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Macrophages play an important role in immune and inflammatory responses, and have been extensively
studied in vitro using culture media such as RPMI1640 medium, Dulbecco's modified Eagle medium
(DMEM), and Ham's F-12 medium (F-12). We found that the activation phenotypes of a murine mac-
rophage-like cell line, J774.1/JA-4, were obviously different in two distinct culture media (F-12 and
DMEM), both of which were supplemented with 10% of the same fetal bovine serum (FBS). Among these
phenotypes, nitric oxide (NO) production as well as inducible NO synthase (iNOS) expression, induced by
lipopolysaccharide (LPS) and interferon-γ (IFN-γ), were remarkably different. iNOS expression was
higher in the macrophages cultured in DMEM than in F-12 for 20 h, while no significant differences were
shown in NO production between in F-12 and DMEM. It might be the reason why DMEM have reduced
NO production by the induced iNOS. Besides, −O2-generating activity, and production of tumor necrosis
factor-α (TNF-α) and interleukin-1β (IL-1β) in the activated macrophages were also different between
the cultures in F-12 and DMEM. These results suggest that F-12 and DMEM contain certain components
responsible for modification of macrophage activation processes and/or macrophage functions. Our
present results provide evidence that the choice of culture medium is important in the study and analysis
of macrophage activation.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Macrophages play important roles in innate immune responses
to pathogens, tumor cells and apoptotic cells of the host [1–4].
Macrophages also change their properties through activation
processes [5,6]. Activated macrophages have the property to pro-
duce reactive oxygen species ( −O2 and H2O2), nitric oxide (NO), and
pro-inflammatory cytokines like tumor necrosis factor-α (TNF-α)
and interleukin-1β (IL-1β) [7–10]. Because these molecules act on
pathogens or immune cells directly, our body can maintain
homeostasis [4]. Many of these findings were obtained by cultur-
ing of primary macrophages and macrophage-like cell lines in
various culture media in vitro. According to Hou et al. [11], dif-
ferent effects on cell proliferation and differentiation were ob-
served in periodontal ligament cells by using different types of
culture media. Similarly, dental pulp-derived cells [12], perios-
teum-derived cells [13], and others exhibited different phenotypes
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as to cell functions with different culture media [14,15]. However,
no results have been reported concerning the effects of different
culture media on macrophage activation.

Various culture media, containing amino acids, vitamins, in-
organic salts, and trace elements, are used widely in vitro by many
researchers. Furthermore, serum (e.g., FBS and FCS), which con-
tains albumin, cell growth factors, hormones, protease inhibitors,
and so on, is added to facilitate the growth of or to protect cells. In
a study involving macrophages, the endotoxin content of FBS also
requires careful attention [16]. Compared with the influence of FBS
on a cell culture, which is well known by many scientists, that of
culture media is relatively unknown as to cell function except for
cell growth or differentiation. Therefore many studies on macro-
phages involving various culture media might have resulted in
different results among laboratories. We need to pay much at-
tention to the influence of the culture medium in a variety of cell
culture experiments.
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

www.sciencedirect.com/science/journal/24055808
www.elsevier.com/locate/bbrep
http://dx.doi.org/10.1016/j.bbrep.2016.01.006
http://dx.doi.org/10.1016/j.bbrep.2016.01.006
http://dx.doi.org/10.1016/j.bbrep.2016.01.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbrep.2016.01.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbrep.2016.01.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbrep.2016.01.006&domain=pdf
mailto:amano@gly.oups.ac.jp
http://dx.doi.org/10.1016/j.bbrep.2016.01.006


T. Kawakami et al. / Biochemistry and Biophysics Reports 5 (2016) 328–334 329
In this study, we present a series of novel evidence that a
murine macrophage-like cell line, J774.1/JA-4, expresses differ-
ent activated macrophage phenotypes induced by lipopoly-
saccharide (LPS) and/or interferon-γ (IFN-γ) on incubation in
either Ham's F-12 medium (F-12) or Dulbecco's modified Eagle
medium (DMEM). Production of NO and some cytokines was
increased more in DMEM during macrophage activation than in
F-12. We also examined the precise mechanisms underlying the
induction and expression of inducible NO synthase (iNOS) and
its activity.
2. Materials and methods

2.1. Materials

F-12, DMEM, and FBS were purchased from Thermo Fisher
Scientific Inc (Waltham, MA, U.S.A). Recombinant murine IFN-γ
was a generous gift from TORAY (Tokyo, Japan). Penicillin and
streptomycin solution was purchased from Nacalai Tesque (Kyoto,
Japan), and Escherichia coli 055:B5 LPS, chromatographically pur-
ified, phorbol myristate acetate (PMA), cytochrome c from horse
heart, and superoxide dismutase (SOD) from bovine liver
(Z1500 units/mg protein) were obtained from Sigma-Aldrich (St.
Louis, MO, U.S.A.). All other reagents and chemicals were of the
purest commercial grade available.

2.2. Cell culture

Culturing of the JA-4 cell line, an LPS-sensitive subline of a
murine macrophage-like cell line, J774.1, was performed as de-
scribed previously [8]. In brief, cells were maintained and cultured
in 10 mL of F-12 supplemented with 10% heat-inactivated FBS, 50
units/mL of penicillin, and 50 μg/mL of streptomycin in a 100 mm
plastic dish (Falcon #351029; Corning Life Science, NY, U.S.A.) at
37 °C in a CO2 incubator (5% CO2-95% humidified air). The cells
were passed every 1–3 days and were maintained until 25th
passage without any significant cell morphological change or
biological response.

2.3. Measurement of NO, TNF-α, and IL-1β production

Cells were seeded at 2�106 cells/4 mL/dish of F-12 onto
60 mm culture dishes (#430166; Corning Life Science), and then
incubated at 37 °C for 2–4 h. The mediumwas replaced with 4 mL
of fresh F-12 or DMEM medium containing LPS (100 ng/mL) and/
or IFN-γ (10 units/mL), and then the cells were incubated at 37 °C
for various durations (0–20 h). For measurement of NO, TNF-α,
and IL-1β production, culture supernatants were collected and
then centrifuged at 10,000 rpm (9,100g) at 4 °C for 1 min. Crude
extracts were prepared from the cells for Western blot analysis.
NO was measured as a stable form of nitrite ions ( −NO2) by using
Griess reagent (Wako Pure Chemical Industries, Ltd., Osaka, Ja-
pan). TNF-α and IL-1β production were analyzed by enzyme-
linked immunosorbent assaying (ELISA) (R&D Systems, Minnea-
polis, U.S.A.).

2.4. Re-incubation of macrophages after activation, and measure-
ment of endogenous NADPH

Cells were activated in F-12 or DMEM containing LPS
(100 ng/mL) and IFN-γ (10 units/mL) at 37 °C for 20 h. The cells
were then washed once with warm sterile phosphate-buffered
saline (PBS), and re-incubated for various durations (0–6 h) after a
change to fresh F-12 or DMEM medium containing none of the
activating factors. At the different time points, culture
supernatants were collected and then the cells of re-incubation at
4 h were then washed twice with ice-cold PBS, and endogenous
NADPH was extracted and measured using a SensoLyte NADP/
NADPH assay kit (AnaSpec Inc., California, U.S.A.) according to the
manufacturer's instruction.

2.5. Measurement of O�
2 -generating activity

−O2-generating activity was examined as described before
[8,17]. Cells were seeded at 1�105 cells/0.25 mL/well of F-12
onto 48-well plates (Costar #3548; Corning Life Science), and
then incubated at 37 °C for 2–4 h. The medium was replaced with
0.25 mL of fresh F-12 or DMEM medium containing LPS
(100 ng/mL) and/or IFN-γ (10 units/mL), and then the cells were
incubated at 37 °C for 20 h. The cells were then washed twice
with PBS, and 0.25 mL Hank's balanced salt solution containing
cytochrome c (1 mg/mL) with/without SOD (10 mg/mL) were ad-
ded. The reaction was initiated by the addition of PMA (1 mg/mL),
and after incubation at 37 °C for 1.5 h, stopped by chilling of the
plates on ice. The culture supernatants were collected and ex-
amined at the wavelength of 550 nm with a UV-1700 spectro-
photometer (Shimadzu, Kyoto, Japan). The differences in A550

between the samples without and with SOD were determined,
and the level of −O2-generating activity was calculated as the re-
duction of cytochrome c on the basis of that 1 unit of optical
density at 550 nm corresponds to 47.2 nmol of −O2 [8]. To de-
termine cell protein amounts, the cells were rinsed with PBS (�)
twice, and the resultant monolayer cells were extracted and then
used for estimation of cell protein amounts by the method of
Lowry et al. [18].

2.6. Western blot analysis

As described previously, cells were stimulated with LPS and/or
IFN-γ for various times. The cells were then chilled on ice and
washed twice with ice-cold PBS, after which they were scraped
into lysis buffer comprising 1% (v/v) Triton X-100, 2 mM ethyle-
nediaminetetraacetic acid (EDTA), 150 mM NaCl, 10% glycerol, and
1% protease inhibitor cocktail (Nacalai Tesque) in 20 mM Tris–HCl,
pH 7.4. The cell lysates were fragmented at 4 °C for 3 min (30 sec
on/20 sec off, 60% duty) with a sonicator, ELESTEIN 05-01 (Elekon
Science Co., Ltd., Chiba, Japan). Finally, the resultant solutions were
centrifuged at 10,000 rpm at 4 °C for 1 min, and the resulting su-
pernatants were used as cell extracts. 25 μg aliquots of the cell
extracts were electrophoresed through a 5–20% gradient poly-
acrylamide gel (ATTO, Tokyo, Japan), and the proteins were
transferred to Immobilon polyvinylidene difluoride (PVDF) mem-
branes (Merck, Millipore, Billerica, U.S.A.). The membranes were
blocked with 30 mg/mL milk casein (Megmilk Snow Brand, Tokyo,
Japan) in a rinse buffer comprising 0.1% Triton X-100, 0.1 mM
EDTA, and 0.8% NaCl in 10 mM Tris–HCl buffer, pH 7.4, and then
incubated with mouse anti-iNOS/NOS Type II (BD Transduction
Laboratories, New Jersey, U.S.A.), rabbit anti-TNF-α (Thermo Fisher
Scientific Inc.), goat anti-IL-1β/IL-1F2 (R&D Systems), and mouse
anti-β-actin (Sigma-Aldrich)-specific antibodies, respectively, at
4 °C overnight. The membranes were then reacted with a horse-
radish peroxidase-conjugated anti-rabbit, anti-goat, or anti-mouse
immunoglobulin G (Cell Signaling Technology, Danvers, MA, U.S.
A.)-specific antibody at room temperature for 1 h. The immune
complexes on the membranes were detected by the addition of
Pierce Western Blotting Substrate (Thermo Fisher Scientific Inc.).
Chemiluminescence signals were detected using an LAS 3000 mini
image analyzer (FUJIFILM, Tokyo, Japan), and the results were
analyzed with Image J software (developed at the National In-
stitutes of Health).
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2.7. RNA isolation and quantitative reverse transcription-Polymerase
chain reaction (qRT-PCR)

Total RNA was isolated from cells using Tripure Isolation Re-
agent (Roche Diagnostics GmbH, Mannheim, Germany) according
to the manufacturer's instructions. RNA quality and concentration
were assessed with a NanoDrop Light spectrophotometer (Thermo
Fisher Scientific Inc). Total RNA was reverse-transcribed with Re-
verTra Ace qPCR RT Master Mix (TOYOBO, Osaka, Japan). The for-
ward and reverse primer sequences for each gene were as below,
respectively: NOS2 (iNOS): 5′-CTTTGCCACGGACGAGAC-3′ and 5′-
TCATTGTACTCTGAGGGCTGAC-3′; TNF-α: 5′-CTGTAGCCCACGTCG-
TAGC-3′ and 5′-TTGAGATCCATGCCGTTG-3′; IL-1β: 5′-AGTTGACG-
GACCCCAAAAG-3′ and 5′-AGCTGGATGCTCTCATCAGG-3′; and
GAPDH: 5′-CAAGGAGTAAGAAACCCTGGACC-3′ and 5′-CGAGTTGG-
GATAGGGCCTCT-3′. Real-Time PCR was performed on an Applied
Biosystems StepOnePlus™ Real-Time PCR System (Thermo Fisher
Scientific Inc) using FastStart Universal SYBR Green Master (ROX)
(Roche Diagnostics GmbH), and the relative quantification (RQ)
was performed using StepOne™ software V2.2.2 (Thermo Fisher
Scientific Inc), based on the equation RQ¼2–ΔΔCt, where Ct is the
threshold cycle to detect fluorescence. Ct data were normalized as
to the internal control GAPDH mRNA.

2.8. Statistical analysis

The results are expressed as means7S.D. or S.E. for at least
three independent experiments. The difference between the two
groups was analyzed using Student's t-test with the significance of
difference being set at po0.05.
3. Results

3.1. The morphology of JA-4 cells activated in F-12 or DMEM

JA-4 cells exhibited the round-shape morphology in both
media (Fig. 1). Moreover, when the cells were cultured in each
medium containing IFN-γ alone, their morphologies were mostly
round-shape without difference between both media. In contrast,
when the cells were treated with LPS alone or LPSþ IFN-γ, spindle-
None IFN-γ

F-12

DMEM

Fig. 1. Morphological changes of macrophages during incubation with LPS and/or IFN-γ
medium was replaced with either F-12 or DMEM containing IFN-γ (10 units/mL) and/or L
photographs from repeated experiments are shown. Magnification, �200. Scale bar, 50
shaped cells appeared in both media frequently almost at the same
rate (Fig. 1).

3.2. Effects of the culture medium on the iNOS expression and NO
production in activated JA-4 cells

The expression of iNOS protein was induced significantly only
by LPSþ IFN-γ stimulation, the extent of the induction in DMEM
being almost twice than in F-12 (Fig. 2A and B). Induction of iNOS
protein in the course of macrophage activation was significantly
higher in DMEM at every time point after 8 h than in F-12 (Fig. 2C
and D), while the amounts of −NO2 in these cell culture super-
natants showed no significant differences between in F-12 and
DMEM (Fig. 2E). To determine this difference was caused by either
post-transcriptional or post-translational regulation, we analyzed
the expression of iNOS mRNA in the course of macrophage acti-
vation. The expression of iNOS mRNA was also significantly higher
in DMEM than in F-12 at 4 and 8 h after stimulation of macro-
phages with LPSþ IFN-γ (Fig. 2F).

3.3. Effect of the culture medium on NO production by activated JA-4
cells during re-incubation in F-12 or DMEM

As shown in Fig. 2, differences in NO production were smaller
than those in iNOS protein between the macrophages cultured in
F-12 and DMEM after treatment with LPSþ IFN-γ. These results
suggest that DMEM might have reduced NO production by the
induced iNOS in the activated macrophages. In order to examine
this possibility, activated macrophages treated with LPSþ IFN-γ at
37 °C for 20 h in either F-12 or DMEM were re-incubated further at
37 °C in the same or the other medium but without LPS or IFN-γ.
NO production by the activated macrophages in either of the
media became significantly higher during re-incubation in F-12
than in DMEM (Fig. 3A), while the medium change did not affect
the amount of iNOS protein during the re-incubation (Fig. 3B).
Moreover, NO production during the re-incubation increased lin-
early in either of the media up to 6 h (Fig. 3C). Then, we de-
termined the amount of NADPH, an electron acceptor of iNOS,
before and after the re-incubation in these media. Culturing in
DMEM resulted in a significant reduction of about 20% of NADPH
compared to that in F-12 during the re-incubation (Fig. 3D).
LPS+IFN-γLPS

in either F-12 or DMEM. J774.1/JA-4 cells were pre-incubated in F-12, and then the
PS (100 ng/mL), and the cells were then incubated at 37 °C for 20 h. Representative
μm.



Fig. 2. Effects of culture medium on iNOS expression and NO production in the course of macrophage activation in F-12 or DMEM. (A) Western blot analysis of iNOS protein
and β-actin using total protein extracts of JA-4 cells, cultured in F-12 or DMEM, in the presence or absence of IFN-γ (10 units/mL) and/or LPS (100 ng/mL). (B) Relative amount
of iNOS protein. The results in (A) are quantitatively shown as values relative to those for the untreated cells in F-12 after normalization as to the amount of β-actin in each
sample. Densitometry data are expressed as means7S.D. for three independent experiments. *po0.05 between indicated pairs of F-12 and DMEM. (C) Western blot analysis
of iNOS protein in total protein extracts of JA-4 cells treated with LPSþ IFN-γ in either F-12 or DMEM at 37 °C for the times indicated on the abscissa. (D) Time-course of iNOS
protein induction in F-12 and DMEM. The results in (C) are quantitatively shown as values relative to those for the untreated cells in F-12 at 0 h after normalization as to the
amount of β-actin in each sample. Densitometry data are expressed as means7S.D. for three independent experiments. *po0.05 between indicated pairs of F-12 and
DMEM. (E) −NO2 in the culture supernatants of macrophages after incubation with LPSþ IFN-γ for the indicated times. −NO2 was estimated by the Griess reagent assay. The
results are shown as means7S.D. for three independent experiments. (F) Expression of iNOS mRNA during macrophage activation in F-12 and DMEM. mRNA was extracted
and quantitated by qRT-PCR, as described in the text. The results are relative to those for the untreated cells in F-12 at 0 h after normalization as to the internal control,
GAPDH mRNA. The results are expressed as means7S.D. for three independent experiments. *po0.05 between indicated pairs of F-12 and DMEM.
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3.4. Effects of the culture medium on O�
2 -generating activity, and

expression of TNF-α and IL-1β in activated JA-4 cells

The −O2-generating activity in JA-4 cells treated with LPS and/or
IFN-γ in either F-12 or DMEM was examined using the cytochrome
c reduction assay. The activity was significantly lower in the cells
cultured in DMEM containing LPS than those in F-12 (Fig. 4A). As for
TNF-α and IL-1β expression in DMEM, both the precursor protein
and mRNA of each cytokine in the activated macrophages were
different (Fig. 4B). While expression of pro-TNF-α protein showed
no significant differences between the cells treated with LPS and/or
IFN-γ in these media (Fig. 4B and D), TNF-α production in DMEM
was significantly higher than in F-12 at 16 h and later after treat-
ment with LPSþ IFN-γ (Fig. 4C, left). Besides, expression of pro-IL-
1β protein was induced earlier in F-12 than DMEM at 12 h after
treatment with LPSþ IFN-γ, but the level of pro-IL-1β increased
rapidly in DMEM after 12 h (Fig. 4C, right). Supporting these results,
induction of pro-IL-1β protein was delayed in DMEM compared to
that in F-12 (Fig. 4D), and the IL-1β mRNA level at 4 h after sti-
mulation was significantly higher in F-12 than in DMEM (Fig. 4E).
4. Discussion

F-12 and DMEM are widely used for supporting the growth of
various cells. However, there are some differences in their com-
positions; F-12, developed by Ham, contains various amino acids,
vitamins, and trace elements, and DMEM, modified from Basal
Medium Eagle, contains higher levels of amino acids, vitamins,
calcium (6-fold), glucose (2.5-fold), and so on than F-12.

This study demonstrated that these culture media influence the
activated macrophage phenotypes of the J774.1/JA-4 macrophage-
like cell line. Among them, NO production and iNOS expression
were the most remarkably influenced, because induction of iNOS
mRNA and iNOS protein was higher in DMEM than in F-12, but NO
production by the activated macrophages was less in DMEM than



Fig. 3. Effect of culture medium on NO production by activated macrophages during re-incubation in F-12 or DMEM. Cells were pre-incubated in F-12 and then treated with
LPS (100 ng/mL) and IFN-γ (10 units/mL) in F-12 or DMEM at 37 °C for 20 h. Then the cells were washed with warm-PBS, followed by re-incubation in either fresh F-12 or
DMEM at 37 °C for 4 h. (A) −NO2 in the culture supernatants of the macrophages during re-incubation. The results are expressed as means7S.D. for three independent
experiments. *po0.05 between indicated pairs of F-12 and DMEM. (B) Western blot analysis of iNOS protein in total protein extracts of cells after activation for 20 h and
subsequent re-incubation for 4 h. (C) Time-course of NO production during re-incubation of activated macrophages. −NO2 in the culture supernatants of the re-incubated cells
in either of the media is shown, as described in the text. (D) NADPH levels in activated macrophages during re-incubation in either F-12 or DMEM. NADPH was extracted
from the re-incubated cells and analyzed with an NADP/NADPH assay kit, and the results are shown as means7S.E. for seven independent experiments. *po0.05 between
indicated pairs of F-12 or DMEM.
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in F-12, based on the amount of iNOS protein induced during
macrophage activation and subsequent re-incubation of the acti-
vated macrophages (Fig. 3). Though iNOS is the key enzyme being,
induced by macrophage activation with LPSþ IFN-γ, NO produc-
tion proceeds with L-arginine (L-Arg), O2, and NADPH as sub-
strates [19]. Unlike endothelial NOS (eNOS), iNOS is Ca2þ/calmo-
dulin-independent, but there has been a report that elevated in-
tracellular calcium affects NO production by iNOS [20]. Comparing
these media, F-12 contains a 2.5 times higher amount of L-Arg but
DMEM contains a 6.0 times higher amount of Ca2þ than the other,
respectively. Therefore it seems feasible that the difference in NO
production might have been caused by L-Arg and Ca2þ . Besides,
DMEM contains higher amounts of glucose and phenol red, while
F-12 contains higher ones of pyruvate and vitamins that have been
reported to have some influence on iNOS activity [21,22]. How-
ever, none of them showed a noticeable effect on the expression of
iNOS during macrophage activation, or production of NO during
re-incubation of the activated macrophages in this study (data not
shown). It should be noted that macrophages showed a reduced
NADPH level during incubation in DMEM (Fig. 3D), which might
have reduced iNOS activity during re-incubation, and have re-
sulted in the decrease in NO production during activation as well
as re-incubation of macrophages in DMEM (Figs. 2C and 3C).

In addition, these two media have various effects on activated
macrophage phenotypes other than expression of iNOS and pro-
duction of NO, because −O2-generating activity, and expression of
TNF-α and IL-1β were also different between the activated mac-
rophages in F-12 and DMEM (Fig. 4). From other laboratories, it has
been reported that J774.1 cells in DMEM grow faster, and consume
glutamine and serine at higher rates than in RPMI-1640 [23], or
that DMEM contains amino acids and vitamins that show anti-
oxidative properties [24]. The results of this study also seem to
suggest that some factors in F-12 and/or DMEM have cumulative
effects on the activation processes in JA-4 cells. Furthermore, we
obtained similar but not identical results when peritoneal mac-
rophages from BALB/c mice were used (data not shown). These
results suggest that activation of various macrophages was influ-
enced by culture medium. In the future, we will need to analyze
the molecular mechanisms of these phenomena by using the
macrophages prepared from gene-manipulated mouse or knock-
out mouse model of genes such as iNOS and pro-inflammatory
cytokines.

Mostly, only one cell-culture condition is used to investigate
cell functions or mechanisms. However, in this study, we found
that the different culture media showed the distinct results in the
activation of macrophage. Thus, in conclusion, the choice of
medium is important to understand the true characteristics of the
cells and cell functions including macrophage activation.



Fig. 4. Effects of culture medium on −O2-generating activity, and induction of TNF-α and IL-1β during macrophage activation in F-12 or DMEM. −O2-generating activity in the
macrophages cultured in F-12 or DMEM with or without IFN-γ (10 units/mL) and/or LPS (100 ng/mL). (B) expression of pro-TNF-α (25 kDa) and pro-IL-1β (31 kDa) proteins
detected on SDS-PAGE/western blot analysis of cell extracts after incubation in F-12 or DMEM in the presence or absence of IFN-γ and/or LPS at 37 °C for 20 h. (C) TNF-α and
IL-1β release from cells cultured in F-12 or DMEM in the presence of LPSþ IFN-γ. (D) time-course of induction of pro-TNF-α and pro-IL-1β proteins in macrophages treated
with LPSþ IFN-γ during incubation in F-12 or DMEM. (E) induction of TNF-α and IL-1β mRNA in cells cultured in F-12 or DMEM. the cells were cultured in either medium
containing nothing or LPSþ IFN-γ for 0, 4 or 8 h, and then mRNA was extracted and quantitated by qRT-PCR, as described in the text. the data were normalized as to GAPDH
mRNA as an internal control, and the results are expressed relative to those for the untreated cells in F-12 at 0 h. in (A), (C), and (E), the results are shown as means7S.D. for
three independent experiments. *po0.05 between indicated pairs of F-12 and DMEM.
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