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Introduction
Acute pancreatitis (AP) is an acute inflammatory 
disorder of the pancreas.1 The global morbidity of 
AP is reported to be approximately 34 cases per 
100,000 person-years, with evidence of a rising 
trend over time.2,3 Despite recent advances in 
therapy, the mortality rate of severe AP in the 
early phase has remained unchanged over the 

past few decades.4,5 This highlights the need to 
identify modifiable risk factors for the primary 
prevention of this disease.

Dietary factors play crucial roles in the prevention 
of AP. For example, some epidemiological evi-
dence has demonstrated that high consumption of 
vegetables and fruits and moderate consumption of 
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Abstract
Background: The relationship between Mediterranean diet (MedDiet) adherence and acute 
pancreatitis (AP) risk is largely unknown.
Objectives: To investigate the associations between MedDiet adherence and AP risk and joint 
associations of genetic risk and MedDiet adherence with AP risk.
Design: A prospective cohort study using data from UK Biobank, a large population-based 
prospective study that recruited over 500,000 participants aged 40–69 between 2006 and 2010 
across the United Kingdom.
Methods: We included 103,449 participants free of AP with typical dietary intake from 24-h 
dietary recalls. MedDiet adherence was measured via the Mediterranean Diet Adherence 
Screener (MEDAS) continuous score. Genetic predisposition to AP was estimated by polygenic 
risk score (PRS). Incident AP cases were identified via electronic medical records. Hazard 
ratios (HRs) with 95% confidence intervals (CIs) were estimated by Cox proportional hazards 
models. Mediation analyses were further applied to explore the mediating effects of the low-
grade inflammation (INFLA) score and metabolic status.
Results: Over a mean follow-up period of 10.4 years, 371 AP cases were documented. Higher 
MedDiet adherence defined by MEDAS continuous score was inversely associated with lower 
AP risk (highest vs lowest tertiles: HR 0.60, 95% CI 0.46–0.79, p < 0.001), with the INFLA score 
and metabolic status mediating 10% and 7.1% of the association, respectively. Although no 
interaction was observed between PRS and MedDiet adherence, participants with combined 
low genetic risk and the highest MedDiet adherence had the lowest risk of AP (HR 0.54, 95% CI 
0.36–0.80, p = 0.002).
Conclusion: The study suggests that higher adherence to the MedDiet is associated with a 
decreased risk of AP, which is partially mediated by inflammation and metabolic status, and 
may attenuate the deleterious impact of genetics on AP risk.
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fish are associated with a reduced AP risk.6–8 In 
contrast, the high consumption of red and pro-
cessed meat increases AP risk.7 The causality 
involving fruits, red meat, and processed meat was 
further verified by a Mendelian randomization 
study.9 However, focusing solely on individual food 
or nutrients often overlooks the complex interac-
tions and synergies between them, and the overall 
diet pattern better reflects real-world practice. The 
Mediterranean diet (MedDiet) is characterized by 
high consumption of vegetables, cereals, fruits, leg-
umes, and olive oil; moderate consumption of sea-
food, red wine, and nuts; and limited consumption 
of red meat, sweetened drinks, and sweets.10,11 
Given the characteristics of the MedDiet, which 
overlaps with foods shown to have protective effects 
against AP, it is plausible that this dietary pattern 
could help prevent AP. However, evidence on the 
relationship between AP risk and the MedDiet is 
limited. Only a case‒control study with 50 AP 
patients and 50 controls indicated a decreased risk 
of AP among children with increased MedDiet 
adherence.12 The MedDiet  also reduced the inci-
dence of common etiologies of AP, such as gall-
stones and hyperlipidemia,13–16 and the burden of 
inflammation.17–19 Additionally, precision nutrition 
on the basis of genetic background can offer person-
alized guidance for more effective AP prevention.20 
To date, several susceptibility loci associated with 
AP risk have been identified by recent genome-wide 
association studies (GWASs).21,22 Thus, exploring 
the joint effects and interactions of genetic risk and 
the MedDiet on AP risk is valuable.

In this study, we conducted a prospective cohort 
study using data from the UK Biobank, aiming to 
investigate the association between MedDiet 
adherence and the risk of AP. We also explored 
the potential mediating pathways and investigated 

the joint associations of genetic risk and MedDiet 
adherence with AP risk.

Methods

Study population
The UK Biobank, a large community-based pro-
spective study, recruited over 500,000 partici-
pants aged 40–69 years between 2006 and 2010 
across the United Kingdom.23 Ethical approval 
for the UK Biobank was obtained from the North 
West-Haydock Research Ethics Committee 
(REC reference: 21/NW/0157). All participants 
provided informed consent at the time of recruit-
ment. This study adheres to the Strengthening 
the Reporting of Observational Studies in 
Epidemiology (STROBE) guidelines.24

In the present study, we excluded participants 
without at least two typical diet recalls (n = 398,449) 
to reduce irregular dietary reporting. We also 
excluded those with implausible energy intakes 
(<800 or >4200 kcal/day for men, <600 kcal/day 
or >3500 kcal/day for women; n = 135)25 to reduce 
extreme dietary reporting errors. Participants with 
prevalent AP or chronic pancreatitis (n = 396) and 
those who developed AP within 1 year of follow-up 
(n = 32) were excluded to minimize the potential 
for reverse causality (Figure 1). The final analysis 
of MedDiet adherence and AP risk included 
103,449 participants. Written informed consent 
was obtained from all participants prior to study 
initiation, with access to UK Biobank data 
approved by the UK Biobank Access Committee 
(Application number 79612). For analysis by 
genetic risk, we further excluded participants with-
out genetic information (n = 16,614), leaving a 
sample of 86,835 individuals.

Figure 1.  Flowchart of participant inclusion for this study.
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Assessment of MedDiet adherence
Dietary intake was assessed via the Oxford Web-
Q, an online 24-h dietary recall questionnaire that 
has been well validated in previous studies.26,27 
The participants completed the 24-h dietary 
questionnaires between April 2009 and September 
2010. They subsequently answered follow-up 
dietary questionnaires every 3–4 months from 
February 2011 to June 2012.28 Repeated 24-h 
dietary questionnaires showed good test–retest 
reliability, and the mean dietary intake across 
assessments was used to reduce potential biases 
from daily dietary variations.29 Specific dietary 
intake in grams was calculated by multiplying the 
quantity of consumed portions by the standard 
portion size in grams.25,30

MedDiet adherence was quantified via the 
Mediterranean Diet Adherence Screener 
(MEDAS) continuous score (Tables S1 and S2), 
which has been validated in the UK population.28 
The traditional MEDAS score is a 14-point score 
with a binary evaluation of food components 
including olive oil, vegetables, fruits, red meat, 
butter, margarine or cream, sweetened or carbon-
ated drinks, wine (red and rose), legumes, sea-
food, sweets or pastries, nuts, white meat, and 
Sofrito (a fragrant Spanish cooking base). The 
participants were allocated one point if they met a 
dietary target and zero point if they did not. The 
MEDAS continuous score uses the same dietary 
targets but allocates points proportionally on the 
basis of the degree of adherence,10,28 thus increas-
ing the sensitivity to detect differences in dietary 
quality.31 Notably, the original MEDAS continu-
ous score includes a food item requiring the con-
sumption of olive oil ⩾ 4 tablespoons/day. Owing 
to the infeasibility of the amount of olive oil con-
sumed, we assigned one point for consumption 
and zero point for nonconsumption, which has 
been well validated in previous research.28 
Consistent with a previous study,32 the MEDAS 
continuous score was adjusted for total energy 
intake via the residual method.

Polygenetic risk score for AP
To capture the participants’ genetic load of AP 
risk, we used 50 independent genetic variants (r2 
for linkage disequilibrium < 0.01) that were asso-
ciated with AP (p < 5×10−5) from a genome-wide 
association meta-analysis of people of European 
ancestry21 (Table S3). The polygenic risk score 
(PRS) for AP was established by summing the 

risk-increasing alleles for each single nucleotide 
genetic polymorphism (SNP) weighted by the 
effect size to AP (Σi

n
i i= ×1 β SNP ) and categorized 

into low and high genetic risk.

Ascertainment of outcome
The diagnosis of AP was ascertained via the 
International Classification of Disease (ICD) 
Code, which was obtained through inpatient 
records (ICD-9: 577, ICD-10: K85) and death 
registries (ICD-10: K85) (Table S4). The pri-
mary care records obtained via Read codes were 
mapped to the ICD codes. The follow-up time of 
the participants was calculated from the date of 
the last completed dietary questionnaire to the 
occurrence of the first diagnosed case of AP, 
death, loss to follow-up, or end of follow-up 
(October 31, 2022 for England, August 31, 2022 
for Scotland and 31 May 2022 for Wales), which-
ever occurred first.

Assessment of covariates and mediators
Covariates were selected based on prior knowl-
edge,28,33 including age (continuous, in years), 
sex (male and female), ethnicity (white and oth-
ers), education level (college and below college), 
smoking status (never, previous and current), 
drinking status (never, previous and current), 
total energy intake (continuous, in kcal/day), 
physical activity level (low, moderate, and high, 
by tertiles), body mass index (BMI, <25 kg/m2, 
25–29.9 kg/m2, ⩾30 kg/m2), Townsend depriva-
tion index (TDI, low, moderate, and high, by  
tertiles), Charlson comorbidity index (CCI, con-
tinuous), sleep duration (continuous, in hours/
day), alcohol consumption (continuous, in g/
week), hyperlipidemia (triglycerides ⩾1.7 mmol/L 
and < 1.7 mmol/L), baseline diabetes (with  
and without), and gallstones (with and without). 
Furthermore, metabolic status (healthy, 
unhealthy) and inflammation, represented by the 
low-grade inflammation score (INFLA score, 
continuous), were considered potential media-
tors. Table S5 provides more details on these 
covariates and mediators.

Statistical analyses
The baseline characteristics of the participants 
are presented by tertiles of the MEDAS continu-
ous score (low, middle, and high). Descriptive 
statistics are presented as the means (standard 
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deviations, SDs) for continuous variables and per-
centages for categorical variables. Group differ-
ences were assessed by ANOVA or the chi-square 
test. Missing values of covariates were imputed by 
using the mean for continuous variables and the 
mode for categorical variables. The “unknown” 
category was created for physical activity and met-
abolic status because of its high missing data rate 
(Table S6). Population attributable fractions 
(PAFs) were used to estimate the proportion of 
the AP cases attributable to gallstones (with and 
without), alcohol consumption (>100 g/week and 
⩽100 g/week), and hyperlipidemia (triglycerides 
⩾1.7 mmol/L and  < 1.7 mmol/L) which are the 
most three common risk factors for AP (collec-
tively accounting for over 70% AP cases).34 The 
formula is PAF = (p(HR-1))/(p(HR-1) +1), where 
p is the prevalence of the risk factor and HR is the 
hazards ratio of the AP of the exposed over the 
non-exposed.

Associations between the MEDAS continuous 
score and AP risk were estimated via Cox propor-
tional hazards models with estimation of HRs and 
95% confidence intervals (CIs). The minimally 
adjusted model was adjusted for age, sex, and 
total energy intake. The fully adjusted model was 
further adjusted for ethnicity, education, TDI, 
smoking status, physical activity, and baseline 
gallstones. The proportional hazards assumption 
was tested via Schoenfeld residual methods (all 
p > 0.05). The lowest tertile of the MEDAS 
continuous score was treated as a reference. In 
addition, we assessed the impact of each food 
component of the MEDAS score on AP risk.

The associations between PRS and AP were esti-
mated via the Cox proportional hazards  
regression model. The interaction between the 
MEDAS continuous score and PRS was subse-
quently examined by stratifying participants by 
PRS and using the multiplicative interaction 
model. We also estimated the joint associations 
of the MEDAS continuous score and genetic 
risk with AP.

Subgroup analyses were performed by stratifying 
participants by sex, age, education, smoking sta-
tus, TDI, and physical activity to explore poten-
tial effect modifications. Mediation analyses were 
conducted to evaluate the mediating effects of the 
INFLA score and metabolic status on the associa-
tion between the MEDAS continuous score and 
AP risk.

Several sensitivity analyses were conducted to ver-
ify the robustness of our findings. First, given that 
alcohol abuse is an established etiology for AP,1 we 
repeated the analysis using the MEDAS continu-
ous score by excluding wine consumption and fur-
ther adjusting drinking status. Second, we used the 
MEDAS binary score and an alternative 
Mediterranean diet (aMed) score to assess 
MedDiet adherence.35,36 The details of the aMed 
scores are presented in Table S7. Third, we 
excluded participants who developed AP within 2, 
3, or 4 years of follow-up to further minimize 
reverse causality. Fourth, we additionally adjusted 
the models for potential confounders, including 
BMI, CCI, sleep duration, and baseline diabetes. 
Fifth, to evaluate the impact of the imputation 
methods, we filled in missing values with multiple 
imputations. Sixth, propensity score matching 
(PSM) was further conducted to investigate the 
association of MEDAS continuous score with AP 
risk, to minimize potential confounding bias from 
group differences of baseline characteristic, espe-
cially from known risk factors of AP like gallstones, 
alcohol, and hyperlipidemia. The matching was 
constructed based on a 1:1 ratio of highest tertile 
of MEDAS continuous score with lowest tertile 
using the nearest neighbor method with a caliper 
width of 0.05 without replacement. The balance of 
variables between the groups before and after 
matching was assessed using standardized mean 
difference (SMD), with a value of less than 0.10 
indicating balance.

Statistical analyses were performed via R 4.2.1. All 
the statistical tests were two-sided, and a p 
value < 0.05 was considered statistically significant.

Results

Baseline characteristics
Over a mean follow-up of 10.4 years, 371 cases of 
AP were documented (34 cases/100,000 person-
years). The baseline characteristics of the study 
population stratified by the tertiles of the MEDAS 
continuous score are shown in Table 1. The mean 
age of the 103,449 participants was 59.72 years 
(7.83). Participants with higher adherence to the 
MedDiet were more likely to be older, female, 
highly educated, and demonstrated higher physical 
activity levels, lower BMI, lower prevalence of dia-
betes and gallstones, lower triglyceride levels, and 
higher alcohol consumption compared to those 
with lower adherence. The PAFs for AP cases 
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Table 1.  Participant characteristics according to the tertiles of the Mediterranean Diet Adherence Screener continuous score 
(n = 103,449).

Characteristics Overall
(N = 103,449)

Low (>0–5.6)
(N = 34,483)

Middle (⩾5.6–7.1)
(N = 34,483)

High (⩾7.1)
(N = 34,483)

pa

Age, year 59.72 (7.83) 58.99 (8.08) 59.84 (7.77) 60.33 (7.57) <0.001

Female (%) 57,280 (55.4) 16,172 (46.9) 19,560 (56.7) 21,548 (62.5) <0.001

White (%) 100,346 (97.0) 33,443 (97.0) 33,477 (97.1) 33,426 (96.9) 0.51

Townsend deprivation index (%) <0.001

  Low deprivation 34,491 (33.3) 11,037 (32.0) 11,870 (34.4) 11,584 (33.6)  

  Moderate deprivation 34,475 (33.3) 11,613 (33.7) 11,600 (33.6) 11,262 (32.7)  

  High deprivation 34,483 (33.3) 11,833 (34.3) 11,013 (31.9) 11,637 (33.7)  

College and above (%) 47,490 (45.9) 12,697 (36.8) 16,146 (46.8) 18,647 (54.1) <0.001

Smoking status (%) <0.001

  Never 59,505 (57.5) 19,990 (58.0) 20,253 (58.7) 19,262 (55.9)  

  Previous 36,960 (35.7) 11,405 (33.1) 12,158 (35.3) 13,397 (38.9)  

  Current 6984 (6.8) 3088 (9.0) 2072 (6.0) 1824 (5.3)  

Physical activity (%) <0.001

  Low intensity 16,025 (15.5) 6438 (18.7) 5313 (15.4) 4274 (12.4)  

  Moderate intensity 38,218 (36.9) 12,406 (36.0) 12,990 (37.7) 12,822 (37.2)  

  High intensity 34,618 (33.5) 10,232 (29.7) 11,310 (32.8) 13,076 (37.9)  

  Unknown 14,588 (14.1) 5407 (15.7) 4870 (14.1) 4311 (12.5)  

Body mass index (%) <0.001

  <25 kg/m2 41,622 (40.2) 11,438 (33.2) 13,973 (40.5) 16,211 (47.0)  

  25–29.9 kg/m2 42,090 (40.7) 14,508 (42.1) 14,168 (41.1) 13,414 38.9)  

  >30 kg/m2 19,737 (19.1) 8537 (24.8) 6342 (18.4) 4858 (14.1)  

Incident acute pancreatitis 
developed after 1 year of 
recruitment

371 (0.4) 158 (0.5) 122 (0.4) 91 (0.3) <0.001

Charlson comorbidity index 0.23 (0.82) 0.25 (0.84) 0.22 (0.82) 0.21 (0.79) <0.001

Sleep duration, hour 7.18 (0.97) 7.16 (1.03) 7.19 (0.96) 7.19 (0.92) <0.001

Total energy intake, kcal/d 2031.18 (478.33) 2038.55 (505.69) 2013.36 (465.08) 2041.65 (462.51) <0.001

Baseline gallstones 2902 (2.8) 1117 (3.2) 978 (2.8) 807 (2.3) <0.001

Alcohol consumption, g/week 139.32 (131.64) 119.70 (123.61) 138.01 (132.15) 160.24 (135.73) <0.001

(Continued)
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demonstrated 4.0% (95% CI 1.3%–6.7%) for 
hyperlipidemia and 15.3% (95% CI 7%–23.6%) 
for gallstones. In contrast, alcohol consumption 
showed no contribution to the AP risk (PAF 
−6.8%, 95% CI −19.1% to 5.4%; Table S8).

MedDiet adherence and incident AP
Higher adherence to the MedDiet defined by the 
MEDAS continuous score was associated with a 
lower risk of AP (per SD HR 0.81, 95% CI 0.73–
0.91, p < 0.001; p-trend  < 0.001) (Table 2 and 
Figure 2). Compared with participants in the 

lowest tertile of the MEDAS continuous score, 
those in the middle and highest tertiles had HRs 
of 0.80 (95% CI 0.63–1.01, p = 0.061) and 0.61 
(95% CI 0.46–0.79, p < 0.001), respectively.

Associations between each food component of 
the MEDAS score and the risk of AP are shown 
in Table S9. The participants who met the rec-
ommended intake of olive oil, wine, and sweet-
ened or carbonated drinks had lower risks of AP, 
with HRs of 0.71 (95% CI 0.58–0.87, p < 0.001), 
0.70 (95% CI 0.55–0.90, p = 0.005), and 0.68 
(95% CI 0.55–0.84, p < 0.001), respectively.

Table 2.  Association between the Mediterranean Diet Adherence Screener continuous score and the risk of acute pancreatitis 
(n = 103,449).

Dietary index Case/Person-year Minimally adjusted modela Fully adjusted modelb

HR (95% CI) p HR (95% CI) p

MEDAS continuous

  Per SD 0.79 (0.71, 0.88) <0.001 0.81 (0.73, 0.91) <0.001

  Low (<5.6) 158/357,263 Ref Ref  

  Medium (⩾5.6–7.1) 122/358,756 0.76 (0.60, 0.97) 0.025 0.80 (0.63, 1.01) 0.061

  High (⩾7.1) 91/359,568 0.57 (0.44, 0.74) <0.001 0.61(0.46, 0.79) <0.001

  p-trend / <0.001 <0.001

aModel adjusted for age, sex, and total energy intake.
bModel adjusted for age, sex, total energy intake, ethnicity, education, Townsend deprivation index, smoking status, physical activity, and gallstones.
CI, confidence interval; HR, hazard ratio; MEDAS, Mediterranean Diet Adherence Screener.

Characteristics Overall
(N = 103,449)

Low (>0–5.6)
(N = 34,483)

Middle (⩾5.6–7.1)
(N = 34,483)

High (⩾7.1)
(N = 34,483)

pa

Triglycerides, mmol/L 1.67 (0.95) 1.80 (1.03) 1.66 (0.93) 1.55 (0.86)  

Baseline diabetes 4111 (4.0) 1845 (5.4) 1270 (3.7) 996 (2.9) <0.001

INFLA score −0.83 (6.00) 0.01(6.99) −0.86 (5.94) −1.60 (5.89) <0.001

Metabolic status  

  Healthy 51,697 (50.0) 15,424 (44.7) 17,319 (50.2) 18,954 (55.0) <0.001

  Unhealthy 37,534 (36.3) 14,365 (41.7) 12,379 (35.9) 10,790 (31.3)  

  Unknown 14,218 (13.7) 4694 (13.6) 4785 (13.9) 4739 (13.7)  

ap Values were calculated via χ2 tests or analysis of variance.
INFLA, low-grade inflammation.

Table 1.  (Continued)
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MedDiet adherence, genetic risk,  
and incident AP
For genetic susceptibility, the PRS was signifi-
cantly associated with AP risk (Figure S1 and 
Table S10). Compared with participants in the 
low genetic risk group, those in the high genetic 
risk group had a 31% increased risk of AP (HR 
1.31, 95% CI 1.05–1.64, p = 0.018).

As shown in Table 3, the highest tertile of the 
MEDAS continuous score was associated with a 
reduced risk of AP compared with the lowest ter-
tile in the high genetic risk stratum (HR 0.62, 
95% CI 0.42–0.92; p = 0.016). However, no sig-
nificant interaction was observed between PRS 
and MedDiet adherence (p-interaction = 0.709). 
When genetic risk and MedDiet adherence were 
combined, there was a monotonic association 
between decreasing genetic risk and increasing 
MedDiet adherence (Figure 3). Participants with 
both low genetic risk and the highest tertile of the 
MEDAS continuous score had the lowest risk of 
AP (HR 0.54, 95% CI 0.36–0.80; p = 0.002).

Subgroup and mediation analyses
In the subgroup analyses, the associations 
between the MEDAS continuous score and AP 
risk remained consistent, with no interactions 
across stratifications by sex, age, education, 
smoking status, TDI, or physical activity (all 
p-interactions > 0.05, Figure S2).

Mediation analyses revealed that 9.5% (95% CI 
2.4%–21.9%) and 7.1% (95% CI 2.74%–18.0%) 
of the associations between the MEDAS continu-
ous score and AP risk were mediated by the 
INFLA score and metabolic status, respectively 
(Figure 4 and Table S11).

Sensitivity analyses
The main results remained largely stable in the 
sensitivity analyses. Specifically, higher MedDiet 
adherence (highest vs lowest) was also associated 
with a lower risk of AP when excluding the wine 
component in the MEDAS continuous score (HR 
0.65, 95% CI 0.50–0.84, p = 0.001), applying the 
MEDAS binary score (HR 0.66, 95% CI 0.51–
0.86, p = 0.002), excluding participants with AP 
events that occurred within the first 2, 3, or 4 years 
of follow-up, further adjusted for BMI, CCI, sleep 
duration, and baseline diabetes, and replacing the 

missing values with multiple imputations (Tables 
S12–S14). Although the association was not sta-
tistically significant when using the aMed score 
(HR 0.80, 95% CI 0.62–1.03, p = 0.083), the 
results were consistent with the trends observed in 
other measures (Table S11). The PSM achieved 
satisfactory balance between highest tertile of 
MEDAS continuous score and the lowest tertile, 
with SMD < 0.10 for all baseline characteristic 
(Table S15). After PSM, the HR remained con-
sistent with unmatched analysis (highest tertile vs 
lowest tertile: 0.71, 95% 0.54–0.93, p < 0.001), 
though slightly attenuated (Table S16).

Figure 2.  Association between the Mediterranean Diet Adherence Screener 
continuous score and the risk of AP using cumulative incidence curve.
AP, acute pancreatitis; MEDAS, Mediterranean Diet Adherence Screener.

Table 3.  Subgroup analysis by genetic risk group.

Stratified by PRS Low genetic riska p High genetic riska p

HR (95% CI) HR (95% CI)

Low MEDAS 
continuous score

Ref Ref  

Middle MEDAS 
continuous score

0.77 (0.52, 1.16) 0.213 0.87 (0.62, 1.22) 0.411

High MEDAS 
continuous score

0.70 (0.46, 1.07) 0.101 0.62 (0.42, 0.92) 0.016

p-interaction 0.709

aModel adjusted for age, sex, total energy, education, Townsend deprivation index, 
smoking status, drinking status, physical activity, baseline gallstones, and first 20 
principal components of ancestry.
CI, confidence interval; HR, hazard ratio.
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Discussion
In this study, we found that higher adherence to 
the MedDiet was associated with a decreased risk 
of AP, which was partially mediated by inflamma-
tion and metabolic status. Individual components 
of the MedDiet, such as olive oil consumption, 
higher wine intake, and lower consumption of 

sweetened or carbonated drinks, appeared to 
drive the observed association. The inverse rela-
tionship between wine (red and rose) intake and 
AP risk contrasts with the known role of alcohol 
as an AP risk factor. Furthermore, the PAFs dem-
onstrated that alcohol consumption made no 
contribution to AP risk. This paradox may be 

Figure 4.  The schematic diagram and mediation effects of the low-grade inflammation score (a) and 
metabolic status (b) on the relationship between the Mediterranean Diet Adherence Screener continuous score 
and risk of acute pancreatitis, and the y-axis represents the mediating effect, direct effect, and total effect. The 
mediation effects were individually examined in separate structural equation models.
ACME, average causal mediation effects; ADE, average direct effect; INFLA, low-grade inflammation; MEDAS, 
Mediterranean Diet Adherence Screener.

Figure 3.  Joint associations between Mediterranean Diet adherence, genetic risk, and AP risk.
AP, acute pancreatitis; MEDAS, Mediterranean Diet Adherence Screener.
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explained by the fact that the dominant sources of 
alcoholic beverages in the UK population—wine 
and beer—have previously been found unassoci-
ated with AP risk,37 with their anti-inflammatory 
polyphenols potentially mitigate the harmful 
effects of alcohol.38,39 We observed no interaction 
effect between MedDiet adherence and genetics 
on AP risk, suggesting that MedDiet adherence 
affects AP risk independently of genetics. In the 
sensitivity analysis, most results were consistent, 
except when MedDiet adherence was measured 
by the aMed. Unlike MEDAS, aMed uses the 
median of study subjects as a cutoff. This 
approach may be influenced by “healthy-volun-
teer bias,” where individuals with healthier life-
styles, better education, and health are more 
likely to join the UK Biobank cohort.40,41 As a 
result, the effects of the MedDiet may be attenu-
ated due to higher median dietary intake values.

Compared with previous studies
The clinical evidence regarding the association 
between MedDiet adherence and AP risk is rather 
limited. Only one study involving 50 children 
diagnosed with AP and their 50 healthy controls 
revealed that children with AP had lower adher-
ence to the MedDiet than healthy controls did,12 
similar to our findings.

Some previous studies linking individual compo-
nents of the MedDiet with AP risk also suggested 
the potential benefits of the MedDiet against inci-
dent AP. In a study involving 8019 participants, 
every two servings per day increase in vegetable 
consumption was associated with a 17% reduction 
in AP risk.6 A multiethnic cohort study of 145,886 
participants demonstrated that dietary fiber intake 
from fruits was inversely associated with AP risk, 
whereas red meat intake increased gallstone-
related AP risk.7 A two-sample Mendelian rand-
omization study revealed similar effects of fruits 
and red meat on AP risk.9 Furthermore, a cohort 
study from Sweden revealed that moderate fish 
consumption (1–3 servings/week) was associated 
with a decreased risk of non-gallstone-related AP.8 
Together, this evidence supports the potential 
benefits of the MedDiet on AP risk, and more 
studies are needed to clarify our findings.

Possible interpretations
Both inflammation and metabolic status were sub-
stantiated as possible mediators in the relationship 

between the MedDiet and incident AP in our anal-
ysis, which aligns with existing evidence. The 
MedDiet is rich in dietary fiber, which has been 
reported to enhance intestinal barrier function and 
reduce bacterial translocation.42,43 Furthermore, par-
ticipants adhering to the MedDiet presented a signifi-
cant increase in short-chain fatty acid levels, which 
are derived from dietary fiber fermentation.44–46 
Short-chain fatty acids inhibit inflammatory sig-
nals, maintain intestinal barrier integrity, and pro-
mote the growth and diversity of the gut 
microbiota.47,48 In addition, plant foods and olive 
oil are rich in polyphenols that exhibit anti-inflam-
matory and antioxidant effects.49–51 Our analysis 
demonstrated that hypertriglyceridemia and gall-
stone disease accounted for 4.0% and 15.3% of 
AP risk, respectively. Furthermore, reduced tri-
glyceride levels and gallstone incidence were 
observed in populations with higher MedDiet 
exposure at baseline. Hyperlipidemia is the third 
most common cause of AP.52 Previous clinical evi-
dence has also shown that adherence to MedDiet 
is associated with a reduction in triglyceride lev-
els14–16; therefore, its lipid-lowering effect may be 
one of the potential mechanisms for preventing 
AP. Gallstones are another common etiology of 
AP. The dietary intake of foods rich in saturated 
fat and cholesterol, such as red meat and eggs, is 
linked to an increased risk of gallstones and conse-
quently an elevated risk of biliary AP7,53. Higher 
adherence to the MedDiet is associated with a 
lower risk of gallstone diseases,13,54 suggesting that 
the protective effects of the MedDiet may be 
related to a decreased incidence of AP etiology.

Strengths and limitations
The major strengths of our study included its large 
sample size, long follow-up time, and highly reli-
able clinical data. However, the present study 
should be interpreted in light of several limita-
tions. First, the majority of participants at baseline 
were predominantly middle-aged and older popu-
lation, which may restrict the generalizability of 
findings to younger populations and other ethnic-
ity. Notably, compared with younger populations, 
a disproportionate burden of AP is borne by mid-
dle-aged and older populations, manifested as 
increased prevalence, worsened clinical outcomes, 
and higher mortality risk,55–57 which underscores 
the imperative need for prevention measures for 
these vulnerable populations. Second, a subset of 
identified genetic variants of AP in our study has 
been replicated in other European-descent 
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GWASs (e.g., rs75331444 in ABCG8, rs12688220 
in NUP62CL),21,58 but their applicability to other 
geographical populations (e.g., African and Asian) 
remains undetermined (>78% of GWASs derive 
from European populations).59 Third, the small 
number of incident AP cases may have limited the 
statistical power. However, the incidence rate 
observed in our analysis was comparable to that of 
the general UK population (56 cases/100,000 per-
son-years),60 which allows for the extrapolation of 
our results to the broader UK population. Fourth, 
measurement error and recall bias were inevitable 
in the dietary intake data extracted via 24-h die-
tary recall questionnaires. We have attempted to 
address this problem by including participants 
with at least two typical dietary assessments. Fifth, 
residual confounding and reverse causation, as 
with other observational studies, cannot be fully 
ruled out despite adjusting for potential 
confounders.

Conclusion
In this prospective cohort study, increased 
MedDiet adherence was inversely associated with 
AP risk, which was partially mediated by inflam-
mation and metabolic status, and could counter-
act the harmful impact of genetic factors on the 
risk of AP. Further studies are warranted to vali-
date our findings and elucidate the underlying 
mechanisms involved.
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