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Abstract

Cranial neural crest cells are multipotent cells that migrate into the pharyngeal arches of the vertebrate embryo and differ-
entiate into various craniofacial organ derivatives. Therefore, migrating cranial neural crest cells are considered one of the
most attractive candidate cell sources in regenerative medicine. We generated cranial neural crest like cell (cNCCs) using
mouse-induced pluripotent stem cells cultured in neural crest-inducing medium for 14 days. Subsequently, we conducted
RNA sequencing experiments to analyze gene expression profiles of cNCCs at different time points after induction. cNCCs
expressed several neural crest specifier genes; however, some previously reported specifier genes such as paired box 3 and
Forkhead box D3, which are essential for embryonic neural crest development, were not expressed. Moreover, ETS proto-
oncogene 1, transcription factor and sex-determining region Y-box 10 were only expressed after 14 days of induction. Finally,
cNCCs expressed multiple protocadherins and a disintegrin and metalloproteinase with thrombospondin motifs enzymes,

which may be crucial for their migration.
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Introduction

Stem cell-based tissue engineering is important in the field
of oral science because it facilitates the regeneration of dam-
aged tissues or organs [1, 2]. Various stem cell populations
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exhibiting regeneration potential in the craniofacial region
have been identified. Of these, cranial neural crest cells
(cNCCs) are considered one of the most important candi-
dates owing to their role in craniofacial tissue organization
[3]. cNCCs comprise a multipotent population of migratory
cells that are unique to the vertebrate embryo and can dif-
ferentiate into various craniofacial organ derivatives [4, 5].
The neural crest (NC) can form teratoma when transplanted
into immunocompromised animals [6]. cNCC development
involves three stages [7—10]: the neural plate border stage,
the premigratory stage, and the migratory stage. During the
migratory stage, cNCCs delaminate from the posterior mid-
brain and individual rhombomeres in the hindbrain [11] and
migrate into the pharyngeal arches to form skeletal elements
of the face and teeth and contribute to formation of the phar-
yngeal glands (the thymus, thyroid, and parathyroid) [12].
Therefore, cNCCs presumably represent a new treatment
strategy for diseases of the craniofacial region [13].
Development from the premigratory to migratory stage
proceeds swiftly [14]; thus, it is typically difficult to detect
the precise time point of this transition [15]. A recent tran-
scriptome analysis of pure populations of migratory cNCCs
cells expressing the sex-determining region Y-box 10
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(Sox10) from chicks [16] has substantially improved our
understanding of cNCC characteristics. However, whether
these cells are in the migratory stage and how long it takes to
promote embryonic stem (ES) cell-derived NCCs from the
premigratory to migratory stage remains unclear. In recent
years, the use of induced pluripotent stem (iPS) cells as a
revolutionary approach to treat various medical conditions
has garnered much attention [17, 18], and iPS cells as a
cell source have shown several evident advantages over ES
cells and primary cultured cNCCs in regenerative medicine
[16]. In addition, embryonic NC development depends on
several environmental factors that influence the regulation
of NC progenitors and timing of differentiation; therefore,
it is important to elucidate the regulatory gene networks
and expression profiles of mouse iPS (miPS) cell-derived
cNCCs. Recent advances in next-generation RNA sequenc-
ing (RNA-seq) technologies have facilitated comprehensive
analysis of gene expression profiles [19-21]. Therefore,
in the present study, we used RNA-seq to investigate the
gene expression landscape of cNCCs induced from miPS
cells. We treated iPS-derived cells with cNCC induction
medium for 14 days and performed RNA-seq experiments.
Our results indicated that c-Myc; ETS proto-oncogene 1,
transcription factor (Etsl); Sox10; a disintegrin and metal-
loproteinase domain metallopeptidase with thrombospondin
motifs (Adamts) 2 and 8; protocadherin alpha (Pcdha) 2, 5,
-7, -11, and -12; protocadherin alpha subfamily C,1 (Pcd-
hacl); and protocadherin gamma subfamily C,3 (Pcdhgc3)
may be appropriate markers for migratory cNCCs induced
from miPS cells.

Materials and methods
miPS cell culture

The miPS cells used in the present study (APS0001; iPS-
MEF-Ng-20D-17 mouse-induced pluripotent stem cell

Fig.1 The experimental proto-
col used to induce the formation
of cranial neural crest cells
(cNCCs) from mouse-induced
pluripotent stem (miPS) cells.
The photographs show miPS
cells at four different stages:
initial miPS cells, embryoid

line) were purchased from RIKEN BRC (Ibaraki, Japan)
[22]. The cells were incubated with inactivated murine
embryonic fibroblast (MEF) feeder cells in Dulbecco’s
Modified Eagle’s Medium (DMEM; Invitrogen, Carls-
bad, CA, USA) supplemented with 15% KnockOut™
Serum Replacement (Invitrogen), 1% nonessential amino
acids (Chemicon, Temecula, CA, USA), 1% L-glutamine
(Chemicon), 1000 U/mL penicillin—streptomycin (P/S;
Invitrogen), and 0.11 mM 2-mercaptoethanol (Wako Pure
Chemical Industries Ltd., Osaka, Japan); 60-mm cell cul-
ture plates were used for passaging the cells at a density
of 1x 10° cells/plate. Cells were grown in 5% CO, at 95%
humidity, and the culture medium was changed each day.

Embryoid body (EB) formation and cNCC
differentiation

We obtained cultured cNCC cells as described previously
[23] (Fig. 1). miPS cells were dissociated with 0.05%
trypsin—ethylenediaminetetraacetic acid (EDTA; Invitro-
gen) and transferred to low-attachment, 10-mm Petri dishes
at a density of 2 x 10° cells/plate to generate EBs. The gen-
erated EBs were cultured in cNCC induction medium com-
prising a 1:1 mixture of DMEM and F12 nutrient mixture
(Invitrogen) and then in Neurobasal™ medium (Invitrogen)
supplemented with 0.5 X N2 (Invitrogen), 0.5 xB27 (Inv-
itrogen), 20 ng/mL basic fibroblast growth factor (Repro-
cell, Yokohama, Japan), 20 ng/mL epidermal growth factor
(Peprotech, Offenbach, Germany), and 1% P/S for 4 days;
the medium was changed every other day. After 4 days,
day 0 (dO) EBs were collected and transferred to 60-mm
cell culture plates coated with 1 pg/mL collagen type I
(Advanced BioMatrix, San Diego, CA, USA). The cells
were then subcultured in the same medium; the medium
changed every other day, and any rosette-forming cells
were eliminated. After 7-10 days, d7 cells were dissoci-
ated with 0.05% trypsin—~EDTA and transferred to 60-mm

body (EB) on day 0 (d0), and
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c¢NCCs on d7 and d14. Small 4 days do 7-10 days d7 7-10 days d14
circles represent miPS cells;
large circles represent EBs;
ellipses represent d7 and d14 Low-at'tac.lunent
cells. Scale bar 50 pm petri dish

miPS medium

Neural crest induction medium
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Table 1 Primers used

for quantitative reverse
transcription polymerase chain
reaction (QRT-PCR)

Gene Forward primer sequence Reverse primer sequence

18S rRNA CGGACAGGATTGACAGATTG CGCTCCACCAACTAAGAACG
Ngfr (p75NTR) ACTGAGCGCCAGTTACGC CGTAGACCTTGTGATCCATCG
Snail (Snail) CTTGTGTCTGCACGACCTGT AGGAGAATGGCTTCTCACCA
Snai2 (Slug) CATTGCCTTGTCTGCAAG CAGTGAGGGCAAGAGAAAGG
Sox9 GTACCCGCATCTGCACAAC CTCCTCCACGAAGGGTCTCT
Sox10 ATGTCAGATGGGAACCCAGA GTCTTTGGGGTGGTTGGAG

cell culture plates coated with 1 pg/mL collagen type I at
a density of 1x 10° cells/plate to generate d14 cells. This
process was repeated three times. The cells from each of
these passages were collected for RNA extraction.

09-1 cell culture

09-1 cells, a mouse cNCC line, were purchased from Mil-
lipore (Billerica, MA, USA) and cultured as a control, as
previously described [24].

RNA extraction and quantitative reverse
transcription polymerase chain reaction analysis
(qRT-PCR)

The expression of representative NC markers, namely nerve
growth factor receptor (Ngfr), snail family transcriptional
repressor (Snai) 1 and 2, and Sox9 and 10, was analyzed
using qRT-PCR analysis. Total RNA was extracted using
QIAzol® reagent (Qiagen, Valencia, CA, USA) according to
the manufacturer’s protocol, and RNA purity was assessed
using NanoDrop® ND-1000 spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA). Each RNA sam-
ple exhibited an A260/A280 ratio of > 1.9. Complemen-
tary DNA (cDNA) was synthesized using a high-capacity
cDNA reverse transcription kit (Applied Biosystems, Foster
City, CA, USA), and qRT-PCR analysis was performed with
Premix Ex Taq™ reagent (Takara Bio Inc., Otsu, Japan)
according to the manufacturer’s protocol using Applied
Biosystems® 7500 Fast Real-Time PCR System; the primer
sequences are presented in Table 1. All samples were nor-
malized to 18S ribosomal RNA levels. Relative expressions
of genes of interest were analyzed using the AACt method
and were compared among the groups using analysis of vari-
ance, followed by the Bonferroni test when significant dif-
ferences were detected among the groups. A significance
level of p <0.05 was used for all analyses, and all data were
expressed as mean values and standard deviations.

Immunohistochemistry

The cells were fixed with 4% paraformaldehyde (Wako Pure
Chemical Industries Ltd.) for 15 min followed by methanol
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(Wako Pure Chemical Industries Ltd) for 5 min. After
washing, the nonspecific binding of antibodies was blocked
by adding 5% bovine serum albumin (BSA; Wako Pure
Chemical Industries Ltd.) in a phosphate-buffered saline
with 0.5% Triton X-100 (PBST) for 1 h. The cells were then
incubated with the primary antibodies Snail 1:50 for Rab-
bit polyclonal anti-Snail (26183-1-AP; Proteintech Group,
Inc. Chicago, IL, USA.) and Sox10 1:500 for Mouse mono-
clonal anti-Sox10 (AMADb91297; Atlas Antibodies, Bro-
mma, Sweden.) in PBST for 2 nights at 4 °C. We conducted
that the positive control of Snail was O9-1 cells (cranial
neural crest cells) and the positive control of Sox10 was
DP cells (dental pulp cells). The negative control of Snail
and Sox10 was SNL cells (fetus fibroblast cells) (Fig. S1).
They were then incubated in the secondary antibodies fluo-
rescein isothiocyanate Alexa Flour 488-conjugated affinity
purified Goat anti-Rabbit IgG (H&L) (ab150077; Abcam,
Cambridge, MA, USA) at a dilution of 1:500 for Snail and
Alexa Flour 568-conjugated affinity purified Goat anti-
Mouse IgG (H&L) (A-11004; Invitrogen) at a dilution of
1:500 for Sox10 in PBST for 1 h. Eventually, the cells were
stained with 4,6-diamidino-2-phenylindole (DAPI; Sigma,
Livonia, MI, USA) to visualize the nuclear DNA.

RNA-seq

Total RNA from each sample was used to construct librar-
ies with the Illumina TruSeq Stranded mRNA LT Sample
Prep Kit (Illumina, San Diego, CA, USA), according to
the manufacturer’s instructions. Polyadenylated mRNAs
are commonly extracted using oligo-dT beads, following
which the RNA is often fragmented to generate reads that
cover the entire length of the transcripts. The standard I1lu-
mina approach relies on randomly primed double-stranded
cDNA synthesis, followed by end-repair, dsDNA adapter
ligation, and PCR amplification. The multiplexed libraries
were sequenced as 125-bp paired-end reads using the Illu-
mina Hiseq 2500 system (Illumina). Prior to performing any
analysis, quality of the data was confirmed and read clean-
ing, such as adapter removal and simple quality filtering, was
performed using Trimmomatic (ver. 0.32). Subsequently,
the paired-end reads were mapped to the mouse genome
reference sequence GRCm38 using the Burrows—Wheeler
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Aligner (ver. 0.7.10). The number of sequence reads mapped
to each gene domain using SAM tools (ver. 0.1.19) was
counted, and the reads per kilobase of transcript per 1 mil-
lion mapped reads (RPKM) for known transcripts were
calculated to normalize the expression level data to gene
length and library size, thereby facilitating the comparison
of different samples.

Results

Gene expression profiles
and immunohistochemistry of cNCCs derived
from miPS cells

Expressions of the NC markers Ngfr, Snail, Snai2, Sox9,
and Sox10 were examined by qRT-PCR in cNCCs derived
from miPS cells as well as in O9-1 cells as a control. Expres-
sion of all genes except Ngfr and SoxI/0 was detected in
09-1 cells [24]. In contrast, expressions of all genes were
detected in cNCCs, with the premigratory NC markers Ngfr,
Snail, and Snai2 exhibiting the highest expression levels in
d7 cells and the migratory and cranial NC markers Sox9 and
Sox10 exhibiting the highest expression levels in d14 cells
(Fig. 2a). The strongest immunofluorescent staining was
detected for Snail and Sox10 in d7 and d14 cells, respec-
tively (Fig. 2b).

NC specifier transcription factors

We conducted a literature search of NC specifier transcrip-
tion factors identified in vivo [16, 25-80] (Tables 2, 3) and
compared these reports with our RNA-seq results. The rela-
tive expressions of genes that underwent a significant change
in expression are presented in Fig. 3a.

The transcription factor AP-2 alpha (Ap2) along with
paired box 3 (Pax3) and zinc finger protein of the cerebellum
1 (Zicl), both of which are regulated by Ap2, were the most
highly expressed genes in d7 cells (Fig. 3a). Pax6, which
has been reported in human ES and iPS-derived NC cells
(Tables 2, 3), was detected in both d7 and d14 cells, whereas
Pax7, which has not previously been reported in the mouse
NC, was detected in the d7 cells (Fig. 3a). In contrast, the
homeobox genes gastrulation brain homeobox 2 (Gbx2),
msh homeobox 1 (Msx1), distal-less homeobox 3 (DIx3),
Zic2, and Zic3 were not detected in d7 or d14 cells, and
the homeobox genes Zicl and Dix5 were only expressed in
the d7 cells, despite these having been reported in the NC
of a range of species (Table 2); however, Meis homeobox 2
(Meis2) was expressed in both d7 and d14 cells.

The MYCN proto-oncogenes, bHLH transcription factor
(N-myc) and c-Myc, have been reported in NCCs (Table 3);
however, c-Myc expression was detected in d7 and d14 cells

(Fig. 3a), while N-myc was not. Furthermore, there was a
gradual and substantial downregulation of the winged-helix
transcription factor Forkhead box D3 (FoxD3) (Fig. 3a),
which is an important factor for maintaining the pluripo-
tency of ES cells and a key NC specifier that has been impli-
cated in multiple stages of NC development and NCC migra-
tion in embryos of various species (Tables 2, 4).

The premigratory NC markers Ngfr, heart and neural crest
derivatives expressed 2 (Hand2), Snail, and Snai2 were only
detected in the d7 cells; however, other premigratory NC
markers, such as the platelet derived growth factor receptor,
alpha polypeptide (Pdgfra); 6-phosphofructo-2-kinase/fruc-
tose-2,6-biphosphatase 4 (Pfkfb4); inhibitor of DNA binding
2 (Id2), Id3, and Id4; and nestin (Nes) were detected in both
d7 and d14 cells (Fig. 3a).

Expression of migratory NC markers such as Sox5, -6, -8,
-9, and -10, which encode members of the sex-determining
region Y (SRY)-related high mobility group (HMG)-box
family of transcription factors and are crucial in several
aspects of NCCs, were detected in d7 or d14 cells. Sox10,
a known marker for migratory cNCCs in various species
(Table 2), was only detected in d14 cells similar to the
other migratory NC markers. Twist family bHLH tran-
scription factor 1 (Twistl), which is activated via various
signal transduction pathways and is crucial for E-cadherin
downregulation, as well as beta-1,3-glucuronyltransferase 1
(B3gat1/Hnkl), which plays a role in the formation of CD57
epitope, was detected in both d7 and d14 cells. In contrast,
the expression of the trunk NC markers lit guidance ligand
1/2 (Slit1/2), which plays an important role in trunk NC cell
migration toward ventral sites, was upregulated only in d7
cells (Fig. 3a).

Finally, expressions of tenascin C (Tnc), cadherin-6
(Cdh6), and ras homolog family member B (Rhob), all of
which are related to cell adhesion and motility [8§1-85], were
significantly increased in both d7 and d14 cells (Fig. 3b).

Metzincin superfamily zinc proteinase
and protocadherin superfamily

Members of the metzincin superfamily are proteinases that
carry a zinc ion at their active site. This family includes the
matrix metalloproteinases (Mmps), Adam, and Adamts, all
of which have gained attention as factors involved in cancer
cell invasion and migration. Mmp?2, -11, -14, -15, -16, -24,
and -28 were significantly upregulated in cNCCs (Fig. 4a),
all of which except Mmp24 are membrane-bound. Mmp11
and -28 were only expressed in d7 cells, whereas all other
Mmps were detected in both d7 and d14 cells (Fig. 4a, b).
Only Adamla, -8, -10, and -12 were upregulated in both
d7 and d14 cells (Fig. 4c, d); this is contrary to reports that
the members of this family are important in NC migration
and that Adam-10, -12, -15, -19, and -33 are expressed in the
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Fig.2 Comparison between O9-1 cells and cranial neural crest cells
(cNCCs) derived from mouse-induced pluripotent stem (miPS) cells
using quantitative reverse transcription polymerase chain reaction
(qRT-PCR) and immunostaining. a Expression of the premigratory
neural crest (NC) markers Ngfr, Snail, and Snai2 and the migratory
NC and cNC markers Sox9 and SoxI0. Expressions of the premigra-
tory NC markers increased in day 7 (d7) cells, whereas those of the
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migratory markers increased in d14 cells. Sox/0 was not detected in
09-1 cells. Each experiment was performed in triplicate, with values
representing mean +SD. Groups were compared using ANOVA, fol-
lowed by the Bonferroni test: *p <0.05. b Immunostaining of d7 and
d14 cells. Sox10 was more highly expressed in the d14 cells, whereas
Snail was more highly expressed in the d7 cells. Scale bar 50 pm
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Table 2 Neural crest (NC) genes that have previously been examined in vivo

Reference Vertebrates RNA-seq
L 4 X C M | d7 | d14
25 |Antonellis A et al., 2006 O
26 Betancur Pet al., 2010 O
27 Rinon A et al.,, 2011 O
SO0 Fari L et al, 2012 o el IR
16 |Simdes-CostaM et al., 2014 O
29 Murko Cet al, 2016 (@]
30 [Spokony RF etal., 2002 (@]
09 e Har L et al, 2012 51°|°
Sox8 16 [Simdes-Costa M et al., 2014 [¢] [l Ke)
Sox3 31 [Perez-Alcala S etal., 2004 O [« Ke)
; 28 Hari L et al., 2012 [}
5 ;
Snai2(Sig) 115 ISimbes-Costa M of 2L, 2014 <) & || =
26 [Betancur P et al., 2010 O
Bl %axembaum Metal, 2013 o x |9
Cranial Zicl 33 [Nagai Tetal, 1997 O X
: 33 [Nagai Tetal., 1997 O
5 ;
22 137 Testa T etal, 2013 o all
Zic3 33 [Nagai Tetal., 1997 X X
Lmo4 16 [Stmoes-Costa M et al., 2014 O X X Gene groups
Tr—{16 Sindes CostaMotal- 2018 5 Al = —
17 imdes-Costa M et al_, 201+ X X y .
Col9a3 16 |Simdes-CostaM et al., 2014 O X () B sciafod FMIG Doxganes
35 E)asA etal, 2012 [e] >
a2 7§ Simses-Costa M et al, 2014 S e Vestrivates
Ebf1 16 |Simoes-Costa M et al., 2014 [e) O X L [|Lamprey
Alex](Armex1)[16 [Simdes-Costa M et al., 2014 @) X X Z |Zebrafish
Lix9 16 [Simdes-Costa M et al., 2014 [} X X X  |Xenopus
Twist] 35[Das A etal, 2012 [¢) O | O C |Chick
Meis2 36 [Machon O etal., 2015 O O (@) M [Mouse

Open circles indicate genes that were upregulated on day 7 (d7) or d14 compared with dO [log fold change (FC)> 1, p <0.01, false discovery rate
(FDR) <0.05), whereas crosses indicate genes that were not upregulated

mouse NC [86]. Moreover, various Adamts family genes,
which are important for connective tissue organization and
cell migration, were upregulated in either d7 or d14 cells
(Fig. 4c, d). In particular, Adamts] expression was mark-
edly increased, whereas Adamts2 and -8 expressions, which
are presumably important in cancer cell invasion [87-89],
increased in the later stages of differentiation.

Most Pcdh genes, which are involved in cell adhesion
[90], were upregulated in d7 and d14 cells (Table 5); how-
ever, Pcdha2, -5, -7, -11, and -12; Pcdhacl; and Pcdhgc5
were only upregulated in d14 cells.

Discussion

In the present study, we derived cells from miPS which are
closely migratory cNCCs genes. Previously, NCCs have
been derived from ES or iPS cells using various approaches
[91-110], and the protocol used in the present study was
based on the methods outlined by Bajpai et al. [23]; however,
few studies have investigated changes in the properties of
cNCCs at different time points after induction.

In the present study, d7 and d14 cells expressed typical
NC markers, such as Ngfr, Snail, and Snai2. In contrast,
009-1 cells (controls) did not express Ngfr, suggesting that
cNCCs derived from miPS cells are better than O9-1 cells

for evaluating cNCC characteristics [24]. Moreover, unlike
09-1 cells, d14 cells expressed markedly high levels of
Sox10, which is considered a reliable marker for migratory
c¢NCCs. Since cNCCs are involved in craniofacial tissue
organization, several reports are available on their gene
expression profiles; however, these reports show varying
results with species and protocols. Moreover, cNCCs rap-
idly differentiate in the embryo [14]; thus, it is consider-
ably difficult to synchronize the timing of isolation to a
particular point during their development. Furthermore,
migratory cNCCs intermingle with other cell types in the
embryo, further complicating the isolation and characteri-
zation of a pure cell population. Consequently, there have
been few reports on cNCC markers [16, 25-36]. Simdes-
Costa et al. [16] successfully isolated SoxI0-positive
cNCCs from chicken embryos and analyzed their gene
profiles. Similarly, we detected Sox/0 expression in d14
cNCCs. Reportedly, there are multiple NCC populations
[11], and iPS cells can differentiate into numerous differ-
ent NCC populations in the same culture. Therefore, this
diversity in populations may explain the discrepancies in
results; however, under the conditions used in the present
study, c-Myc; Etsl; Sox10; Adamts2; Adamts8; Pcdha2,
-5,-7,-11, and -12; Pcdhacl, and Pcdhgc3 may represent
useful markers for migratory cNCCs. Furthermore, our
results indicated that d7 cells were in the premigratory
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Fig.3 RNA sequencing results for cranial neural crest cells (cNCCs)
differentiated from mouse-induced pluripotent stem (miPS) cells. a
Expression of each of the genes listed in Table 2 at day 0 (d0), d7,
and d14 after induction. Sex-determining region Y (SRY)-related
high mobility group (HMG) box genes showed the highest upregula-
tion in d14 cells. The vertical axis reveals reads per kilobase of exon
per million mapped reads (RPKM), and the horizontal axis indicates
time. Each experiment was performed in triplicate, with values repre-
senting mean + SD. Groups were compared using ANOVA, followed
by the Bonferroni test: *p <0.05. b Expression of genes that have not

stage despite expressing numerous NC markers. There-
fore, cNCCs derived from miPS cells required > 14 days
to become migratory in vitro, and this duration is consid-
erably longer than that observed in the mouse embryos
in vivo under the same conditions [111].

The use of RNA-seq facilitates the normalization of
expression levels of different genes, allowing comparisons
between samples. In our triplicate experiments, none of the
induced cNCCs expressed several homeobox genes consid-
ered to be expressed in the early stages of cNCC differentia-
tion. In particular, we did not observe FoxD3 expression in
either d7 or d14 cells, although it has been recognized as
one of the key transcription factors in cNCCs [112]. These
contradictory results suggest that cNCCs derived from miPS

o boawdS SR
&

been examined during the neural crest stages in vivo. Tnc showed
the highest upregulation in d14 cells, whereas Cha6 and Rhob were
upregulated in day 7 (d7) cells. The vertical axis indicates reads per
kilobase of exon per million mapped reads (RPKM), and the hori-
zontal axis indicates time. Open circles indicate genes upregulated
in d7 or d14 compared with dO [log fold change (FC)>1, p<0.01,
false discovery rate (FDR)<0.05)]. Each experiment was performed
in triplicate, with values representing mean =+ SD. Groups were com-
pared using ANOVA, followed by the Bonferroni test: *p <0.05

cells express distinct gene regulatory networks. FoxD3, a
pluripotent stem cell marker gene that plays an important
role in maintaining pluripotency, is expressed at different
time points in different cells, but its expression decreases in
a time-dependent manner [41], indicating that FoxD3 may
not be a key regulator in iPS-derived cNCCs. However, we
speculate that iPS cells express sufficient levels of FoxD3 to
differentiate into cNCCs.

Protocadherins belong to the cadherin superfamily and
are involved in intercellular interactions [90], whereas metz-
incins are key proteinases that facilitate cell migration [42].
Unfortunately, the abundances of members of these families
hindered their analysis; however, because RNA-seq enabled
us to comprehensively evaluate the gene expression profiles,
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Fig.4 RNA sequencing results for the matrix metalloproteinase
(Mmp), a disintegrin and metalloproteinase (Adam), and a disinte-
grin and metalloproteinase with thrombospondin motifs (Adamts)
gene families. a Expressions of Mmp family genes in mouse. Round
marks alongside day 7 (d7) or d14 cells indicate that the genes were
upregulated compared with dO [log fold change (logFC)> 1, p<0.01,
false discovery rate (FDR)<0.05], whereas cross marks indicate
lack of upregulation. b Graphical representation of the upregulation
of Mmp2, -11, -14, -15, -16, -24, and -28 in d7 or d14 cells. Mmpl15
and -76 showed the highest upregulation in d14 cells. The vertical
axis indicates reads per kilobase of exon per million mapped reads
(RPKM), and the horizontal axis indicates time. Each experiment was
performed in triplicate, with values representing mean =+ SD. Groups

we were able to focus on expressions of all procadherin and
metazicin family members. As expected, we observed that
several Adam and Adamts genes were upregulated, with
most of the Admats genes showing significantly increased
expression. The Adam genes with increased expression
in cNCCs were membrane-bound, whereas Adamts genes
which secreted proteinases, indicating that the expression
of various Adamts may allow the matrix to be digested
more efficiently and that each proteinase may be capable
of digesting a different type of extracellular matrix protein
[42]. Therefore, the secretion of various Adamts and Pcdh
proteins may play a crucial role in cNCC migration.

were compared using ANOVA, followed by the Bonferroni test:
*p <0.05. ¢ Expressions of Adam and Adamts genes in mouse. Round
marks alongside d7 or d14 cells indicate that the genes were upregu-
lated compared with dO (logFC>1, p<0.01, FDR <0.05), whereas
cross marks indicate lack of upregulation. d Graphical representa-
tion of the upregulation of Adamla and 8-12, and AdamtsI-10, -12,
and /5-20 in the d7 or d14 cells. Adam?2, -4, -7, and -8, and Adamts
9 and -12 showed the highest upregulation in d14 cells. The vertical
axis indicates reads per kilobase of exon per million mapped reads
(RPKM), and the horizontal axis indicates time. Each experiment was
performed in triplicate, with values representing mean =+ SD. Groups
were compared using ANOVA, followed by the Bonferroni test:
*p<0.05

Conclusion

In summary, cNCCs derived from miPS exhibited RNA
expression profiles that partly overlap with previously
reported profiles. These cells may be useful for the regenera-
tion of tissue formed by NCCs (osteoblast, melanocyte, and
glial cells). We observed that although the resulting cNCCs
exhibited several NC specifiers, they lacked some of the
specifiers, indicating that a distinct molecular network may
regulate gene expression in miPS-derived cNCCs. Moreover,
our results indicated that c-Myc; Etsl; Sox10; Adamts2 and
-8; Pcdha2,-5,-7,-11, and -12; Pcdhacl; and Pcdhgc3 may
represent appropriate markers for migratory miPS-derived
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Table 5 Expression of the protocadherin superfamily based on RNA sequencing data

Pcdh 117 |8|9|10(11|12|15(17]|18]|19|20

d7 X |O|O|O|O|0]| x| x|O|O|O]| %

d14 X |O|O|0|O|O| x|O|O|0|0O]| x

Pcdha | 1|2 |3|4|5|6|7|8|9]|10|11|i2

d7 O|Xx|O|O|x|O|x|O|O|O| x|

d14 O|O|0|O|O|O|O|O|O|0|0|O

Pedhb | 1|2 |3 |4 |5|6|7|8|9|10|11]|i2|13|14|15]|16|17|18|19]|20|21(22
d7 X|O|O|O|O|O|O|O|O|O|O|O|O|O|O[O|O|O|0|0|0|O
d14 X |O|O|O|O|O|O|O|O|O|O|O|O|O|O[O|O|O|0|O0|0|0
\Pcdhac | 1| 2

d7 x| O

d14 O|0O

Pcdhge | 3 14| 5

d7 O|O| x

d14 O|0|0

Pedhgb | 1124|5678

d7 O|O|O|O|O|0|0O

d14 O|O0|0|O0|O|O|O

Open circles indicate genes that were upregulated on day 7 (d7) or d14 compared with dO [log fold change (FC)> 1, p <0.01, false discovery rate

(FDR) <0.05), whereas crosses indicate genes that were not upregulated

cNCCs. Finally, cNCCs expressed a wide spectrum of genes
encoding Adamts family enzymes that may be crucial for
their migration.
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