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Abstract
Cranial neural crest cells are multipotent cells that migrate into the pharyngeal arches of the vertebrate embryo and differ-
entiate into various craniofacial organ derivatives. Therefore, migrating cranial neural crest cells are considered one of the 
most attractive candidate cell sources in regenerative medicine. We generated cranial neural crest like cell (cNCCs) using 
mouse-induced pluripotent stem cells cultured in neural crest-inducing medium for 14 days. Subsequently, we conducted 
RNA sequencing experiments to analyze gene expression profiles of cNCCs at different time points after induction. cNCCs 
expressed several neural crest specifier genes; however, some previously reported specifier genes such as paired box 3 and 
Forkhead box D3, which are essential for embryonic neural crest development, were not expressed. Moreover, ETS proto-
oncogene 1, transcription factor and sex-determining region Y-box 10 were only expressed after 14 days of induction. Finally, 
cNCCs expressed multiple protocadherins and a disintegrin and metalloproteinase with thrombospondin motifs enzymes, 
which may be crucial for their migration.
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Introduction

Stem cell-based tissue engineering is important in the field 
of oral science because it facilitates the regeneration of dam-
aged tissues or organs [1, 2]. Various stem cell populations 

exhibiting regeneration potential in the craniofacial region 
have been identified. Of these, cranial neural crest cells 
(cNCCs) are considered one of the most important candi-
dates owing to their role in craniofacial tissue organization 
[3]. cNCCs comprise a multipotent population of migratory 
cells that are unique to the vertebrate embryo and can dif-
ferentiate into various craniofacial organ derivatives [4, 5]. 
The neural crest (NC) can form teratoma when transplanted 
into immunocompromised animals [6]. cNCC development 
involves three stages [7–10]: the neural plate border stage, 
the premigratory stage, and the migratory stage. During the 
migratory stage, cNCCs delaminate from the posterior mid-
brain and individual rhombomeres in the hindbrain [11] and 
migrate into the pharyngeal arches to form skeletal elements 
of the face and teeth and contribute to formation of the phar-
yngeal glands (the thymus, thyroid, and parathyroid) [12]. 
Therefore, cNCCs presumably represent a new treatment 
strategy for diseases of the craniofacial region [13].

Development from the premigratory to migratory stage 
proceeds swiftly [14]; thus, it is typically difficult to detect 
the precise time point of this transition [15]. A recent tran-
scriptome analysis of pure populations of migratory cNCCs 
cells expressing the sex-determining region Y-box  10 
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(Sox10) from chicks [16] has substantially improved our 
understanding of cNCC characteristics. However, whether 
these cells are in the migratory stage and how long it takes to 
promote embryonic stem (ES) cell-derived NCCs from the 
premigratory to migratory stage remains unclear. In recent 
years, the use of induced pluripotent stem (iPS) cells as a 
revolutionary approach to treat various medical conditions 
has garnered much attention [17, 18], and iPS cells as a 
cell source have shown several evident advantages over ES 
cells and primary cultured cNCCs in regenerative medicine 
[16]. In addition, embryonic NC development depends on 
several environmental factors that influence the regulation 
of NC progenitors and timing of differentiation; therefore, 
it is important to elucidate the regulatory gene networks 
and expression profiles of mouse iPS (miPS) cell-derived 
cNCCs. Recent advances in next-generation RNA sequenc-
ing (RNA-seq) technologies have facilitated comprehensive 
analysis of gene expression profiles [19–21]. Therefore, 
in the present study, we used RNA-seq to investigate the 
gene expression landscape of cNCCs induced from miPS 
cells. We treated iPS-derived cells with cNCC induction 
medium for 14 days and performed RNA-seq experiments. 
Our results indicated that c-Myc; ETS proto-oncogene 1, 
transcription factor (Ets1); Sox10; a disintegrin and metal-
loproteinase domain metallopeptidase with thrombospondin 
motifs (Adamts) 2 and 8; protocadherin alpha (Pcdha) 2, 5, 
-7, -11, and -12; protocadherin alpha subfamily C,1 (Pcd-
hac1); and protocadherin gamma subfamily C,3 (Pcdhgc3) 
may be appropriate markers for migratory cNCCs induced 
from miPS cells.

Materials and methods

miPS cell culture

The miPS cells used in the present study (APS0001; iPS-
MEF-Ng-20D-17 mouse-induced pluripotent stem cell 

line) were purchased from RIKEN BRC (Ibaraki, Japan) 
[22]. The cells were incubated with inactivated murine 
embryonic fibroblast (MEF) feeder cells in Dulbecco’s 
Modified Eagle’s Medium (DMEM; Invitrogen, Carls-
bad, CA, USA) supplemented with 15% KnockOut™ 
Serum Replacement (Invitrogen), 1% nonessential amino 
acids (Chemicon, Temecula, CA, USA), 1% l-glutamine 
(Chemicon), 1000 U/mL penicillin–streptomycin (P/S; 
Invitrogen), and 0.11 mM 2-mercaptoethanol (Wako Pure 
Chemical Industries Ltd., Osaka, Japan); 60-mm cell cul-
ture plates were used for passaging the cells at a density 
of 1 × 105 cells/plate. Cells were grown in 5% CO2 at 95% 
humidity, and the culture medium was changed each day.

Embryoid body (EB) formation and cNCC 
differentiation

We obtained cultured cNCC cells as described previously 
[23] (Fig.  1). miPS cells were dissociated with 0.05% 
trypsin–ethylenediaminetetraacetic acid (EDTA; Invitro-
gen) and transferred to low-attachment, 10-mm Petri dishes 
at a density of 2 × 106 cells/plate to generate EBs. The gen-
erated EBs were cultured in cNCC induction medium com-
prising a 1:1 mixture of DMEM and F12 nutrient mixture 
(Invitrogen) and then in Neurobasal™ medium (Invitrogen) 
supplemented with 0.5 × N2 (Invitrogen), 0.5 × B27 (Inv-
itrogen), 20 ng/mL basic fibroblast growth factor (Repro-
cell, Yokohama, Japan), 20 ng/mL epidermal growth factor 
(Peprotech, Offenbach, Germany), and 1% P/S for 4 days; 
the medium was changed every other day. After 4 days, 
day 0 (d0) EBs were collected and transferred to 60-mm 
cell culture plates coated with 1 μg/mL collagen type I 
(Advanced BioMatrix, San Diego, CA, USA). The cells 
were then subcultured in the same medium; the medium 
changed every other day, and any rosette-forming cells 
were eliminated. After 7–10 days, d7 cells were dissoci-
ated with 0.05% trypsin–EDTA and transferred to 60-mm 

Fig. 1   The experimental proto-
col used to induce the formation 
of cranial neural crest cells 
(cNCCs) from mouse-induced 
pluripotent stem (miPS) cells. 
The photographs show miPS 
cells at four different stages: 
initial miPS cells, embryoid 
body (EB) on day 0 (d0), and 
cNCCs on d7 and d14. Small 
circles represent miPS cells; 
large circles represent EBs; 
ellipses represent d7 and d14 
cells. Scale bar 50 μm
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cell culture plates coated with 1 μg/mL collagen type I at 
a density of 1 × 105 cells/plate to generate d14 cells. This 
process was repeated three times. The cells from each of 
these passages were collected for RNA extraction.

O9‑1 cell culture

O9-1 cells, a mouse cNCC line, were purchased from Mil-
lipore (Billerica, MA, USA) and cultured as a control, as 
previously described [24].

RNA extraction and quantitative reverse 
transcription polymerase chain reaction analysis 
(qRT‑PCR)

The expression of representative NC markers, namely nerve 
growth factor receptor (Ngfr), snail family transcriptional 
repressor (Snai) 1 and 2, and Sox9 and 10, was analyzed 
using qRT-PCR analysis. Total RNA was extracted using 
QIAzol® reagent (Qiagen, Valencia, CA, USA) according to 
the manufacturer’s protocol, and RNA purity was assessed 
using NanoDrop® ND-1000 spectrophotometer (Thermo 
Fisher Scientific, Waltham, MA, USA). Each RNA sam-
ple exhibited an A260/A280 ratio of > 1.9. Complemen-
tary DNA (cDNA) was synthesized using a high-capacity 
cDNA reverse transcription kit (Applied Biosystems, Foster 
City, CA, USA), and qRT-PCR analysis was performed with 
Premix Ex Taq™ reagent (Takara Bio Inc., Otsu, Japan) 
according to the manufacturer’s protocol using Applied 
Biosystems® 7500 Fast Real-Time PCR System; the primer 
sequences are presented in Table 1. All samples were nor-
malized to 18S ribosomal RNA levels. Relative expressions 
of genes of interest were analyzed using the ΔΔCt method 
and were compared among the groups using analysis of vari-
ance, followed by the Bonferroni test when significant dif-
ferences were detected among the groups. A significance 
level of p < 0.05 was used for all analyses, and all data were 
expressed as mean values and standard deviations.

Immunohistochemistry

The cells were fixed with 4% paraformaldehyde (Wako Pure 
Chemical Industries Ltd.) for 15 min followed by methanol 

(Wako Pure Chemical Industries Ltd) for 5  min. After 
washing, the nonspecific binding of antibodies was blocked 
by adding 5% bovine serum albumin (BSA; Wako Pure 
Chemical Industries Ltd.) in a phosphate-buffered saline 
with 0.5% Triton X-100 (PBST) for 1 h. The cells were then 
incubated with the primary antibodies Snai1 1:50 for Rab-
bit polyclonal anti-Snai1 (26183-1-AP; Proteintech Group, 
Inc. Chicago, IL, USA.) and Sox10 1:500 for Mouse mono-
clonal anti-Sox10 (AMAb91297; Atlas Antibodies, Bro-
mma, Sweden.) in PBST for 2 nights at 4 °C. We conducted 
that the positive control of Snai1 was O9-1 cells (cranial 
neural crest cells) and the positive control of Sox10 was 
DP cells (dental pulp cells). The negative control of Snai1 
and Sox10 was SNL cells (fetus fibroblast cells) (Fig. S1).
They were then incubated in the secondary antibodies fluo-
rescein isothiocyanate Alexa Flour 488-conjugated affinity 
purified Goat anti-Rabbit IgG (H&L) (ab150077; Abcam, 
Cambridge, MA, USA) at a dilution of 1:500 for Snai1 and 
Alexa Flour 568-conjugated affinity purified Goat anti-
Mouse IgG (H&L) (A-11004; Invitrogen) at a dilution of 
1:500 for Sox10 in PBST for 1 h. Eventually, the cells were 
stained with 4,6-diamidino-2-phenylindole (DAPI; Sigma, 
Livonia, MI, USA) to visualize the nuclear DNA.

RNA‑seq

Total RNA from each sample was used to construct librar-
ies with the Illumina TruSeq Stranded mRNA LT Sample 
Prep Kit (Illumina, San Diego, CA, USA), according to 
the manufacturer’s instructions. Polyadenylated mRNAs 
are commonly extracted using oligo-dT beads, following 
which the RNA is often fragmented to generate reads that 
cover the entire length of the transcripts. The standard Illu-
mina approach relies on randomly primed double-stranded 
cDNA synthesis, followed by end-repair, dsDNA adapter 
ligation, and PCR amplification. The multiplexed libraries 
were sequenced as 125-bp paired-end reads using the Illu-
mina Hiseq 2500 system (Illumina). Prior to performing any 
analysis, quality of the data was confirmed and read clean-
ing, such as adapter removal and simple quality filtering, was 
performed using Trimmomatic (ver. 0.32). Subsequently, 
the paired-end reads were mapped to the mouse genome 
reference sequence GRCm38 using the Burrows–Wheeler 

Table 1   Primers used 
for quantitative reverse 
transcription polymerase chain 
reaction (qRT-PCR)

Gene Forward primer sequence Reverse primer sequence

18S rRNA CGG​ACA​GGA​TTG​ACA​GAT​TG CGC​TCC​ACC​AAC​TAA​GAA​CG
Ngfr (p75NTR) ACT​GAG​CGC​CAG​TTA​CGC​ CGT​AGA​CCT​TGT​GAT​CCA​TCG​
Snail (Snail) CTT​GTG​TCT​GCA​CGA​CCT​GT AGG​AGA​ATG​GCT​TCT​CAC​CA
Snai2 (Slug) CAT​TGC​CTT​GTC​TGC​AAG​ CAG​TGA​GGG​CAA​GAG​AAA​GG
Sox9 GTA​CCC​GCA​TCT​GCA​CAA​C CTC​CTC​CAC​GAA​GGG​TCT​CT
Sox10 ATG​TCA​GAT​GGG​AAC​CCA​GA GTC​TTT​GGG​GTG​GTT​GGA​G
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Aligner (ver. 0.7.10). The number of sequence reads mapped 
to each gene domain using SAM tools (ver. 0.1.19) was 
counted, and the reads per kilobase of transcript per 1 mil-
lion mapped reads (RPKM) for known transcripts were 
calculated to normalize the expression level data to gene 
length and library size, thereby facilitating the comparison 
of different samples.

Results

Gene expression profiles 
and immunohistochemistry of cNCCs derived 
from miPS cells

Expressions of the NC markers Ngfr, Snai1, Snai2, Sox9, 
and Sox10 were examined by qRT-PCR in cNCCs derived 
from miPS cells as well as in O9-1 cells as a control. Expres-
sion of all genes except Ngfr and Sox10 was detected in 
O9-1 cells [24]. In contrast, expressions of all genes were 
detected in cNCCs, with the premigratory NC markers Ngfr, 
Snai1, and Snai2 exhibiting the highest expression levels in 
d7 cells and the migratory and cranial NC markers Sox9 and 
Sox10 exhibiting the highest expression levels in d14 cells 
(Fig. 2a). The strongest immunofluorescent staining was 
detected for Snai1 and Sox10 in d7 and d14 cells, respec-
tively (Fig. 2b).

NC specifier transcription factors

We conducted a literature search of NC specifier transcrip-
tion factors identified in vivo [16, 25–80] (Tables 2, 3) and 
compared these reports with our RNA-seq results. The rela-
tive expressions of genes that underwent a significant change 
in expression are presented in Fig. 3a.

The transcription factor AP-2 alpha (Ap2) along with 
paired box 3 (Pax3) and zinc finger protein of the cerebellum 
1 (Zic1), both of which are regulated by Ap2, were the most 
highly expressed genes in d7 cells (Fig. 3a). Pax6, which 
has been reported in human ES and iPS-derived NC cells 
(Tables 2, 3), was detected in both d7 and d14 cells, whereas 
Pax7, which has not previously been reported in the mouse 
NC, was detected in the d7 cells (Fig. 3a). In contrast, the 
homeobox genes gastrulation brain homeobox 2 (Gbx2), 
msh homeobox 1 (Msx1), distal-less homeobox 3 (Dlx3), 
Zic2, and Zic3 were not detected in d7 or d14 cells, and 
the homeobox genes Zic1 and Dlx5 were only expressed in 
the d7 cells, despite these having been reported in the NC 
of a range of species (Table 2); however, Meis homeobox 2 
(Meis2) was expressed in both d7 and d14 cells.

The MYCN proto-oncogenes, bHLH transcription factor 
(N-myc) and c-Myc, have been reported in NCCs (Table 3); 
however, c-Myc expression was detected in d7 and d14 cells 

(Fig. 3a), while N-myc was not. Furthermore, there was a 
gradual and substantial downregulation of the winged-helix 
transcription factor Forkhead box D3 (FoxD3) (Fig. 3a), 
which is an important factor for maintaining the pluripo-
tency of ES cells and a key NC specifier that has been impli-
cated in multiple stages of NC development and NCC migra-
tion in embryos of various species (Tables 2, 4).

The premigratory NC markers Ngfr, heart and neural crest 
derivatives expressed 2 (Hand2), Snai1, and Snai2 were only 
detected in the d7 cells; however, other premigratory NC 
markers, such as the platelet derived growth factor receptor, 
alpha polypeptide (Pdgfra); 6-phosphofructo-2-kinase/fruc-
tose-2,6-biphosphatase 4 (Pfkfb4); inhibitor of DNA binding 
2 (Id2), Id3, and Id4; and nestin (Nes) were detected in both 
d7 and d14 cells (Fig. 3a).

Expression of migratory NC markers such as Sox5, -6, -8, 
-9, and -10, which encode members of the sex-determining 
region Y (SRY)-related high mobility group (HMG)-box 
family of transcription factors and are crucial in several 
aspects of NCCs, were detected in d7 or d14 cells. Sox10, 
a known marker for migratory cNCCs in various species 
(Table 2), was only detected in d14 cells similar to the 
other migratory NC markers. Twist family bHLH tran-
scription factor 1 (Twist1), which is activated via various 
signal transduction pathways and is crucial for E-cadherin 
downregulation, as well as beta-1,3-glucuronyltransferase 1 
(B3gat1/Hnk1), which plays a role in the formation of CD57 
epitope, was detected in both d7 and d14 cells. In contrast, 
the expression of the trunk NC markers lit guidance ligand 
1/2 (Slit1/2), which plays an important role in trunk NC cell 
migration toward ventral sites, was upregulated only in d7 
cells (Fig. 3a).

Finally, expressions of tenascin C (Tnc), cadherin-6 
(Cdh6), and ras homolog family member B (Rhob), all of 
which are related to cell adhesion and motility [81–85], were 
significantly increased in both d7 and d14 cells (Fig. 3b).

Metzincin superfamily zinc proteinase 
and protocadherin superfamily

Members of the metzincin superfamily are proteinases that 
carry a zinc ion at their active site. This family includes the 
matrix metalloproteinases (Mmps), Adam, and Adamts, all 
of which have gained attention as factors involved in cancer 
cell invasion and migration. Mmp2, -11, -14, -15, -16, -24, 
and -28 were significantly upregulated in cNCCs (Fig. 4a), 
all of which except Mmp24 are membrane-bound. Mmp11 
and -28 were only expressed in d7 cells, whereas all other 
Mmps were detected in both d7 and d14 cells (Fig. 4a, b).

Only Adam1a, -8, -10, and -12 were upregulated in both 
d7 and d14 cells (Fig. 4c, d); this is contrary to reports that 
the members of this family are important in NC migration 
and that Adam-10, -12, -15, -19, and -33 are expressed in the 
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Fig. 2   Comparison between O9-1 cells and cranial neural crest cells 
(cNCCs) derived from mouse-induced pluripotent stem (miPS) cells 
using quantitative reverse transcription polymerase chain reaction 
(qRT-PCR) and immunostaining. a Expression of the premigratory 
neural crest (NC) markers Ngfr, Snai1, and Snai2 and the migratory 
NC and cNC markers Sox9 and Sox10. Expressions of the premigra-
tory NC markers increased in day 7 (d7) cells, whereas those of the 

migratory markers increased in d14 cells. Sox10 was not detected in 
O9-1 cells. Each experiment was performed in triplicate, with values 
representing mean ± SD. Groups were compared using ANOVA, fol-
lowed by the Bonferroni test: *p < 0.05. b Immunostaining of d7 and 
d14 cells. Sox10 was more highly expressed in the d14 cells, whereas 
Snai1 was more highly expressed in the d7 cells. Scale bar 50 μm
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mouse NC [86]. Moreover, various Adamts family genes, 
which are important for connective tissue organization and 
cell migration, were upregulated in either d7 or d14 cells 
(Fig. 4c, d). In particular, Adamts1 expression was mark-
edly increased, whereas Adamts2 and -8 expressions, which 
are presumably important in cancer cell invasion [87–89], 
increased in the later stages of differentiation.

Most Pcdh genes, which are involved in cell adhesion 
[90], were upregulated in d7 and d14 cells (Table 5); how-
ever, Pcdha2, -5, -7, -11, and -12; Pcdhac1; and Pcdhgc5 
were only upregulated in d14 cells.

Discussion

In the present study, we derived cells from miPS which are 
closely migratory cNCCs genes. Previously, NCCs have 
been derived from ES or iPS cells using various approaches 
[91–110], and the protocol used in the present study was 
based on the methods outlined by Bajpai et al. [23]; however, 
few studies have investigated changes in the properties of 
cNCCs at different time points after induction.

In the present study, d7 and d14 cells expressed typical 
NC markers, such as Ngfr, Snai1, and Snai2. In contrast, 
O9-1 cells (controls) did not express Ngfr, suggesting that 
cNCCs derived from miPS cells are better than O9-1 cells 

for evaluating cNCC characteristics [24]. Moreover, unlike 
O9-1 cells, d14 cells expressed markedly high levels of 
Sox10, which is considered a reliable marker for migratory 
cNCCs. Since cNCCs are involved in craniofacial tissue 
organization, several reports are available on their gene 
expression profiles; however, these reports show varying 
results with species and protocols. Moreover, cNCCs rap-
idly differentiate in the embryo [14]; thus, it is consider-
ably difficult to synchronize the timing of isolation to a 
particular point during their development. Furthermore, 
migratory cNCCs intermingle with other cell types in the 
embryo, further complicating the isolation and characteri-
zation of a pure cell population. Consequently, there have 
been few reports on cNCC markers [16, 25–36]. Simões-
Costa et  al. [16] successfully isolated Sox10-positive 
cNCCs from chicken embryos and analyzed their gene 
profiles. Similarly, we detected Sox10 expression in d14 
cNCCs. Reportedly, there are multiple NCC populations 
[11], and iPS cells can differentiate into numerous differ-
ent NCC populations in the same culture. Therefore, this 
diversity in populations may explain the discrepancies in 
results; however, under the conditions used in the present 
study, c-Myc; Ets1; Sox10; Adamts2; Adamts8; Pcdha2, 
-5, -7, -11, and -12; Pcdhac1, and Pcdhgc3 may represent 
useful markers for migratory cNCCs. Furthermore, our 
results indicated that d7 cells were in the premigratory 

Table 2   Neural crest (NC) genes that have previously been examined in vivo

Open circles indicate genes that were upregulated on day 7 (d7) or d14 compared with d0 [log fold change (FC) > 1, p < 0.01, false discovery rate 
(FDR) < 0.05), whereas crosses indicate genes that were not upregulated
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stage despite expressing numerous NC markers. There-
fore, cNCCs derived from miPS cells required > 14 days 
to become migratory in vitro, and this duration is consid-
erably longer than that observed in the mouse embryos 
in vivo under the same conditions [111].

The use of RNA-seq facilitates the normalization of 
expression levels of different genes, allowing comparisons 
between samples. In our triplicate experiments, none of the 
induced cNCCs expressed several homeobox genes consid-
ered to be expressed in the early stages of cNCC differentia-
tion. In particular, we did not observe FoxD3 expression in 
either d7 or d14 cells, although it has been recognized as 
one of the key transcription factors in cNCCs [112]. These 
contradictory results suggest that cNCCs derived from miPS 

cells express distinct gene regulatory networks. FoxD3, a 
pluripotent stem cell marker gene that plays an important 
role in maintaining pluripotency, is expressed at different 
time points in different cells, but its expression decreases in 
a time-dependent manner [41], indicating that FoxD3 may 
not be a key regulator in iPS-derived cNCCs. However, we 
speculate that iPS cells express sufficient levels of FoxD3 to 
differentiate into cNCCs.

Protocadherins belong to the cadherin superfamily and 
are involved in intercellular interactions [90], whereas metz-
incins are key proteinases that facilitate cell migration [42]. 
Unfortunately, the abundances of members of these families 
hindered their analysis; however, because RNA-seq enabled 
us to comprehensively evaluate the gene expression profiles, 

Fig. 3   RNA sequencing results for cranial neural crest cells (cNCCs) 
differentiated from mouse-induced pluripotent stem (miPS) cells. a 
Expression of each of the genes listed in Table 2 at day 0 (d0), d7, 
and d14 after induction. Sex-determining region Y (SRY)-related 
high mobility group (HMG) box genes showed the highest upregula-
tion in d14 cells. The vertical axis reveals reads per kilobase of exon 
per million mapped reads (RPKM), and the horizontal axis indicates 
time. Each experiment was performed in triplicate, with values repre-
senting mean ± SD. Groups were compared using ANOVA, followed 
by the Bonferroni test: *p < 0.05. b Expression of genes that have not 

been examined during the neural crest stages in  vivo. Tnc showed 
the highest upregulation in d14 cells, whereas Cha6 and Rhob were 
upregulated in day 7 (d7) cells. The vertical axis indicates reads per 
kilobase of exon per million mapped reads (RPKM), and the hori-
zontal axis indicates time. Open circles indicate genes upregulated 
in d7 or d14 compared with d0 [log fold change (FC) > 1, p < 0.01, 
false discovery rate (FDR) < 0.05)]. Each experiment was performed 
in triplicate, with values representing mean ± SD. Groups were com-
pared using ANOVA, followed by the Bonferroni test: *p < 0.05
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we were able to focus on expressions of all procadherin and 
metazicin family members. As expected, we observed that 
several Adam and Adamts genes were upregulated, with 
most of the Admats genes showing significantly increased 
expression. The Adam genes with increased expression 
in cNCCs were membrane-bound, whereas Adamts genes 
which secreted proteinases, indicating that the expression 
of various Adamts may allow the matrix to be digested 
more efficiently and that each proteinase may be capable 
of digesting a different type of extracellular matrix protein 
[42]. Therefore, the secretion of various Adamts and Pcdh 
proteins may play a crucial role in cNCC migration.

Conclusion

In summary, cNCCs derived from miPS exhibited RNA 
expression profiles that partly overlap with previously 
reported profiles. These cells may be useful for the regenera-
tion of tissue formed by NCCs (osteoblast, melanocyte, and 
glial cells). We observed that although the resulting cNCCs 
exhibited several NC specifiers, they lacked some of the 
specifiers, indicating that a distinct molecular network may 
regulate gene expression in miPS-derived cNCCs. Moreover, 
our results indicated that c-Myc; Ets1; Sox10; Adamts2 and 
-8; Pcdha2, -5,-7, -11, and -12; Pcdhac1; and Pcdhgc3 may 
represent appropriate markers for migratory miPS-derived 

Fig. 4   RNA sequencing results for the matrix metalloproteinase 
(Mmp), a disintegrin and metalloproteinase (Adam), and a disinte-
grin and metalloproteinase with thrombospondin motifs (Adamts) 
gene families. a Expressions of Mmp family genes in mouse. Round 
marks alongside day 7 (d7) or d14 cells indicate that the genes were 
upregulated compared with d0 [log fold change (logFC) > 1, p < 0.01, 
false discovery rate (FDR) < 0.05], whereas cross marks indicate 
lack of upregulation. b Graphical representation of the upregulation 
of Mmp2, -11, -14, -15, -16, -24, and -28 in d7 or d14 cells. Mmp15 
and -16 showed the highest upregulation in d14 cells. The vertical 
axis indicates reads per kilobase of exon per million mapped reads 
(RPKM), and the horizontal axis indicates time. Each experiment was 
performed in triplicate, with values representing mean ± SD. Groups 

were compared using ANOVA, followed by the Bonferroni test: 
*p < 0.05. c Expressions of Adam and Adamts genes in mouse. Round 
marks alongside d7 or d14 cells indicate that the genes were upregu-
lated compared with d0 (logFC > 1, p < 0.01, FDR < 0.05), whereas 
cross marks indicate lack of upregulation. d Graphical representa-
tion of the upregulation of Adam1a and 8–12, and Adamts1–10, -12, 
and 15–20 in the d7 or d14 cells. Adam2, -4, -7, and -8, and Adamts 
9 and -12 showed the highest upregulation in d14 cells. The vertical 
axis indicates reads per kilobase of exon per million mapped reads 
(RPKM), and the horizontal axis indicates time. Each experiment was 
performed in triplicate, with values representing mean ± SD. Groups 
were compared using ANOVA, followed by the Bonferroni test: 
*p < 0.05
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cNCCs. Finally, cNCCs expressed a wide spectrum of genes 
encoding Adamts family enzymes that may be crucial for 
their migration.
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