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Abstract: Prevalent incidents support the notion that toxins, produced by bacteria, fungi, 
plants or animals are increasingly responsible for food poisoning or intoxication. Owing to 
their high toxicity some toxins are also regarded as potential biological warfare agents. 
Accordingly, control, detection and neutralization of toxic substances are a considerable 
economic burden to food safety, health care and military biodefense. The present 
contribution describes a new versatile instrument and related procedures for array-based 
simultaneous detection of bacterial and plant toxins using a bioanalytical platform which 
combines the specificity of covalently immobilized capture probes with a dedicated 
instrumentation and immuno-based microarray analytics. The bioanalytical platform 
consists of a microstructured polymer slide serving both as support of printed arrays and as 
incubation chamber. The platform further includes an easy-to-operate instrument for 
simultaneous slide processing at selectable assay temperature. Cy5 coupled streptavidin is 
used as unifying fluorescent tracer. Fluorescence image analysis and signal quantitation 
allow determination of the toxin’s identity and concentration. The system’s performance has 
been investigated by immunological detection of Botulinum Neurotoxin type A (BoNT/A), 
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Staphylococcal enterotoxin B (SEB), and the plant toxin ricin. Toxins were detectable at 
levels as low as 0.5–1 ng·mL−1 in buffer or in raw milk. 

Keywords: biosensor; microfluidics; toxins; bioanalytics; platform 
 

1. Introduction 

Despite intensified efforts, intoxication by toxins such as the bacterial toxins Staphylococcal 
enterotoxin B (SEB) or Botulinum Neurotoxin type A (BoNT/A) still present significant threats to 
public health [1]. Ingestion of SEB, produced by gram positive cocci of Staphylococcus aureus, can 
cause Staphylococcal Food Poisoning (SFP), a form of gastroenteritis that manifests clinically as 
emesis with or without diarrhea. As little as 1–20 µg SEB may lead to severe illness in an adult [2,3]. 
BoNT/A, /B, /E, and /F, are produced by toxigenic strains of the Gram positive Clostridium botulinum 
and may provoke food borne botulism in humans, a severe neuroparalytic illness. BoNT is the most 
toxic substance known to man. Quantities of 0.01–1 µg BoNT per kg body weight can be fatal if 
ingested, e.g., with improperly processed food [4,5]. 

With more than 200,000 estimated intoxication cases in USA in 2006, SEB caused costs of 
approximately $1.2–1.5 billion for appropriate treatment, thus generating an enormous economic loss. 
Between 1992 and 1997 there occurred only about 60 cases of food borne botulism in the USA per year, 
with often very severe etiopathology. Treatment in intensive care units is often inevitable, and in certain 
cases artificial ventilation during up to 6 months is required. Such medical treatment increases the 
costs per patient to $14,000–75,000 and may reach annual care costs of $800,000 to $4.2 million [6–9]. 
Another dreaded toxin is ricin, a toxic lectin of the castor oil plant Ricinus communis. While seeds of 
R. communis are pressed cold to extract the oil, water-soluble ricin remains after processing within 
fibrous residues. Ricin is a prototypic A-B toxin, which effectively inhibits protein synthesis by 
depurinating the 28S ribosomal RNA. The actual oral toxicity of ricin for humans is estimated 1  
to 30 mg per kg body weight. Nevertheless, facile extraction and industrial castor oil production lead 
to toxin abundance and facilitated access [10,11]. Hence, ricin is regarded as threatening biowarfare 
agent. Likewise, due to their exceptional toxicity, both SEB and BoNT are considered potential 
biowarfare agents [12]. It is thus considered appropriate to develop tools and procedures applicable for 
fast and early detection and typing of toxins for food safety and homeland security. 

Over the last five decades, the development of biosensors has attracted considerable interest, and 
the number of analytes detected increases continuously [13–15]. Though most biosensors are currently 
used in clinical diagnosis [16], they also gain importance for applications such as DNA hybridization and 
sequencing [17], high throughput drug discovery [18,19], detection of biological warfare agents [20], 
environmental analysis, e.g., of pesticides [21], food production and safety [22], and detection of illicit 
drugs [23,24]. Microfluidic biosensing systems in particular have gained attention, as they offer 
advantages over other biosensors. Commonly, they include fluid channel systems imprinted in plastic or 
silicone platforms [25,26]. In many instances, channels are connected to appropriate fluid propagation 
systems allowing fluid transport to and from reaction chambers. Depending on the microfluidic channel 
arrangement, selective contact of analyte-containing sample fluids with distinct areas of the analytical 
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platform is assured [27]. Minute sample volumes are generally needed due to the nanometer to 
micrometer channel dimensions. This renders large amounts of expensive reagents superfluous, and 
assays can be performed with scarce and precious samples.  

Currently, an increasing number of Lab-on-a-chip devices are emerging. Due to their ability to test 
multiple samples with small amount of reagents, they offer optimal conditions to detect highly 
contagious or harmful substances. While a wide range of methods is used to address this matter, many 
assays rely on immunological detection of target molecules due to the high specificity and sensitivity of 
immunological reagents. This is of particular importance when considering the high toxicity of certain 
toxins, foremost BoNT/A, where detection in the range of few picogram per milliliter is required.  
To guarantee food safety, at least 125–250 ng of SEB per 100 g of a given food sample should be 
detected [28]. This corresponds to approximately 1.25–2.5 ng·mL−1 liquid foodstuff. Although the 
toxicity of ricin is much lower, it is evident that safety margins are required, i.e., a detection limit of 
few nanogram per mL would be eligible. Accordingly, there is need for sensitive and reliable detection 
of such toxins. 

If proteinaceous or peptidic toxins are to be detected, immunological detection techniques, such as 
enzyme-linked immunosorbent assay (ELISA) or fluorescence-linked immunosorbent assay (FLISA), 
are currently the methods of choice, as they offer both high sensitivity and specificity [29,30]. 
Accordingly, many biosensors utilize capture molecules such as antibodies immobilized in discrete 
locations on the surface of microfluidic platforms [27,31–33]. By passing the detection area, analytes 
may interact with capture molecules. Captured analytes can subsequently be detected immunologically, 
by hybridization or by direct molecular detection. An often-employed sensing scheme is based on 
fluorescence detection: a fluorescent label coupled to a detection molecule serves to identify and 
quantify captured analytes [34,35]. Sandwich assays employing two specific antibodies, allow highly 
sensitive and specific analyte detection—even in complex matrices [36]. Immobilization of different 
capturing molecules to analytical platforms enables both, simultaneous detection of several analytes 
and integration of relevant positive and negative control features [37]. 

The present contribution describes a bioanalytical platform, which combines the specificity of 
covalently immobilized capture probes with a dedicated instrumentation and microfluidic array analytics. 
A set of toxin specific antibody pairs is used to challenge the portrayed bioanalytical system with three 
biological threat agents BoNT/A, SEB, and ricin. The described system allowed for simultaneous 
characterization of toxin type and concentration. While optimum conditions for highest sensitivity 
were established in buffer, the system also qualified for the detection of BoNT/A and ricin in a 
complex matrix such as raw milk. 

2. Experimental Section 

2.1. Toxins and Antibodies 

The study was performed using purified 150 kDa BoNT/A from Clostridium botulinum strain Hall 
A (BoNT/A1; Metabiologics, Madison, WI, USA), ricin from Ricinus communis (RCA60; Institute of 
Phytochemistry, University Witten/Herdecke, Witten, Germany), and SEB from Staphylococcus aureus 
(S4881; Sigma-Aldrich, Seelze, Germany). For sample analysis, toxins were diluted in pH 7.2 phosphate 
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buffered saline (PBS), pH 7.4 Tris buffered saline (TBS) or raw cow’s milk (pH 6.5,  
approximately 4% fat content), respectively. The following mouse-derived monoclonal antibodies 
were used as capturing antibodies: anti-BoNT/A (A1688; ZBS 3, RKI, Berlin, Germany) as described 
before [38], anti-SEB (89/3; Institute for Medical Microbiology and Hygiene, TU Dresden, Dresden, 
Germany), and anti-Ricin (RCH1; Institute of Phytochemistry, University Witten/Herdecke, Witten, 
Germany). Detection of the toxins was performed with polyclonal equine anti-BoNT/A (BoNT/A/B/E; 
Novartis Behring, Marburg, Germany), polyclonal rabbit anti-SEB (S9008; Sigma-Aldrich, Seelze, 
Germany), and monoclonal mouse anti-ricin (1RK1; Institute of Phytochemistry, University 
Witten/Herdecke, Witten, Germany). The detection antibodies were coupled to biotin according to the 
manufacturer’s instructions (EZ-Link Sulfo-NHS-LC-biotin; Pierce, Rockford, IL, USA). They were 
used at concentrations between 5–10 µg·mL−1. Biotinylated antibodies were stored in phosphate 
buffered saline with 0.2% (w/v) bovine serum albumin and 0.05% (w/v) NaN3. 

2.2. Inca Bioanalytical System 

The Inca Bioanalytical System is a microarray-based system for use in diagnostics and environmental 
control. The current configuration of the system consists of two essential components: IncaTrace  
(Figure 1(a)) and IncaSlide (Figure 1(b)), the first being a small and easy-to-use laboratory appliance 
for simultaneous IncaSlide processing. Toxin assays were performed with the Inca Bioanalytical 
System depicted in Figure 1. 

Figure 1. Inca Bioanalytical System. (a) The IncaTrace instrument is equipped with an 
integrated heating plate. Six IncaSlides are mounted on the IncaTrace instrument and 
connected via Tygon ST tubings to a multi-channel peristaltic pump; (b) IncaSlide with 
microstructured channel architecture and lamination. The inset shows a section (SEM 
image) of substructured microchannels. The diameter of the protruding posts is 300 µm. 

 

2.3. IncaSlide 

Contrary to most commercialized high performance microarray platforms, the IncaSlide is 
manufactured by injection molding. The slide’s dimensions fully comply with international standards 
(25 × 75.7 × 1 mm). The basic architecture of the IncaSlide includes a substructured microchannel 
with a channel width of 500 µm. Molecules are printed onto 384 protruding posts situated within the 
channel (Figure 1(b)). A low volume reaction chamber (28 µL) is generated by lamination of the 
IncaSlide. Prior to dispensing the capture antibodies, the entire channel is treated with the photolinker 

a      b
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polymer OptoDexTM, and capture molecules are printed using a non-contact microdispensing array 
printer (Nano-PlotterTM, GeSIM, Germany). For microarray manufacturing, capture antibodies were 
diluted with 1% (w/v) PBS buffer at concentrations ranging from 0.1–2.0 mg·mL−1 and dispensed on 
top of the substructure features (400 pL per feature). Printed arrays were then vacuum dried and slides 
were exposed to UV light (350 nm, 11.4 mW per cm2) for 4 min to achieve covalent binding of the 
capture molecules. Following photo-immobilization, the slides were rinsed three times each with PBS 
buffer containing 0.05% Tween 20, PBS buffer and deionized water, respectively, and blocked with 
Inca Block 6000 (Arrayon Biotechnology, Neuchatel, Switzerland). Upon drying, printed slides were 
laminated with a transparent acrylate film, packaged under oxygen-free atmosphere (400 mbar N2) and 
stored at 4 °C. All microarray manufacturing procedures were carried out in clean room environment. 
Besides capture molecules, the microarray is designed to host analytical references and calibrators as 
required for quality controlled, unambiguous and quantitative analysis of analyte fluids. Packaged 
microarrays can be stored at ambient temperature. Storage at 4 °C, however, is recommended. Figure 2 
shows a typical fluorescence scan image of a processed IncaSlide as well as the underlying  
layout scheme. 

Figure 2. Print layout of an IncaSlide. (a) Fluorescence scan image of a processed IncaSlide. 
The size of the analyzed area is 16 × 12 mm (≈2 cm2). Reference sidelines serve to control 
print and slide quality. In the example shown, a fluorescence intensity calibrator series is 
deposited at the top of the microarray. Baseline values are retrieved from capture-free 
vertical and perpendicular spot arrays. The slide, functionalized with capture antibodies, was 
incubated with SEB, Ricin, and BoNT/A at concentrations of 50 ng·mL−1 each; (b) Layout 
scheme of the presented slide. Colored areas indicate sections functionalized with capture 
antibodies (anti-SEB, anti-Ricin, anti-BoNT/A), negative controls (PBS), positive controls 
(Biotin-anti-Lysozyme), antibody controls (mouse IgG/BSA, rabbit IgG/BSA) and 
fluorescent dye references (Atto-BSA dye in different concentrations). Increased color 
intensity represents increased antibody or dye concentrations. 

 
(a)       (b) 
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2.4. IncaTrace 

IncaTrace is small laboratory instrument designed for processing IncaSlides. The instrument 
consists of a solid base plate with six recesses, a cover plate with fluid connections and fluid reservoirs 
and screws to tighten the properly positioned IncaSlides. Inlet and outlet ports of the IncaSlide connect 
to the reservoir (at inlet) and the tubing connection (at outlet), respectively. For processing, up to six 
IncaSlides are placed in the respective recesses, with the laminated surface down. The cover plate is 
overlaid and tightened by screws. Buffer solutions, analytes and reagents (max. 100 µL) are sequentially 
manually dispensed into the fluid reservoirs. Fluids are channeled in the reaction chamber by a multiplex 
peristaltic pump (IPC-N8 Multichannel pump, Ismatec SA, Switzerland) with a flux rate of 70 µL·min−1. 
Cyclic reversed flux incubation (20 s for each direction) is performed during two times 16 min at 
ambient temperature or at 37 °C. Upon completion of the incubation and rinsing steps, IncaSlides are 
removed from the instrument, delaminated and blown dry with N2 before fluorescence scanning. 

2.5. Fluorescence Scanning and Signal Quantification 

Cy5-labeled Streptavidin (5 µg·mL−1; Milan Analytica AG, Rheinfelden, Switzerland) was used for 
fluorescence detection of toxin-antibody complexes. Upon scanning of processed IncaSlides, 
fluorescence signal intensities were registered and quantified with a commercial instrument and 
software (GenePix Personal 4100 A; Molecular Devices, Inc., Sunnyvale CA, USA). The relative 
fluorescence intensity (RFU) of each individual array feature was quantitated by relating measured 
fluorescence intensities to on-chip fluorescence calibrator intensities. Atto-BSA dye (Arrayon 
Biotechnology, Neuchatel, Switzerland) was used to calibrate fluorescence intensity. Calibrator 
features were individually printed in triplicates; they contained 5–5,000 atto dye molecules per µm2 at 
constant protein (BSA) concentration. 

2.6. Decontamination 

Plastic parts of the IncaTrace instrument were regularly decontaminated by incubation in 6% NaOH 
(30 min) followed by 1% detergent (10 min) and subsequently rinsed with deionized H2O (3 times  
5 min). Similarly, tubings were flushed with 6% NaOH (10 min), followed by deionized H2O (10 min), 
then 100% ethanol (10 min) and finally rinsed with deionized H2O (30 min). IncaSlides are designed 
for single use. They were discarded after decontamination. 

3. Results 

3.1. IncaSlide Processing 

IncaSlides included a microstructured channel, which—upon lamination—established a low volume 
reaction chamber. In a typical analysis, IncaSlides printed with assay specific capture probes, calibrator 
and control items were placed in the IncaTrace instrument. A multichannel peristaltic pump was 
connected via fluidic connections. Initializing channel charging with buffer solution (by applying 
negative pressure) reconstituted the previously dry-immobilized capture molecules. Different dilutions 
of anti-toxin antibodies were used to determine the optimal print concentration of the capture antibody. 
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As a result, the highest antibody concentration (2.0 mg·mL−1 anti-BoNT/A, 1.74 mg·mL−1 anti-ricin, 
and 1.27 mg·mL−1 anti-SEB) was chosen as it provided high sensitivity and a good signal to noise ratio. 

Assay procedures were initiated by applying the analyte samples in two steps (100 µL each). The 
first sample charge (100 µL) was placed in the IncaTrace sample reservoir. The efficiency of analyte 
binding to capture molecules was enhanced by cyclic reverse flow incubation for 16 min. After 
discharging the channels, the second sample charge (100 µL) was applied and handled the same way 
as above. Subsequently, 100 µL of biotin labeled detection antibodies was added. For fluorescence 
detection, fluorophore (Cy5) labeled Streptavidin was used to visualize established complexes of 
capture antibody, analyte and biotinylated second antibody. Each incubation step took 16 min and was 
followed by three rinsing steps with PBS buffer containing 0.05% Tween 20, then PBS buffer and 
deionized water. Processed slides were scanned and the fluorescent signals were quantified. Relating 
the recorded fluorescence to the intensities of the on-chip fluorescence calibrator allowed quantitation 
of each individual array feature. 

3.2. Assay Development 

3.2.1. Dose Response versus Assay Temperature 

To elucidate optimal assay conditions, the dose response of the system was determined at 25 °C  
and 37 °C with toxins diluted in phosphate buffered saline (PBS; pH 7.2). For each toxin concentration 
an individual slide was used. As depicted in Figure 3, all toxins could be reliably detected at 25 °C at 
concentrations as low as 0.5 ng·mL−1 for SEB and 0.5–1 ng·mL−1 for BoNT/A and ricin, respectively. 
Upon incubation at 37 °C, the signal intensities of BoNT/A and ricin increased significantly, allowing 
toxin detection at 0.5 ng·mL−1. SEB related signals, however were negatively affected by elevated 
assay temperatures.  

Figure 3. Temperature dependent detection of BoNT/A, ricin, and SEB. PBS was spiked 
with different concentrations (0.5, 1, and 5 ng·mL−1) of (a) BoNT/A, (b) Ricin, and  
(c) SEB, respectively, and incubated either at 25 °C (black bars) or at 37 °C (gray bars). 
Negative control values (white) are integrated in the depicted bars. Average signal intensity 
and the standard deviation (error bars) were calculated from six features (n = 6) per assay. 
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3.2.2. Dose Response versus Assay Buffer Composition 

In an attempt to find the optimal buffer composition for the simultaneous detection of the toxins, we 
performed assays with PBS (pH 7.2) and Tris buffered saline (TBS; pH 7.4) at 25 °C. While SEB in 
PBS displayed very good signal intensities, we found even higher signals with TBS as an assay buffer 
(Figure 4). For 50 ng·mL−1, for example, the signal intensity increased by 72.7%, while the effect was 
less pronounced at lower concentrations. Signal intensities for 0.5 ng·mL−1 SEB, for instance, 
increased merely by 6.5%. In contrast to SEB, the signal intensities for BoNT/A and ricin decreased 
dramatically with toxins dissolved in TBS. As a result, solutions of ricin in TBS could only be detected 
at concentrations ≥ 5 ng·mL−1, and concentrations ≥ 50 ng·mL−1 were required for detection of 
BoNT/A in TBS (data not shown). 

Figure 4. Detection of SEB diluted in PBS and TBS and image of IncaSlide. (a) PBS 
(black bars) and TBS (gray bars) were spiked with SEB (final concentrations 0.5, 1, 5, 10, 
and 50 ng·mL−1) and slides were processed at 25 °C. Negative control values (white) are 
integrated in the bars. Average total signal intensity and standard deviation (error bars) 
were calculated from six features (n = 6) per assay; (b) Fluorescence scan image series  
of IncaSlide sections functionalized with anti-SEB capture antibody and SEB applied  
at concentrations of 0–50 ng·mL−1, diluted in TBS. The respective positive controls  
(Biotin-anti-Lysozyme) are shown in the top part of the image.  

  

3.2.3. Dose Response versus Incubation Time 

In view of further optimizing the assay conditions, extension of the analyte incubation time was 
explored (twice instead of once 16 min for each sample charge). Results obtained indicated that 
doubling the incubation time did not increase the signal intensity. 
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of the antibody pairings was determined. Toxins were diluted in PBS at concentrations of 0.5  
and 5 ng·mL−1 and the slides were incubated with one toxin at the time at a concentration of either 0.5 
or 5 ng·mL−1. Next, a mixture of biotin labeled secondary antibodies specific for all three toxins,  
and subsequently Cy5 labeled streptavidin were applied. The fluorescence intensities at features 
functionalized with capture antibodies, which do interact with the toxin in question were compared to 
the respective negative control without toxin. As shown in Figure 5, even at a tenfold increase of 
spiked toxin the amount of unspecific signal, registered on the features specific for non-target toxins, 
did not increase significantly. The results imply minimal cross-reactivity between capture and 
detection antibodies, as well as between toxins and non-pairing capture antibodies. 

Figure 5. Cross-reactivity of anti-toxin antibodies. PBS was spiked with 0.5 and 5 ng·mL−1 
of (a) BoNT/A, (b) ricin, and (c) SEB, respectively, and slides were processed at 37 °C 
(BoNT/A and ricin) and 25 °C (SEB). Signals are shown for the spiked toxin, as well as 
signals measured at features functionalized with capture antibodies against the other toxins. 
Signals measured at anti-BoNT/A (@BoNT/A) coated features are depicted in black, 
signals at anti-ricin (@Ricin) coated features in white, and signals at anti-SEB (@SEB) 
coated features in gray. Average signal intensity and standard deviation (error bars) were 
derived from six features (n = 6) per assay.  

 

As all three toxins showed significant signals when assayed in PBS, this buffer was chosen for 
simultaneous toxin detection. To attain this, PBS was spiked with equal concentrations of all three 
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Figure 6. Simultaneous detection of BoNT/A, ricin and SEB in PBS. PBS was spiked with 
equal concentrations (0, 1, 10, and 50 ng·mL−1) of all three toxins and slides were processed 
at 37 °C. (a) Values are shown for the signals measured at features functionalized with the 
respective capture antibodies, i.e., anti-BoNT/A (@BoNTA; black bars), anti-ricin (@Ricin; 
white bars), and anti-SEB (@SEB; gray bars). Average signal intensities and the standard 
deviations (error bars) were calculated from six measurements (n = 6) per assay; (b) Image 
series of features functionalized with the highest concentrations for anti-SEB, anti-ricin, and 
anti-BoNT/A, respectively, and challenged with a mixture of either 0, 1, 10, or 50 ng·mL−1 
of the three toxins.  

  

3.4. Detection of Toxins in a Complex Matrix 

It has been discussed in the relevant literature [39], whether BoNT/A might be used in case of a 
bioterror attack to contaminate the food supply, i.e., the milk production. Accordingly, it seemed 
pivotal to test the bioanalytical system with toxins in raw milk as food matrix. Due to its high protein 
and lipid content, raw milk represents a complex and thus challenging matrix. In the context of the 
present investigations, the toxins were diluted in raw milk and applied to the bioanalytical platform 
without prior sample preparation. 

As shown in Figure 7, BoNT/A and ricin were detected in raw milk at concentrations as low  
as 1 and 5 ng·mL−1, respectively. Unexpectedly, detection of SEB in raw milk was only possible at 
concentrations ≥ 50 ng·mL−1 (data not shown). A minor increase in background signal was observed 
for ricin. False positives or false negatives were not detected. Hence, although raw milk as a complex 
matrix impaired the assay, in particular for SEB, it was still possible to detect low concentrations of 
BoNT/A and ricin. 
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Figure 7. Dose response for BoNT/A and ricin in raw milk. PBS (black bars) and raw milk 
(gray bars) were spiked with different concentrations of (a) BoNT/A (1, 5, and 50 ng·mL−1) 
and (b) ricin (1, 5, and 10 ng·mL−1). Negative control values are depicted in white within 
the respective measurement. Average signal intensities and the standard deviation (error 
bars) were calculated from six features (n = 6) per assay.  
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at 37 °C leads to a dramatic decrease in signal intensities. In addition, unspecific binding of milk 
components to the anti-SEB capture antibody or to the toxin itself may have interfered. 

As far as sensitivity is concerned, the presented data correspond to the detection limits of similar 
biosensor devices for the detection of the investigated toxins. Other publications describe sensitivities 
in buffers and some food samples as low as 1–20 ng·mL−1 for BoNT/A, 10 ng·mL−1 for ricin,  
and 0.1–4 ng·mL−1 for SEB, using different forms of flow-coupled immuno-analysis [45–48]. 
Introduction of enrichment steps, e.g., by antibody-coupled paramagnetic beads may further increase 
the sensitivity to few picogram per milliliter [49–51]. Using planar waveguide sensors, sensitivities for 
BoNT/A toxin or toxoid, ricin, and SEB were reported in the range of few ng·mL−1 in buffer and  
milk, respectively [27,33]. Methods, such as capillary electrophoresis combined with laser-induced 
fluorescence detection, mass-sensitive magneto elastic sensors or diffractive grating sensors reportedly 
detect SEB, ricin, or BoNT/A at concentrations between 0.5 and 100 ng·mL−1 [52–54]. 

The key strength of the presented bioanalytical platform is its ability to analyze, on a modular scheme, 
multiple samples for multiple analytes simultaneously with multiple reaction media. The instrument 
allows fast assay development and exploration of different assay strategies, i.e., buffer compositions, 
varying sample volumes, flow specifications, incubation times and pre-defined temperature settings. As 
the entire process can be completed in less than 90 min it is faster than common ELISA procedures and 
overcomes the sensitivity limitations of existing lateral flow devices [55–57]. In addition, if further 
detection molecules were incorporated, the system would facilitate simultaneous detection of up  
to 28 agents with six replicates each on the same slide. Due to inexpensive production, IncaSlides reduce 
assay costs. Also, they can be easily disposed of, thereby minimizing the risk of post-assay contamination 
or intoxication, respectively. All parts of the IncaTrace are amenable to decontamination strategies. 
Hence, by applying the appropriate assay conditions and specific detection molecules, the bioanalytical 
platform qualifies for sensitive detection of a wide range of molecules, including toxins, simultaneously 
and in parallel. 
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