(4-chlorophenyl)-7-(dimethy-
lethyl) pyrazolo[3,4-d] pyrimidine (PP2, a selective Src family
tyrosine kinase inhibitor) inhibited TRPM8 function in SH-SY5Y and
HEK293T cells and TRPM8 is phosphotyrosined by Src, a
membrane of nonreceptor Src family kinases, and partly by a
representative of receptor PTKs, TrkA, without identifying the
exact site(s) [15, 16]. Thus, the mechanism of TRPM8 regulation by
tyrosine kinases needs to be further investigated.
Lymphocyte-specific protein tyrosine kinase (LCK), which

functions as a Src-related nonreceptor protein tyrosine kinase,
has emerged as one of the key molecules regulating T-cell
functions [17, 18]. Dysregulated LCK, similar to other Src kinases, is
associated with various disease conditions such as cancers,

Received: 26 February 2022 Revised: 16 May 2022 Accepted: 26 May 2022

1National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology,
Wuhan, China. 2Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China.
3Children’s Hospital Affiliated to Zhengzhou University, Henan Key Laboratory of Children’s Genetics and Metabolic Diseases, Henan Children’s Hospital, Zhengzhou Children’s
Hospital, Zhengzhou 450018, China. 4Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China. 5Department of Biological Sciences, University of
Alberta, Edmonton, AB T6G 2H7, Canada. 6Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada. 7Membrane Protein Disease Research Group,
Department of Physiology, Faculty of Medicine and Dentistry of Alberta, Edmonton, AB T6G 2H7, Canada. 8These authors contributed equally: Yuan Huang, Shi Li.
✉email: cefan@hbut.edu.cn; Jingfeng_HUT@163.com
Edited by Professor Anastasis Stephanou

www.nature.com/cddis

Official journal of CDDpress

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41419-022-04977-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41419-022-04977-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41419-022-04977-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41419-022-04977-5&domain=pdf
http://orcid.org/0000-0003-0680-3843
http://orcid.org/0000-0003-0680-3843
http://orcid.org/0000-0003-0680-3843
http://orcid.org/0000-0003-0680-3843
http://orcid.org/0000-0003-0680-3843
http://orcid.org/0000-0002-5524-4518
http://orcid.org/0000-0002-5524-4518
http://orcid.org/0000-0002-5524-4518
http://orcid.org/0000-0002-5524-4518
http://orcid.org/0000-0002-5524-4518
https://doi.org/10.1038/s41419-022-04977-5
mailto:cefan@hbut.edu.cn
mailto:Jingfeng_HUT@163.com
www.nature.com/cddis


asthma, and diabetes [19]. The mechanistic insights into the
regulation of LCK activity are sophisticated. Currently, LCK activity
is predominantly regulated via reversible and dynamic phosphor-
ylation of two tyrosine residues, one within the “activation loop” of
the catalytic domain Y394 and the other at the carboxy-terminus
(C-terminus) of the protein Y505 [20–22]. Blocking phosphoryla-
tion on Tyr394 (Y394F) largely reduced LCK activity, whereas
inhibition of Tyr505 phosphorylation (Y505F) stimulated LCK
activity [20–22]. In addition to phosphorylation, ubiquitination is
also involved in regulating LCK activity [23–25]. For example, heat
shock protein 90 (Hsp90) prevents the active form Y505F of
mutant LCK from being targeted for degradation by ubiquitination
[23]. 14-3-3 is a family of small acidic proteins that are widely
expressed in many organisms and tissues and consists of seven
highly conserved ~30 kDa isoforms (β, ε, γ, η, σ, τ, ζ) [26]. By
forming dimers, 14-3-3 predominantly binds phosphorylated
proteins to modulate their targets at various levels, such as
subcellular localization, stability, multimerization, phosphorylation,
biological activity, or dynamic interactions [27, 28]. TRPM7, which
belongs to the TRP channel family, binds to 14-3-3 to modulate
channel cellular localization that requires autophosphorylation at
S1403 [29]. Apart from TRPM7, 14-3-3 which is involved in the
regulation of other TRP channel functions is limited. In addition,
there is no report that 14-3-3 is involved in the regulation of LCK
on target proteins.
In this study, we employed various biological approaches to

identify and unveil the mechanisms by which the LCK-14-3-3ζ-
TRPM8 axis regulates TRPM8 assembly, channel function, and LCK
activity and highlighted the importance of TRPM8 phosphotyr-
osine at Y1022 on the pancreatic cancer cells, which may be a
potential therapeutic target for pancreatic cancer.

RESULTS
LCK-TRPM8 interaction for positively modulates TRPM8
phosphotyrosine
We have previously reported a GST pull-down assay in combina-
tion with mass spectrometric (MS) analysis to screen candidate
proteins from an ~60 kD bands that bind to the C-terminus of
TRPM8 (M8C, amino acid 980-1104). The Ub-ligase E3 for TRIM4
was identified as a novel partner of TRPM8 in our earlier report [10].
Within the same screen, we also identified peptides for BLK, LCK,
and LYN, belonging to the Src family kinases, which were found in
a similar size of ~60 kD band using co-immunoprecipitation (Co-IP)
and MS assays in MCF7 cells (Fig. S1A–D).
To further document the interaction between TRPM8 and

these Src family kinases, we performed an in vitro GST pull-down
assay. The results indicated that purified GST-M8C more
efficiently pulled down HA-tagged LCK compared with HA-
tagged BLK and LYN from HEK293T cell lysate (Fig. 1A). Moreover,
we also confirmed that the BLK, LCK, and LYN kinases interacted
with full-length TRPM8 and that LCK-TRPM8 binding was
strongest (Fig. 1B). Consistent with the above assays, reciprocal
Co-IP experiments showed that BLK, LCK, and LYN were
associated with the C-terminus of TRPM8 in a protein complex,
and the strongest interaction of C-termini of TRPM8 and LCK was
clearly observed (Fig. 1C).
Src family kinases are involved in the phosphotyrosine of

target proteins. PP2, a widely used compound to block the
activity of Src family kinases, was first used to determine the
effect of Src family kinases on TRPM8 phosphotyrosine. A 24-h
exposure of transfected HeLa cells to different concentrations of
PP2 (0, 2.5, 10, 20 μM) resulted in a dose-dependent reduction in
TRPM8 phosphotyrosine (Fig. S2, A, B). In contrast, the reduction
was counteracted by co-application of 1 mM orthovanadate, a
protein tyrosine phosphatase inhibitor (Fig. S2, C, D). Notably,
orthovanadate itself significantly enhanced the basal phospho-
tyrosine of TRPM8 (Fig. S2, C, D). Moreover, we confirmed that

only LCK overexpression, but not BLK or LYN overexperssion,
resulted in a significant increase in TRPM8 phosphotyrosine by
~2.19-fold (Fig. S2, E, F), which is consistent with the strongest
interaction between LCK and TRPM8 (Fig. 1A–C). These data
suggested that LCK, as a Src family kinase, is a potent positive
regulator in the regulation of TRPM8 phosphotyrosine via the
LCK-TRPM8 interaction.
We next performed a Co-IP assay to detect the endogenous

interaction of TRPM8 and LCK in native cells. The results showed that
LCK effectively co-precipitated with TRPM8 in PANC-1 cells (Fig. 1D).
In addition, TRPM8 colocalized with LCK in the cytoplasm as shown
by confocal microscopy (Fig. 1E) and purified His-LCK successfully
pulled down purified GST-M8C but not GST alone in BL21 bacteria as
shown by a protein-protein interaction assay in vitro (Fig. 1F).
Moreover, cells expressing with increasing amounts of LCK markedly
enhanced TRPM8 phosphotyrosine in a dose-dependent manner
(Fig. S2, G, H), and LCK knockdown significantly decreased TRPM8
phosphotyrosine to ~37% (Fig. S2, I, J). Meanwhile, LCK over-
expression markedly enhanced the phosphorylation of the C-
terminus of TRPM8 by ~2.87-fold in HEK293T cells (Fig. S2, K, L),
and the immunoprecipitated LCK from transfected HEK293T cells
effectively phosphorylated M8C proteins purified from BL21 bacteria
by kinase assay in vitro (Fig. S2M). We also determined which domain
(s) of TRPM8 in the cytoplasm that binds with LCK. Reciprocal Co-IP
assays showed that LCK binds with more than one cytosolic domain
of TRPM8 cytosolic (Fig. 1G, H). Together, these data strongly
suggested that LCK binds to TRPM8 and positively regulates TRPM8
phosphotyrosine.

LCK increases TRPM8 channel activities
We next employed patch‐clamp electrophysiology in HEK293 cells
recording whole-cell TRPM8-mediated cation currents (ITRPM8)
(Fig. 2A) to characterize the functional role of BLK, LCK and LYN in
the TRPM8 channel. Compared with the control, overexpressed
LCK increased ITRPM8 densities across at depolarization and
markedly increased ITRPM8 densities by 1.8-fold at +80mV,
whereas BLK and LYN were rarely affected (Fig. 2B, C), which
was consistent with the above result that only LCK markedly
enhanced TRPM8 phosphorylation (Fig. S2E, F). LCK knockdown
reduced ITRPM8 densities across at depolarization and markedly
decreased ITRPM8 densities at +80mV to ~46% (Fig. 2D, E).
To assess the molecular mechanism by which LCK enhances

TRPM8 expression on the PM, we extracted TRPM8 proteins from
the PM of transfected HEK293T cells. The results showed that
overexpression of LCK and LCK knockdown rarely affected the PM
and total expression of TRPM8 (Fig. 2F–I), suggesting that LCK
modulated TRPM8 channel function likely by regulating the
biophysical properties of the TRPM8 channel but not PM TRPM8
trafficking. These data together indicated that LCK acts as a
positive regulator of TRPM8-mediated currents.

LCK affects the multimerization but not intramolecular N-C
binding of TRPM8
Due to the LCK interaction with the N-terminus and C-terminus of
TRPM8 (Fig. 1G, H) and the importance of the intramolecular N-C
binding for the activation of TRPM8 function [12, 13], we
investigated whether LCK affected the intramolecular N-C binding
of TRPM8. The results showed that overexpressed LCK rarely
affected the intramolecular N-C binding of TRPM8 with or without
PP2 (Fig. 3A, B). Moreover, the intramolecular N-C binding of TRPM8
was not altered in the presence of LCK knockdown (Fig. 3C, D). We
next investigated whether LCK modulated TRPM8 multimerization,
which is critical for TRPM8 channel function, as previously reported
[6, 30]. The results showed that overexpressed LCK was markedly
enhanced, whereas LCK knockdown decreased TRPM8 multimeriza-
tion in the presence of DSS (Fig. 3E–H). We also detected the effect
of LCK on the binding of intermolecular TRPM8. The results showed
that LCK overexpression markedly increased the binding of
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Fig. 1 Src family kinases for BLK, LCK, and LYN interaction with TRPM8. A GST pull-down assays to assess the interaction between purified
GST-tagged C-terminus of TRPM8 (GST-M8C) expressing in E. coli BL21 bacteria and different HA-tagged Src family kinases expressing in
HEK293T cells. Western blotting (WB) was performed using the indicated antibodies. B–D Co-immunoprecipitation (Co-IP) assays. B HeLa cells
were transfected with the indicated constructs along with Flag-tagged full-length TRPM8 (Flag-TRPM8). Immunoprecipitation (IP) was
performed with an anti-HA or anti-Flag antibody, and the samples were analyzed by immunoblotting with the indicated antibodies. C Similar
Co-IP in (B) but with protein extracts from HeLa cells co-transfected with the indicated constructs along with GFP-tagged C-terminus of TRPM8
(GFP-M8C). D Co-IP as in (B) and (C) but with protein extracts from native PANC-1 cells. E Representative confocal imaging of co-localization of
mcherry-LCK and GFP-TRPM8 in HeLa cells. Overlay images show co-localization of green signals (TRPM8) and red signals (LCK), which
generated yellow signals in HeLa. Nuclei were stained with DAPI (blue). Scale bars, 10 µm. F Assay of the interaction in vitro between purified
His-LCK fusion and GST-tagged C-terminus of TRPM8 (GST-M8C) from E. coli bacteria. G, H HEK293T cells co-expressing HA-LCK constructs with
a series of mutant Flag-tagged cytoplasmic domain of TRPM8 were harvested for Co-IP assays. All studies were repeated at least three times.
GFP, green fluorescent protein. All studies were repeated at least three times.
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intermolecular TRPM8, while the increase was significantly reduced
by co-application of PP2 (Fig. 3I, J). Moreover, LCK knockdown
effectively reduced the binding of intermolecular TRPM8 (Fig. 3, K, L).
These data together indicated that LCK affects TRPM8 multi-
merization but not intramolecular N-C binding, thereby regulating
its channel functions.

LCK enhances the phosphotyrosine of TRPM8 at Y1022
We next determined which of the potential phosphotyrosine site
(s) in TRPM8 was regulated by LCK. Using the combination of
immunoprecipitation and MS analysis, we identified a lysine

residue at 423 as a major ubiquitination site of TRPM8 [10]. Within
the same screen, the highly conserved tyrosine residue at 1022
across species was also detected as a potential phosphotyrosine
site in TRPM8 (Fig. 4A, B). To confirm and characterize the
importance of Y1022 for TRPM8 phosphotyrosine, an expression
construct for the single-point mutant TRPM8-Y1022F was gener-
ated. Compared to wild-type TRPM8 (WT-TRPM8), mutant TRPM8-
Y1022F significantly reduced its phosphotyrosine level with or
without LCK overexpression (Fig. 4C, D). The significant differences
in phosphorylation levels between WT-TRPM8 and mutant TRPM8-
Y1022F in the presence of LCK overexpression were abolished by
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saracatinib (Fig. 4C, D), a potent and selective inhibitor of Src-
family tyrosine kinases (SRC, YES and LCK) [31]. An in vitro Kinase
assay (Fig. 4E, F) further supported the conclusion that Y1022 in
TRPM8 is a potent phosphorylation target for LCK. Interestingly,
we found that mutant TRPM8-Y1022F significantly decreased
serine phosphorylation (phosphoserine) but did not alter threo-
nine phosphorylation (phosphothreonine) of TRPM8 (Fig. S3A, B).
Moreover, LCK significantly enhanced TRPM8 phosphoserine and
phosphotyrosine but not phosphothreonine (Fig. S3C, D).
We next recorded the cation currents mediated by mutant

TRPM8-Y1022F in HEK293T cells and found that mutant TRPM8-
Y1022F decreased ITRPM8 densities across at depolarization when

compared with WT-TRPM8 (Fig. 4G). At +80mV, mutant TRPM8-
Y1022F markedly decreased ITRPM8 densities to ~53% (Fig. 4H). In
addition, mutant TRPM8-Y1022F did not affect the expression of
total and PM TRPM8 with or without LCK (Fig. S3E–G). WB assays
showed that mutant TRPM8-Y1022F significantly reduced TRPM8
multimerization with or without LCK compared to WT-TRPM8
(Fig. 4I, J). The mutant TRPM8-Y1022F significantly impaired the
interaction of intermolecular TRPM8 (Fig. 4K, L), further supporting
the importance of Y1022 for TRPM8 multimerization. Together, these
data suggested that mutant TRPM8-Y1022F modulated channel
function likely by modulating TRPM8 multimerization, confirming
the effects of LCK on TRPM8 function and multimerization.
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14-3-3ζ mediates LCK in the regulation of TRPM8
multimerization
The 14-3-3 protein is a widely expressed acidic protein that binds
with phosphorylated targeted proteins and enhances its multi-
merization to regulate its activities [32]. 14-3-3ζ, a member of the

14-3-3 protein family, was identified in the same screen at ~30 kD
bands as in our previous studies in Fig. 1a [10] (Fig. S1E, F). We first
demonstrated the interaction of 14-3-3ζ and the C-terminus of
TRPM8 by an in vitro GST pull‐down assay (Fig. 5A) and 14–3–3ζ
and TRPM8 in native PANC-1 cells by Co-IP assay (Fig. 5B),
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suggesting that TRPM8 interacted with 14-3-3ζ in a protein
complex. Next, we determined the functional role of 14-3-3ζ in
TRPM8 multimerization. The results showed that 14-3-3ζ over-
expression or knockdown markedly enhanced or reduced TRPM8
multimerization, respectively, in the presence of DSS (Fig. 5C–F).

14-3-3ζ knockdown effectively inhibited the binding of inter-
molecular TRPM8 in AsPC-1 cells (Fig. 5G, H), further supporting
the role of 14-3-3ζ in TRPM8 multimerization.
Based on the above findings, we hypothesized that 14-3-3ζ is

involved in the regulation of TRPM8 multimerization by LCK.

Fig. 4 Identification of phosphotyrosine on TRPM8 at position 1022 regulated by LCK. A MS imaging of phosphotyrosine site of TRPM8 in
combination with the NCBI blast (peptide sequences are indicated). B Amino acid sequence alignment showing that tyrosine at position 1022
is highly conserved among multiple species. C, D Expression constructs for Flag-tagged wild-type TRPM8 (Flag-WT-M8) or mutant Y1022F
(Flag-M8-Y1022F) were transfected with or without HA-LCK into HEK293T cells, before harvest for treatment with 10 μM saracatinib for 24 h.
The lysates were then used for IP with an anti-Flag antibody and then subjected to WB assay with the indicated antibodies to detect the level
of TRPM8 phosphotyrosine. E, F Kinase assay in vitro. Purified GST alone, GST tagged wild-type or mutant of C-terminus of TRPM8 fusion
proteins expressing in E. coli bacteria were mixed with HA-LCK immunoprecipitated with anti-HA antibody from HEK293T cells expressing HA-
LCK construct, 1 mM ATP or their combination in kinase assay buffer to determine the level of M8C phosphotyrosine. G Relationship of test
potential and averaged densities of ITRPM8 recorded from HEK293T cells co-transfected Flag-WT-M8 or Flag-M8-Y1022F with pEGFP-N1. H Peak
current density on +80mV as in G (n= 15~20 cells per group). I, J Expression constructs for Flag-WT-M8 or Flag-M8-Y1022F were co-
transfected with or without HA-LCK into PANC-1 cells, before harvest for treatment with 1 μM DSS for 30min for WB to detect the level of
TRPM8 multimerization. K, L Flag-WT-M8 or Flag-M8-Y1022F along with GFP-tagged wild-type TRPM8 (GFP-WT-M8) were co-transfected with
or without HA-LCK into AsPC-1 cells to determine the binding of intermolecular TRPM8. ***P < 0.001, NS not significant. Data are presented as
mean ± SEM. All studies were repeated at least three times.
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We first determined whether LCK-mediated TRPM8 phosphotyr-
osine affected the binding of TRPM8 and 14-3-3ζ. The results
showed that LCK overexpression and knockdown significantly
increased and reduced the binding of TRPM8 and 14-3-3ζ,

respectively (Fig. 6A–D). Meanwhile, mutant TRPM8-Y1022F
significantly impaired the binding of 14-3-3ζ and TRPM8 in the
presence or absence of LCK (Fig. 6E, F). These data suggested that
TRPM8 phosphotyrosine regulated by LCK positively modulated
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the 14-3-3ζ-TRPM8 interaction. Moreover, 14-3-3ζ knockdown
eliminated the function of LCK in increasing TRPM8 multi-
merization (Fig. 6G, H), which was further validated by the
impaired interaction of intermolecular TRPM8 regulated by LCK in
the presence of 14-3-3ζ knockdown (Fig. 6I, J). Together, these
data revealed that 14-3-3ζ is critical for LCK-mediated regulation
of TRPM8 multimerization.

TRPM8 phosphotyrosine positively modulates LCK activity
Phosphorylation of Tyr394 or Tyr505 is critical for the regulation of
LCK activity [20–22], as validated by our data showing that the
Y394F and Y505F mutants, respectively, significantly inhibited and
enhanced the function of LCK on TRPM8 phosphotyrosine (Fig.
S4A, B). Next, we detected whether TRPM8 phosphotyrosine
feedback modulated LCK activity and phosphorylation site-specific
antibodies against LCK on Y394 and Y505 were used to detect the
levels of LCK Y394 and Y505 phosphorylation, which were specific
and effective (Fig. S5A). The results revealed that the level of
phosphorylated LCK on Y394 was comparable between cells
overexpressing the control vector, WT-TRPM8, and TRPM8-Y1022F
(Fig. 7A, B). However, WT-TRPM8 markedly reduced the level of
phosphorylated LCK on Y505 compared to the control, while the
reduction was countered in the presence of mutant Y1022F-TRPM8
(Fig. 7A, B). Meanwhile, TRPM8 rarely affected LCK Ser/Thr
phosphorylation (Fig. S5B, C). These data together suggested that
TRPM8 phosphotyrosine positively modulated LCK activity through
inhibition of phosphorylated LCK on Y505. Meanwhile, TRPM8
overexpression significantly decreased the level of phosphorylated
LCK on Y505 but not Y394, with or without saracatinib. However,
saracatinib markedly enhanced the level of phosphorylated LCK on
Y505 (Fig. S5D, E), suggesting that saracatinib inhibited LCK activity
likely through the activation of Tyr505 phosphorylation.
In addition to phosphorylation, ubiquitination is involved in the

regulation of LCK activity [23–25]. Ubiquitination assays showed
that WT-TRPM8 overexpression significantly increased LCK ubiqui-
tination compared with the control vector, whereas the increase
was partially impaired in the presence of mutant Y1022F-TRPM8
(Fig. 7C, D), suggesting that TRPM8 phosphotyrosine feedback
modulated LCK ubiquitination. Moreover, we also detected the
effect of TRPM8 phosphotyrosine on the ubiquitination of the LCK
mutants Y394F and Y505F. Compared to WT-TRPM8, mutant
TRPM8-Y1022F showed similar inhibitory effects on the ubiquiti-
nation of WT-LCK and mutant LCK-Y394F (Fig. 7E, F). However, the
inhibitory effect of TRPM8-Y1022F on LCK ubiquitination was
almost abrogated in the presence of mutant LCK-Y505F (Fig. 7E, F),
suggesting that TRPM8 phosphorylation modulated the ubiquiti-
nation of the inactive form of LCK (LCK-Y394F).

Impaired phosphorylation of TRPM8 inhibits pancreatic
cancer cell proliferation, migration, and tumorigenesis in vitro
and in vivo
We next examined the effect of Y1022 in TRPM8 on pancreatic
cancer cell proliferation and migration using of RFP-labeled PANC-
1 or AsPC-1 cells stably expressing control vector, WT-TRPM8, or
mutant TRPM8-Y1022F. EdU incorporation assay, immunofluores-
cence, and colony formation together revealed that WT-TRPM8
significantly increased tumor cell proliferation when compared to

control vector cells. However, mutant TRPM8-Y1022F impaired the
function of TRPM8 on increasing cell proliferation (Fig. 8A–D).
These data suggested that TRPM8 phosphorylation at Y1022 is
critical for pancreatic cancer cell proliferation.
In addition, wound-healing and transwell assays revealed that

WT-TRPM8 showed a significantly higher migration capacity than
control vector cells, whereas mutant TRPM8-Y1022F impaired the
function of TRPM8 on cell migration (Fig. 8E–H). We also employed
a novel metastatic zebrafish xenotransplantation model to detect
the effect of mutant TRPM8-Y1022F on tumor cell migration. After
6 days of xenotransplantation, compared to the control group, a
large number of PANC-1 cells stably expressing WT-TRPM8
migrated to distant parts of the zebrafish body to form
micrometastases, while PANC-1 cells stably expressing mutant
TRPM8-Y1022F did not migrate far from the primary site (Fig. 8I).
Together, these data suggest that TRPM8 phosphorylation at
Y1022 is critical for pancreatic cancer cell migration.
To further assess the importance of TRPM8 phosphorylation in

Y1022 tumorigenesis in vivo, BALB/c nude mice bearing subcuta-
neous pancreatic xenograft tumors derived from PANC-1 cells stably
expressing control vector, WT-TRPM8, and mutant TRPM8-Y1022F
was used. After 35 days of growth, the tumors were carefully
removed (Fig. 8J). TRPM8 mRNA expression detected by real-time
qRT-PCR was up-regulated in the tumor xenografts stably expressing
WT-TRPM8 or TRPM8-Y1022F (Fig. 8K). Moreover, compared to the
control xenograft tumors, a significant increase in tumor volumes
and weights was observed in WT-TRPM8 xenograft tumors and Ki67
expression was markedly increased in WT-TRPM8 xenograft tumor
tissues by histopathologic analyses (Fig. 8L–O). However, mutant
TRPM8-Y1022F diminished the increase in WT-TRPM8 tumor
volumes and weights as well as Ki67 expression. Together, these
data suggest that TRPM8 phosphorylation at Y1022 contributes to
tumorigenesis in vivo.

DISCUSSION
TRPM8, which functions as a Ca2+-permeable channel, requires the
assembly of functional homologous tetramers [6–8] and plays a
vital role in environmental cold sensing, menthol-induced analgesia
of acute and inflammatory pain, and migraines [33]. Elevated
expression of TRPM8 has been found in human pancreatic cancer
and several other diseases in clinical patients [34]. However, how
the TRPM8 channel in PM exerts its oncogenic effects is not well
understood. Moreover, phosphotyrosine is involved in the regula-
tion of TRPM8 function but the exact site(s) is unkonown [16]. In the
present study, we identified LCK and 14-3-3ζ as new TRPM8 binding
partners and a novel post-translational modification of TRPM8 at
Y1022. Moreover, we provided a novel model in which LCK-
mediated TRPM8 phosphorylation at Y1022 is critical for ITRPM8

density by enhancing 14-3-3ζ-TRPM8 binding to regulate of TRPM8
multimerization. Knockdown of 14-3-3ζ markedly impaired the
regulation of TRPM8 multimerization by LCK. In addition, phos-
phorylation and ubiquitination mediated LCK activity was coordi-
nately regulated by TRPM8 phosphotyrosine at Y1022 in a feedback
loop. Importantly, we provided multiple lines of evidence support-
ing the importance of TRPM8 phosphotyrosine at Y1022 on
pancreatic cancer progression in vitro and in vivo.

Fig. 6 14-3-3ζ involved in the regulation of LCK on the multimerization of TRPM8. A, B PANC-1 cells were co-transfected Flag-TRPM8 with
HA-LCK or control vector and then harvested for IP with an anti-Flag antibody and WB assay with the indicated antibodies to determine the
binding of TRPM8 and 14-3-3ζ. C, D Similar experiments in (A) and (B) but cells co-expressing Flag-TRPM8 along with siLCK. E, F Expression
constructs for Flag-WT-TRPM8 or Flag-TRPM8-Y1022F were co-transfected with or without HA-LCK into HEK293T cells to determine the
binding of TRPM8 and 14-3-3ζ. G, H PANC-1 cells were co-transfected with Flag-TRPM8, HA-LCK, si14-3-3ζ (#1, #2 or #3) or their combination,
before harvest for treatment with 1 μM DSS for 30min, and subjected to WB assay to detect the level of TRPM8 multimerization. I, J AsPC-1
cells were co-transfected with Flag-TRPM8 and GFP-TRPM8, HA-LCK, si14-3-3ζ or their combination, and then harvested for IP with an anti-Flag
antibody and subjected to determine the binding of intermolecular TRPM8. ***P < 0.001, NS not significant. Data are presented as mean ±
SEM. All studies were repeated at least three times.
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Earlier studies showed that a member of the Src family kinases
Src, but not Abl or Btk, phosphorylates TRPM8 and modulates the
cold‐induced activation of the TRPM8 channel by using a
combination of a constitutively active isoform of Src, Src inhibitor,
and Src siRNA, without detecting the interaction of TRPM8 and Src
[16]. In this study, we employed GST pull-down in combination
with MS assays and found that BLK, LCK, and LYN were potential
interacting partners of TRPM8, which was further strengthened by
Co-IP assays. However, ~60 kD of Src was failed to be detected in a
similar size band of BLK, LCK, and LYN. We speculated that Src
regulates TRPM8 function in an indirect manner. LCK has emerged
as one of the key molecules that functions in lymphocytes and
stimulates several ion channels, especially the Kv1.3 potassium
channel [35–39]. LCK coupled with hDlg indirectly regulated Kv1.3
channel activities [40]. Apart from Kv1.3, it is not clear whether LCK
stimulates other channels in a direct or indirect manner. Our data
revealed that LCK directly interacted with TRPM8 by protein-
protein interaction assay in vitro and positively modulated TRPM8
phosphotyrosine and ITRPM8 densities, expanding the mechanism

of LCK function on ion channels. Notably, BLK or LYN interacted
with TRPM8, but did not affect TRPM8 phosphotyrosine or ITRPM8

densities. Thus, the physiological role of the TRPM8 interaction
with BLK or LYN should be assessed.
TRPM7, belonging to the TRPM family with TRPM8, binds to 14-3-

3, which requires autophosphorylation of TRPM7 at S1403 [29].
However, 14-3-3 is involved in regulating TRPM7 cellular localization
[29], exhibiting a clear difference in the regulation of TRPM8
multimerization. In addition, our data revealed the importance of 14-
3-3ζ for LCK and impaired phosphorylation of TRPM8 (TRPM8-
Y1022F) regulating channel multimerization, supporting the idea
that TRPM8 phosphotyrosine modulates 14-3-3ζ-mediated channel
multimerization. Previous studies have shown that binding of 14-3-3
to proteins usually occurs after phosphorylation of Ser/Thr within
two conserved consensus motifs (RSXpS/TXP or RXXXpS/TXP),
leading to various functional consequences for regulating its
activation or deactivation [27, 28]. Apart from phosphotyrosine,
LCK, as a tyrosine kinase, also increased the level of TRPM8
phosphoserine. TRPM8-Y1022F markedly inhibited the level of
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TRPM8 phosphoserine, further supporting that TRPM8 phosphotyr-
osine affected its own phosphoserine level. Thus, we speculated that
TRPM8 phosphoserine might be involved in the process of 14-3-3ζ-
mediated channel multimerization regulated by LCK, although the
exact phosphoserine site(s) involved require further study. Together,
after phosphorylating TRPM8 at Y1022, LCK coordinately enhanced
the TRPM8 phosphoserine for recruiting 14-3-3ζ and providing
cross-bridging of 14-3-3ζ and TRPM8 in a complex, leading to
TRPM8 multimerization for elevated ITRPM8 densities on the PM.
LCK, as a Src family tyrosine kinase, was originally identified as

playing an important role in T-cell functions [17, 18]. Currently, LCK
has been shown to function as an oncogene in leukaemia and
various solid cancers, including breast cancer, colon cancer, and
lung carcinoma [41]. Indeed, several LCK inhibitors have been
approved to treat leukemia and various solid cancers, including
pancreatic cancer [42–45]. LCK activity is mainly regulated via
phosphorylation/dephosphorylation of crucial tyrosine residues
Y394 and Y505 [20–22]. Our data revealed that TRPM8 phospho-
tyrosine feedback altered the level of phosphorylated LCK on Y505
but not Y394, which is responsible for the elevated activity of LCK.
Therefore, TRPM8 phosphotyrosine suppressed the phosphoryla-
tion of LCK on Y505 in the inactive state, thereby enhancing LCK
activity. Several studies revealed that ubiquitination is also involved
in the regulation of LCK activity in a diverse manner [23–25]. Heat
shock protein 90 (Hsp90) prevents the active form Y505F of mutant
LCK from being targeted for degradation by ubiquitination [23].
Apart from HSP90-mediated LCK ubiquitination without altering
LCK expression, other regulators, such as Cbl and SOCS-6,
modulate the degradation of LCK [23–25]. TRPM8 phosphorylation
positively modulated LCK ubiquitination without affecting LCK
expression, especially the ubiquitination of the inactive form Y394F
of mutant LCK. Thus, we elucidated the mechanism by which
TRPM8 mediates ubiquitination at inactive LCK to regulate its
kinase activity, which is different from previous studies [23].
Nevertheless, how TRPM8 coordinates the crosstalk of phosphor-
ylation and ubiquitination across LCK in different active states to
modulate its activity needs further investigation.
There are limitations to the present study. Although TRPM8-

Y1022F markedly affected its own phosphoserine level, we could
not distinguish TRPM8 phosphotyrosine directly or indirectly
regulating 14-3-3ζ-mediated channel multimerization regulated
by LCK, which requires further study on the involved exact
phosphoserine site(s) of TRPM8. In addition, future studies are
needed to determine the degree of TRPM8 multimerization
mediated by LCK is positively correlated with the severity of
pancreatic cancer in clinical patients.

CONCLUSIONS
In summary, we investigated the molecular determinants and
functional consequences of TRPM8 phosphotyrosine (Fig. 9). The
four main findings are as follows: (1) the Src family tyrosine kinase
LCK is a novel TRPM8‐interacting protein that phosphorylates
TRPM8 at Y1022 and elevates ITRPM8 densities. (2) LCK and TRPM8
phosphotyrosine at Y1022 modulated ITRPM8 densities by mod-
ulating TRPM8 multimerization, which is involved in 14-3-3ζ-
TRPM8 binding and the regulation of 14-3-3ζ on TRPM8 multi-
merization. (3) Y1022 in the C‐terminal of TRPM8 is a critical
phosphorylation residue involved in the regulation of the
proliferation and migration of pancreatic cancer cells. (4) TRPM8
phosphotyrosine feedback modulates LCK activity by regulating
the crosstalk of phosphorylation and ubiquitination. These data
establish a link between LCK, 14-3-3ζ and TRPM8 and provide
mechanistic insights into the LCK-14-3-3ζ-TRPM8 axis for a full
understanding of TRPM8 multimerization mediated channel
function and LCK activity. Targeting the inhibition of the LCK-14-
3-3ζ-TRPM8 axis to impair oncogene function of both TRPM8 and
LCK may enhance tumor sensitivity to therapeutics, allowing for
potential pharmacological targeting for anticancer therapy.

MATERIALS AND METHODS
Antibodies and reagents
Rabbit anti-LCK (#12477, PTGCN, China), anti-GFP (#50430, PTGCN), anti-14-3-3
(#14503, PTGCN), anti-phosphotyrosine (p-Tyr) (P4110, Sigma), anti-
phosphothreonine (#9391, Cell Signaling Technology), anti-phosphoserine
(Abcam, ab9332), anti-phospho-Lck-Y505 (pY505) (#MAB7500, R& D), anti-
TRPM8 (#ACC-049, Alomone, Israel), and mouse anti-phospho-Lck-Y394
(pY394) (#2751, Cell Signaling Technology) antibodies were used at a dilution
factor of 1:1000. A mouse anti-GFP antibody (#66002, PTGCN), anti-HA
(#M180, MBL, Japan), anti-Flag (#M185, MBL), anti‐Myc (#M192, MBL), and anti-
GAPDH (#60004, PTGCN) were used at a dilution factor of 1:3000. A goat anti-
rabbit or anti-mouse HRP-conjugated secondary antibody obtained from
Millipore was used at a dilution factor of 1:20,000. The compounds for 4-
amino-5-(4-chlorophenyl)-7-(dimethylethyl) pyrazolo[3,4-d] pyrimidine (PP2),
sodium orthovanadate (Na3VO4), disuccinimidyl suberate (DSS), MG132, and
saracatinib were obtained from Selleck. All reagents for cell culture were
obtained from Invitrogen.

Cell culture and transfection
The human cervical cancer cell line HeLa, human embryonic kidney 293T
(HEK293T), and human pancreatic cancer cell lines PANC-1 and AsPC-1 were
obtained and cultured as previously described [46]. All cell lines were
maintained in Dulbecco’s modified essential medium (DMEM) containing 10%
fetal bovine serum (FBS), L-glutamine (2mM), penicillin G (100 units/ml), and
streptomycin (10mg/ml) at 37 °C with 5% CO2. Cells with 60~70% confluent
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were transfected with the indicated expression construct or siRNA using
Lipofectamine™ 2000 Transfection Reagent (Invitrogen) according to the
manufacturer’s instructions. After 48 h of transfection, the cells were harvested
for follow-up corresponding experiments.

Constructs and siRNA
The expression constructs for full-length rat Trpm8 (NM_134371) in
pcDNA3 (pcDNA3-TRPM8), pcDNA3.1-N-Flag (Flag-TRPM8), and pEGFP-N1
(GFP-TRPM8) were previously described [10, 47]. The truncated expression
constructs for the GST fused C-terminus of TRPM8 (GST-M8C) in pGEX-4T-1,
GFP fused C-terminus of TRPM8 (GFP-M8C) in pEGFP-C1, and Flag-tagged
cytosolic domains of TRPM8 (1-691 for M8-N, 756–759 for M8-LII, 815–829
for M8-LI, and 980–1104 for M8-C) subcloned into the pCMV10-3×Flag
vector were previously described [47]. The expression constructs for
mutant TRPM8 with mutation Y1022F was introduced using a PCR-based
mutagenesis method [10, 48, 49]. The human BLK, LCK, and LYN cDNAs
were kindly provided by Prof. Jiahuai Han (Xiamen University, China) and
subcloned into pcDNA3.1-HA to express HA-fused BLK, LCK, and LYN in
mammalian cells. LCK cDNA was also subcloned into pET28α(+) to express
His-fused LCK (His-LCK) in E. coli BL21. Human 14-3-3ζ cDNA from
HEK293T cells was subcloned into pEGFP-C1 to express GFP-fused 14-3-3ζ
in mammalian cells. All expression constructs were verified by direct DNA
sequencing analysis. The siRNA targeting human LCK (siLCK#1: 5′-U
CAAGAACCUGAGCCGCAATT-3′ and siLCK#2: 5′-GGCAGCCCAAAUUGCAG
AATT-3′), siRNA targeting human 14-3-3ζ (si14-3-3#1: 5′-GCCUGCAUGAAG
UCUGUAATT-3′, si14-3-3#2: 5′-CGUCUCAAGUAUUGAACAATT-3′ and si14-3-
3#3: 5′-CACGCUAAUAAUGCAAUUATT-3′), and scrambled control siRNA
(5’-UUCUCCGAACGUGUCACGUTT-3′) were designed and synthesized by
GenePharma (Suzhou, Jiangsu, China). The siRNA knockdown efficiency
was verified using western blotting analysis with an anti-LCK and anti-14-3-
3 antibody. TRPM8 mRNA was detected by real-time qRT-PCR using the
following primers: Forward: 5′-TCTGCCGACCTTCAGGAGGT-3′, Reverse: 5′-A
TGGAGTTCCACATCCAAGTCC-3′.

Lentiviral production and creation of stable cell lines
The lentiviral production and creation of stable cell lines were performed
as described previously [46]. The DNA fragment of TRPM8 was subcloned
into the lentiviral plasmid pCDH-CMV-MCS-EF1-turboRFP-T2A-Puro.
HEK293T cells in 10-cm dishes were transfected with 5 μg of lentiviral
constructs together with viral packaging plasmids, 3 μg of psPAX2 and
3 μg of pMD2.G (all related viral plasmids were kindly provided by Prof.
Xiaorong Zhang). After 48 h of transfection, the viral supernatant was
harvested, filtered through a 0.22 μm filter, and then added to PANC-1 or
AsPC-1 cells in 6-cm dishes with 10 μg/μl polybrene (Solarbio, H8761). At
48 h of viral infection, the cells were selected and cultured by replacing a
new culture medium containing puromycin (Solarbio, IP1280) every
3–4 days for several weeks. Clones of puromycin-resistant cells stably
expressing TRPM8 were isolated, characterized, and expanded in complete
culture medium supplemented with 2 μg/ml puromycin.

Western blot and immunoprecipitation
Western blotting (WB) and immunoprecipitation were performed following
the procedure described previously [49]. Briefly, cells were lysed with lysis
buffer (50mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.5% NP-40, and 1mM EDTA
supplemented with 1× protease inhibitor complete mini EDTA-free cocktail
from Roche). The supernatants of cell lysates were boiled for 5 min in 1×
SDS loading buffer (6×, 0.3 M Tris–HCl, 6% SDS, 60% glycerol, 120mM
dithiothreitol (DDT), and a proprietary pink tracking dye), subjected to
8–15% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) and transferred to polyvinylidene difluoride (PVDF) membrane. After
blocking with 5% nonfat dry milk in TBST (20mM Tris-HCl, 150mM NaCl,
0.05% Tween-20), the membrane was then incubated with the indicated
primary antibodies, secondary antibodies, and SuperSignal West Pico Plus
(Invitrogen, 34,580) according to the manufacturer’s instructions. Finally,
the protein signal on the membrane was recorded using a ChemiDoc XRS
system (Bio-Rad Laboratories, Richmond, CA) and analyzed using the
Image Lab software (Bio-Rad Laboratories).
For immunoprecipitation, 2 μg of the indicated antibody together with

500 μl of cell lysates (500 μg) were mixed at 4 °C for 3 h, followed by
incubation with 30 μl of Protein-A/G beads (Santa Cruz Biotechnology) for
2 h. After three washes three times with lysis buffer supplemented with
0.1% Tween, the resulting immunocomplexes were subjected to WB assay.
Studies were repeated at least three times.

For the ubiquitination assay, cells treated with 10 μM proteasome
inhibitor MG132 for 6 h were harvested and lysed with the denaturation
buffer (6 M guanidine-HCl, 0.1 M Na2HPO4/NaH2PO4, 10 mM imidazole) as
described previously [47]. The supernatant of lysates was mixed with the
indicated antibody and then with Protein‐A/G beads for 3 h with rotation
at RT, followed by washes and WB assay.

GST pull-down assay and protein-protein interaction assay
in vitro
The GST pull-down assay was performed as described previously [47].
Recombinant proteins for GST-M8C or GST alone expressed in E. coli
BL21 cells were purified using glutathione beads according to the
manufacturer’s protocol (Thermo). Purified GST-M8C or GST alone was
incubated with protein lysates extracted from HEK293T cells overexpres-
sing HA-BLK, HA-LCK or HA-LYN. After four washes with lysis buffer, the
complex of protein-bound GST-agarose beads was washed four times with
sonication buffer (0.5% Nonidet P-40, 50 mM Tris/HCl, 150 mM NaCl, 1 mM
EDTA supplemented with 1× protease inhibitor cOmplete Mini EDTA-free
mixture from Roche) and subjected to WB assay.
For the protein-protein interaction assay in vitro, the expression of the

His-LCK fusion protein in E. coli BL21 cells was induced with 1mM
isopropyl 1-thio-β-D-galactopyranoside (IPTG) for 8 h at 20 °C. The cells
were then harvested, resuspended in sonication buffer, and sonicated on
ice. Following centrifugation, the supernatants were incubated with the Ni-
NTA agarose (Beyotime, Shanghai, China) with rotation for 3 h at 4 °C. The
immobilized His-LCK was then washed with sonication buffer and 2 and
5mM imidazole. Elution with 50mM imidazole and 150 μg of bound His-
LCK proteins were incubated with the above purified the complex of GST
or GST-M8C protein-bound GST-agarose beads for 1 h at room tempera-
ture (RT). After washing with sonication buffer four times, the complex of
protein-bound GST-agarose beads was subjected to WB assay.

Kinase assay in vitro
The LCK kinase assay in vitro experiments was performed using a modified
protocol as previously described [50, 51]. LCK proteins extracted from
HEK293T cells overexpressing HA-LCK were immunoprecipitated with anti-
HA antibody. The immune-complex was extensively washed with lysis
buffer twice, washed with kinase assay buffer (20mM Tris-HCl pH 7.5,
10mM MgCl2, 10 mM MnCl2), and incubated together with 100 ng of
bacterially purified GST-M8C in kinase assay buffer supplemented with
1mM ATP. After incubation for 30min at 37 °C for 30min, the reaction
mixtures were terminated and boiled for 5 min in 1× SDS sample buffer,
followed by WB assay to detect the phosphotyrosine of the C-termini
of TRPM8.

Electrophysiological experiments
For electrophysiological experiments, whole-cell cation currents mediated
by TRPM8 (ITRPM8) were recorded by whole-cell patch-clamp technologies
with an Axon MultiClamp 700B amplifier using the Digidata1550A digitizer
(Axon Instruments, Sunnyvale, CA) as described previously [10]. Briefly, the
indicated expression constructs pEGFP-N1 and Flag-TRPM8 were trans-
fected into HEK293T cells. After 48 h of transfection, we selected the cells
expressing an approximately equal amount of GFP to record ITRPM8 at RT in
an extracellular solution containing (mM) 150 NaCl, 6 CsCl, 1 MgCl2, 1.5
CaCl2, 10 glucose, 10mM HEPES, pH 7.4 with NaOH. The peptides were
filled with pipette solution ((mM): 150 NaCl, 3 MgCl2, 5 EGTA, 10 HEPES, pH
7.2 with NaOH) to form a tip resistance of 2~4MΩ. Series resistance was
compensated by 75–85% to reduce voltage errors. The holding potential
was −60mV, and details of each pulse protocol are given schematically in
the related figures. The densities of the whole-cell TRPM8 current (ITRPM8)
were normalized to the cell capacitance (pA/pF). The data were analyzed
using a combination of Clampfit version 11.0 (Molecular Devices), Microsoft
Excel, and GraphPad Prism 5 (GraphPad Software Inc., San Diego, CA, USA).

Cell surface biotinylation assay
Isolation of PM proteins by cell surface biotinylation assay was described
previously [10, 48, 49]. Briefly, cells were harvested and incubated with
sulfo-NHS-SS-Biotin to label the PM proteins in ice-cold PBS for 30min,
followed by incubation with 100mM glycine to quench the biotinylation
reaction. After three washes with PBS, the cells were harvested in the above
lysis buffer. The biotinylated proteins were precipitated with NeutrAvidin-
agarose resin beads (Pierce) overnight at 4 °C. The protein-bead complex
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was washed with lysis buffer and then resuspended in 1× SDS loading
buffer for WB assays.

Immunocytochemistry and confocal microscopy
Immunocytochemistry was performed as described previously [47, 52].
Transfected HEK293T, HeLa or ASPC-1 cells on glass coverslips were
washed three times with ice-cold PBS, fixed for 10min with 4%
paraformaldehyde (w/v) in PBS, and permeabilized for 15min by
incubation with 0.2% Triton X-100 at RT. After blocking with 1× PBS
containing 0.1% Triton X-100 (v/v) and 10% goat serum (v/v) for 2 h, the
samples were incubated with the indicated primary antibodies (e.g., anti-
Ki67 antibody (#27309, PTGCN)) overnight at 4 °C and fluorescence-labeled
secondary antibodies in PBS supplemented with 2% FBS and 1% BSA for
2 h at RT. DAPI (1 μg/ml, Solarbio, C0065) was used for nuclear staining.
Finally, the samples were washed three times with ice-cold PBS and
observed with a confocal laser-scanning microscope (Leica SP8, Wetzlar,
Germany). At least three fields of view were analyzed. Data analysis was
performed using the Leica LAS AF Lite software.

5-Ethynyl-20-deoxyuridine (EdU) incorporation assay
The EdU incorporation assay was performed as described previously [52].
EdU-labeled transfected PANC-1 cells were examined using the BeyoClick™
EdU Cell Proliferation Kit with Alexa Fluor 488 (Beyotime, C0071S) and then
imaged under an Olympus FSX100 microscope.

In vitro colony formation assay
A colony formation assay was performed as described previously [47, 52].
Approximately equal amounts of PANC-1 cells transfected with vector,
wild-type or mutant TRPM8 were seeded in 12-well plates and allowed to
grow for 7~10 days. The medium was replaced every 3 days. Cells were
washed twice with PBS, fixed with 4% paraformaldehyde, and stained with
0.5% crystal violet staining solution (Sigma-Aldrich, USA). Colonies with
more than 50 cells in triplicate wells were counted.

In vitro cell migration assay
The effects of TRPM8 on the migration ability of cells were evaluated using
wound-healing and Transwell assays. For the wound-healing assay, stably
maintained AsPC-1 cells with 80% confluent in 12-well plates were
cultured for 24 h after the formation of a monolayer. The monolayer was
scratched with the tip of a 10 μL pipette and washed with PBS to remove
the cell fragments, followed by the addition of the conditioned medium.
The wound healed for 12 h and was imaged at the same wound location
using an Olympus FSX100 microscope.
For the Transwell assay, ~5 × 104 of transfected cells were digested and

placed into the upper chamber precoated with an 8 μm pore Transwell insert
(Fisher Scientific, 0877121) with the lower chamber containing medium
(containing 10% FBS). After incubation for 24 h at 37 °C and 5% CO2. The
upper surface of the membrane was then gently scraped using a cotton
swab to remove the non migrated cells and washed twice with PBS. The
wells were then fixed in 4% paraformaldehyde for 30min, permeabilized
with 0.2% Triton for 10min, and stained with 0.5% crystal violet staining
solution. Following two washes with PBS, the migrated cells were observed
and photographed under an Olympus FSX100 microscope. The number of
migrated cells was determined by averaging five random fields per well.

Animal xenotransplantation engraftment experiments
Animal experiments in our study have been reviewed and approved for
the use of laboratory animals by the Hubei University of Technology
Animal Care and Use Committee. The zebrafish were maintained according
to standard protocols (http://ZFIN.org), and embryos were grown at 28.5 °C
in egg water (60 μg/ml Instant Ocean sea salts). For zebrafish engraftment
xenotransplantation, 2 days post-fertilization (dpf), embryos were utilized
and obtained from adult AB zebrafish (Danio rerio). Approximately 300 of
RFP-labeled stably maintained PANC-1 cells were inoculated into the blood
circulation of 2 dpf zebrafish embryos as previously described [53]. Prior to
microinjection, the survival rate of cells was above 90% by analyzing some
cells using trypan blue staining and counting. Embryos were incubated at
34 °C for 4 days and imaged under anesthesia in egg water containing
200 μg/ml tricaine (Sigma Aldrich) using fluorescence microscopy (Leica
M205FA, Germany).
For xenograft engraftment in mice, BALB/c nude mice at 4–6 weeks of

age (18–22 g) were utilized and purchased from Vital River Laboratory

Animal Technology (Beijing, China). Three million stably maintained PANC-
1 cells in 100 μl of phosphate-buffered saline (PBS) were subcutaneously
implanted into the left and right axillae of female BALB/c nude mice per
group and grown for 4–6 weeks as previously described [46, 52]. The
tumor volume (V) was monitored and measured every 5 days with the
following formula: V= [(tumor length × width × 2)/2], and the weight was
calculated when the mice were sacrificed.

Statistical analysis
Data are presented as the mean ± SEM, and all data reported are based on at
least three independent experiments. Student’s unpaired or paired two-tailed
t tests (GraphPad) were performed to determine statistical significance as
appropriate. For comparisons of more than two groups, one-way analysis of
variance was employed for normal distributions, and the Kruskal–Wallis test
was employed for nonnormal or small samples. P values < 0.05 were
considered statistically significant. *Represents P< 0.05, **represents P< 0.01
and ***represents P< 0.001, NS stands for “not significantly different”.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
Please contact the corresponding author (Jingfeng_HUT@163.com or cefan@hbut.
edu.cn) for data requests.
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