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ABSTRACT

Motivation: The identification of nucleosomes along the chromatin is

key to understanding their role in the regulation of gene expression

and other DNA-related processes. However, current experimental

methods (MNase-ChIP, MNase-Seq) sample nucleosome positions

from a cell population and contain biases, making thus the precise

identification of individual nucleosomes not straightforward. Recent

works have only focused on the first point, where noise reduction

approaches have been developed to identify nucleosome positions.

Results: In this article, we propose a new approach, termed

NucleoFinder, that addresses both the positional heterogeneity

across cells and experimental biases by seeking nucleosomes

consistently positioned in a cell population and showing a significant

enrichment relative to a control sample. Despite the absence of vali-

dated dataset, we show that our approach (i) detects fewer false posi-

tives than two other nucleosome calling methods and (ii) identifies two

important features of the nucleosome organization (the nucleosome

spacing downstream of active promoters and the enrichment/deple-

tion of GC/AT dinucleotides at the centre of in vitro nucleosomes) with

equal or greater ability than the other two methods.

Availability: The R code of NucleoFinder, an example datafile and
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com/site/beckerjeremie/
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1 INTRODUCTION

Eukaryotic genomes exist in highly packaged structures called

chromatin. DNA wraps around globular protein cores and

appears as ‘beads on a string’ by electron microscopy. The

‘bead’, or nucleosome, is the fundamental structural unit of the

chromatin and consists of �150 base pairs coiled 1.65 times

around a histone octamer core comprising two H2A/H2B and

two H3/H4 heterodimers (Luger et al., 1997). The ‘string’, also

called the linker, is a DNA stretch ranging from 10 to 80 bp,

depending on species, cell type and chromatin region.

Nucleosomes can further be folded into higher order organiza-

tions to eventually form a chromosome (Felsenfeld and

Groudine, 2003). The need for these high level structures arises

from a packaging problem: the DNA molecule is long (chromo-

somes range from 1.7 to 8.5 cm in human) and negatively

charged, resulting in electrostatic repulsions that stiffen the poly-

mer and prevent it from fitting inside the nucleus. Owing to the

highly basic charge of histone proteins, DNA charges are neu-

tralized, allowing a compaction up to a factor of 10 000 (Jiang

and Pugh, 2009).
This compaction is not homogeneous throughout the genome

and restricts both the binding of transcription factors and the

recruitment of effector protein complexes (such as chromatin

remodelling complexes) to certain regions (Millar and

Grunstein, 2006). Chromatin has commonly been viewed as

being in either an active form (euchromatin) or a repressed

form (heterochromatin). The former, characteristic of active

transcribed regions, is lightly packed (up to the 30 nm fiber

compaction) and allows regulatory proteins and transcription

complexes to bind to the DNA. The latter, tightly packed, is

associated with gene silencing and the protection of chromosome

structures such as centromeres and telomeres (Elgin, 1996).

Because of its influence on the binding of transcription factors,

the packaging of DNA into nucleosomes provides important

regulatory functions (Yuan et al., 2005). In yeast for instance,

Shivaswamy et al. (2008) demonstrated that gene activation

and repression are associated with changes (eviction, appear-

ance or repositioning) of one or two nucleosomes in promoter

regions.
The development of high-throughput assays has allowed the

mapping of nucleosomes across the genomes of various model

organisms (Lee et al., 2007; Mavrich et al., 2008; Schones et al.,

2008; Valouev et al., 2008). These recent studies have revealed

common features across species : at expressed genes (i) the

\sim150 base pairs region upstream of the transcription start

site (TSS) is depleted of nucleosomes, (ii) nucleosomes show a

regular spacing at the 50 end of genes and (iii) this regular

nucleosome spacing, also called phasing, gradually decreases

from the 50 to the 30 end of the coding region (Bai and

Morozov, 2010). Even if our understanding of the nucleosome

organization has considerably improved, the questions of the

relative influence of cis and trans factors in the nucleosome orga-

nization as well as the role of nucleosome positioning in gene
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regulation remain active areas of research. A major challenge in
addressing these questions is that the precise identification of
individual nucleosomes is rendered complex by current assays

which (i) are biased and (ii) sample nucleosomes positions
across a cell population, as discussed below, raising the need
for nucleosome calling methods that account for both issues.

The main experimental bias arises from the use of the micro-
coccal nuclease (MNase) to isolate the DNA fragments bound to
histones (nucleosomal DNA). In addition to digesting naked

DNA, the MNase is known to cleave AT/TA dinucleotide
motifs as well as showing other, more subtle, sequence specificity
(Horz and Altenburger, 1981). After measuring the nucleosomal

DNA either by microarray (MNase-chip) or deep sequencing
(MNase-seq), the resulting nucleosome map thus reflects regions
both depleted of nucleosomes and rich in AT/TA dinucleotides.

Even though Kaplan et al., (2010) showed that nucleosome
protection is the dominant factor in MNase digestion, it is desir-
able to control for this bias along other potential experimental

biases. In MNase-Chip experiments, this is done by hybridizing
nucleosomal DNA against a control sample (naked genomic
DNA). By contrast, in MNase-Seq experiments, because nucleo-

somal and control DNA are assayed separately, the experimental
biases can only be corrected at the nucleosome calling stage.
However, because the majority of the MNase-Seq studies do

not include control samples (notable exceptions including
Valouev et al., 2008, 2011; Zhang et al., 2009), current nucleo-
some calling methods tailored to MNase-Seq data do not take

into account control samples.
Regarding the second point, because nucleosomes are assayed

in a cell population, their associated reads (or intensities in the

case of MNase-Chip) are either normally distributed within
�15bp of the nucleosome centre when highly phased, or
uniformly distributed otherwise (Jiang and Pugh, 2009). This

variation in read positions reflects both the positional heterogen-
eity across cells and the over-trimming or under-trimming of the
DNA at nucleosome borders during sample preparation.

Nucleosome calling methods recently developed aim to iden-
tify the footprint of phased nucleosomes from a signal processing
perspective. They commonly involve two steps of background

noise filtering and peaks scoring. These methods include
Laplacian of Gaussian (Zhang et al., 2008a), Fourier
Transform (Flores and Orozco, 2011), correlation with nucleo-

some footprint (Weiner et al., 2010), mixed methods (Di Ges
et al., 2009) for MNase-Seq data and Hidden Markov Models
for MNase-Chip data (Kuan et al., 2009; Lee et al., 2007;

Yassour et al., 2008; Yuan et al., 2005). However, no current
methods include control data that can provide important
additional information for inferring nucleosome positioning.

In this article, we introduce NucleoFinder, a new statistical
approach for MNase-Seq data analysis that aims to identify
nucleosomes consistently positioned in a cell population

(phased) and showing a significant enrichment relative to a
control sample. NucleoFinder is based on nucleosome position-
ing, a concept commonly used in MNase-Seq analyses (Field

et al., 2008; Kaplan et al., 2009; Valouev et al., 2008, 2011;
Zhang et al., 2009) to quantify the extent to which nucleosome
positions vary across the cell population assayed. This statistic

relates the number of read counts in a 30bp window (to account
for the MNase cleavage uncertainty, Jiang and Pugh, 2009) to

the number of read counts in the two 60bp flanking windows.
The larger is this ratio, the more precisely positioned the nucleo-

some is. To take into account the control information in the
nucleosome positioning measurement, we extend this idea by

looking for the pattern not enriched, enriched, not enriched be-
tween the nucleosome and control samples in three consecutive

windows 60, 30, 60 bp long.
Our first attempt was based on the binomial test that measures

the relative enrichment in the nucleosome sample relatively to the

control sample. Because it is based on the relative enrichment, this
test did not deal well with background noise and led to a high false

positive rate: when in a given region, few random reads (a couple)
were present in the nucleosome sample but not in the control

sample, the null hypothesis (equal enrichment in both samples)
was rejected and the region declared as nucleosome. To circum-

vent this, we model the difference in read counts between nucleo-

some and control samples. The difference is truncated to zero, as
negative values do not provide any additional information apart

from the fact that the considered region is not enriched. This
truncated difference is then modelled using a Poisson distribution

where prior distributions on the rate parameter are either gamma

or uniform. Lastly, to distinguish relatively high background noise
from local peaks in the two side windows, we split them into two

30bp long windows. Ideally, even smaller windows would be pref-
erable to differentiate regions where reads cluster from those with

a high number of randomly distributed reads, but the �30bp
measurement uncertainty prevents us to do so.

2 METHODS

In this section, we provide details on the data and statistical model

developed.

2.1 Data

The dataset and preprocessing steps used in this analysis are taken from

Valouev et al (2011), where nucleosomes were isolated from three haem-

atopoietic cell lines (CD4þ, CD8þ T cells and granulocytes) as well as

in vitro and in a control samples. They were then treated with micrococcal

nuclease to release nucleosome cores, and deep sequenced using the

SOLiD platform (Pandey et al., 2008). The resulting 25bp reads derived

from the 50 end of nucleosomal DNA were subsequently mapped against

the human hg18 assembly and yielded a genome coverage ranging be-

tween 16–28�. Reads that mapped to more than one single location were

discarded. Following the data processing used by Zhang et al. (2008b), (i)

genomic positions covered by an excessive number of reads were removed

(because likely to arise from amplification and sequencing errors, Zhang

et al., 2008b), and (ii) nucleosome centres were obtained by adding 75bp

to the 50 end position of the reads (Zhang et al., 2009). Reads position

were then binned into 30bp windows in each dataset. The CD4þ, CD8þ

T cells, granulocytes and in vitro samples were finally corrected by sub-

tracting the number of reads in each 30bp window by the number of

reads in the control falling in the same window. Negative values were

truncated to 0.

2.2 Statistical model

2.2.1 Likelihood Given a 150bp region, let x ¼ fx1, x2,x3, x4,x5g

denote the corrected number of nucleosome centres falling in each of the

five 30bp bins. The bins are grouped into three segments S ¼ fS1,S2,S3g

that include bins {{1,2},{3},{4,5}}, respectively. Each random variable xi
is assumed Poisson distributed with parameter li. The number of reads is
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assumed independent from one bin to another, which allows the likeli-

hood to be factorized. The likelihood of x is expressed as:

�ðxjlÞ ¼
Y5
i¼1

PoðxijliÞ ð1Þ

2.2.2 Priors Whether segment j is background or enriched, the

prior on li is either:

� �ðlbgÞ ¼ Gað�̂, �̂Þ, i.e. gamma distributed with parameters f�̂, �̂g

estimated chromosome by chromosome from the data using the

method of moments. The hyperparameters are not directly estimated

with Gað�̂, �̂Þ but from the marginal distribution that we introduce

below. Since most of the nucleosomes in the human genome show

little or no sign of positioning, the data consist mainly of randomly

distributed reads. Hence, the estimation of the hyperparameters from

the data should allow to capture the background nucleosome

distribution.

� �ðlenÞ ¼ Unifð0,xmaxÞ, i.e. uniformly distributed in the interval

½0,xmax�, where xmax denotes the maximum read counts in the cor-

responding chromosome x. Unlike Gað�̂, �̂Þ which has most of the

mass concentrated around 0, this prior gives same weight to all read

counts.

2.2.3 Marginal likelihood Our main interest is to find regions that

match the profile of well-positioned nucleosomes, i.e. when S2 is enriched

and fS1,S3g are background. To capture this pattern, we introduce eight

models that cover all possible combinations of lbg and len in S1, S2 and

S3, as indicated in Table 1. In each 150 bp sliding region, the marginal

likelihoods associated with these eight models are calculated. WhenM1

has the largest marginal likelihood among the models, this region is con-

sidered as a well-positioned nucleosome. The reason for using eight

models is that it allows a better discrimination between well-positioned

nucleosomes and background or randomly enriched regions.

Since the calculation of the marginal likelihood is similar across the

models, we only illustrate it withM1, where the priors are as follows:

�ðlijM1Þ ¼
Gað�̂, �̂Þ , i 6¼ 3

Unifð0, xmaxÞ , i ¼ 3

(

�ðxjM1Þ ¼

Z
�ðxjl,M1Þ�ðljM1Þdl

¼

Z
Poiðx3jl3ÞUnifð0, xmaxÞdl3�Y

i2f1, 2, 4, 5g

Z
PoiðxijliÞGað�̂, �̂Þdli

�ðxjM1Þ ¼
1

xmax

Z
lx33 e�l3

x3!
dl3 �

Y
i2f1, 2, 4, 5g

Neg�Binðxij�̂, �̂Þ

ð2Þ

where �ðlj�Þ ¼
Q5
i¼1

�ðlij�Þ

The poisson and gamma distributions being conjugate, the marginal

likelihood can be calculated in closed form using the negative-binomial

distribution (Gelman et al., 2004). This is, however, not the case with the

uniform prior, where the marginal likelihood can nevertheless be calcu-

lated by successive integrations by part. To avoid the calculation of this

integral every 150bp window, we compute it for x3 2 ½0,xmax� and store

the results during the initiation stage of NucleoFinder to speed-up the

execution.

As mentioned above, a nucleosome is detected when the marginal

likelihood associated with M1 is the largest of all models. In addition

to the information of the presence/absence of a nucleosome, it would be

desirable to have a sense of how enriched and well-positioned are the

detected regions. A good measurement is provided by the Bayes factor

betweenM1 andM0, which measures how much the data supportM1

compared with the null model made of background priors only:

BF ¼
�ðxjM1Þ

�ðxjM0Þ
ð3Þ

3 RESULTS

An important feature of the nucleosome organization in eukary-

otic genomes is that nucleosome positions are variable across

conditions, tissues and individuals. This implies that large-scale

regions consistently occupied by nucleosomes on which

nucleosome calling methods could be compared do not exist.

Even in yeast, considered mainly populated by well-positioned

nucleosomes (Radman-Livaja and Rando, 2010), substantial

divergences have been found across studies. An example is

provided in Yassour et al. (2008) where the authors compared

their predictions with a small set of experimentally verified

nucleosomes taken in Segal et al. (2006). The authors found

that neither their predictions nor those of Yuan et al. (2005)

and Lee et al. (2007) are consistent with this reference dataset.

This means that there are no true positives available on

which nucleosome calling methods can be tested with high

confidence.
Despite this absence of large-scale validated dataset, we com-

pare the performance of NucleoFinder with two popular

(MNase-Seq) nucleosome calling methods, NPS (Zhang et al.,

2008a) and TemplateFilter (Weiner et al., 2010) based on (i) their

specificity, (ii) their ability to identify the uniform nucleosome

spacing occurring near active promoters in vivo and (iii) their

ability to detect the stereotypical A/T and G/C dinucleotide pat-

terns present at well-positioned nucleosomes in vitro (Valouev

et al., 2011). These two methods are run with the parameters

set to their default values. To rule out the possibility that the

signature detected by these methods could be identified by simple

clustering, we also run K-means by iteratively increasing the

number N of clusters until one of them matches the pattern of

well-positioned nucleosomes (i.e. not enriched, enriched, not

enriched in three consecutive windows 60, 30, 60 bp long).

In the following analysis, N ¼ 4.

Table 1. Models Priors: to precisely capture the profile of well-positioned

nucleosomes, we introduce eight models that cover all possible combin-

ations of lbg and len in S1, S2 and S3

Model Parameters

l1,2 (S1) l3(S2) l4,5 (S3)

M0 lbg lbg lbg
M1 lbg len lbg
M2 len len len
M3 len lbg len
M4 len len lbg
M5 lbg len len
M6 len lbg lbg
M7 lbg lbg len
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3.1 Specificity

To have a general idea of how NucleoFinder relates to K-means,

NPS and TemplateFilter, the four methods are first compared on

chromosome 22 (CD4þT cells) where common predictions

across methods, defined as the predictions whose central 30bp

overlap, are counted. Out of 247874 predicted regions, 23.5, 18.8

and 12.7% were common to two, three or four methods, that is,

more than half of them are predicted by at least two methods.

This result indicates that, although agreeing on a large number of

regions, these four approaches capture slightly different aspect of

the nucleosome signature. When looking at each method indi-

vidually, it can be noticed that the total number of predictions

(Table 2) as well as the proportion of method-specific predictions

is much larger in K-means and TemplateFilter than in NPS and

NucleoFinder (Fig. 1a). These large numbers of predictions

found with K-means and TemplateFilter suggest that they

either have higher sensitivity or perform less well.
We then estimate the specificity of these four methods by

randomly permuting reads in 1kb windows along chromosome

22. Even though the locations of well-positioned nucleosomes are

unknown, the best method is that for which the number of

predictions is large before permutation and small after (suggest-

ing both a good sensitivity and specificity). The specificity is

calculated by considering the predictions after permutation as

false positives (FP, it is not excluded that nucleosome-like

patterns occur by chance after permutation though) and the

remaining regions (not called) as true negatives (TN):

specificity ¼
#TN

#TNþ #FP
ð4Þ

A total of 203 976, 68099, 27218 and 205 768 false positives

are generated by K-means, NPS, NucleoFinder and

TemplateFilter, respectively, resulting in a higher specificity of

NPS and NucleoFinder relative to K-means and TemplateFilter

(Table 2). If we compare the number of predictions before and

after permutation, we observe a �25% increase for K-means and

TemplateFilter, a nearly identical result for NPS, and a decrease

of �70% for NucleoFinder. The fact that after permutation,

NucleoFinder has the smallest number of predictions and the

largest decrease in prediction supports the idea that it is specific

of well-positioned nucleosomes.
However, the results of K-means after permutation should be

interpreted with caution as they rely on the assumption that the

data consist of genuine nucleosome signal: after K-means has

clustered the data into four groups, the label ‘nucleosome’ is

assigned to the cluster (its associated regions) whose profile

matches that of nucleosome. This means that whether the

input data contain good or poor quality data (permuted data),

this approach always generates nucleosome predictions.
The large number of false positive found by TemplateFilter is,

on the other hand, probably owing to the variety of templates

used by this method to detect nucleosomes. The representative

templates, inferred from the authors’ data, are correlated with

forward- and reverse-strand reads for various distances between

the two strands (the correlation threshold used to call a nucleo-

some can be adjusted by the user). The important variability

across templates (one or two peaks with different widths,

see Supplementary Fig. S1, Weiner et al., 2010) suggests that

they can capture various nucleosome profiles (high sensitivity),

but at the same time, are more likely to pick up nucleosome-like

patterns (or background noise) present after permutation. This

idea is coherent with the relatively flat nucleosome profiles found

with TemplateFilter before and after read permutation (Fig. 1b

and c, see explanation below), corresponding to a mixture of

templates with different shapes. One possible explanation for

which NucleoFinder suffers less from the permuted data is that

it explicitly models the null and the alternative hypotheses (back-

ground and enriched regions).
To further understand the characteristic of these four meth-

ods, a stereotypical profile is built for each of them by averaging

the read counts in 10 bp bins along their predictions, before

and after permutation. Before permutation, the four methods

result in fairly different bell-shaped profiles where unlike

TemplateFilter, both K-means and NucleoFinder profiles

reveal a sharp enrichment in the central 30bp window and a

(a)

(b) (c)

Fig. 1. (a) For each method, the number of common predictions with

0, . . . , 3 other methods is represented. (b) Nucleosome profile before reads

permutation, and after (c) in chromsome 22: reads count are averaged in

10bp bins along nucleosomes predicted by K-means, NPS, NucleoFinder

and TemplateFilter

Table 2. Number of nucleosome predictions in chromosome 22 before

and after permutation

Method Before

permutation

After

permutation

Specificity

(%)

K-means 163 584 203976 94.20

NPS 70 787 68099 98.06

NucleoFinder 96 821 27218 99.22

TemplateFilter 161 116 205768 94.14
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low background in the side windows (Fig. 1b). After permuta-
tion, the average level of enrichment decreases substantially in all

four methods and, except for K-means and NucleoFinder, their
profiles flatten out. Although both have a pronounced enrich-

ment in the central segment, these last two methods resulted in
very different numbers of predictions (Table 2). This difference is

likely owing to the higher stringency of NucleoFinder in the side
segments, as the low average read counts shows (Fig. 1b and c).

This is consistent with the high specificity of NucleoFinder
described earlier and supports the idea that NucleoFinder only

detects the signature of well-positioned nucleosomes.

3.2 Inter-nucleosome distance comparison

According to the barrier model (Mavrich et al., 2008), the steric

hindrance imposed by RNA Pol II induces a compact and regu-
larly spaced nucleosome array within �1kb and progressively dis-

sipates when moving away from the TSS. The spacing just
downstream of the TSS is therefore expected to be of the same

order of magnitude as estimated at active promoters (178–187bp,
Valouev et al., 2011). For each approach, we estimate the

inter-nucleosome distance in the 1kb region downstream of
TSSs of highly expressed genes, defined as those with RPKM

(reads per kilobase of exon per million mapped reads,
Mortazavi et al., 2008)410. This criterion follows the classifica-

tion in four gene groups used in Valouev et al. (2011). The gene
expression data used here come from the same CD4þT cells as

those used to assay the nucleosomes (Valouev et al., 2011), avail-
able on GEO, accession number GSE25133. To account for miss-

ing predictions, nucleosomes are enumerated from the TSS to the
30 end of the 1kb window, without constraining them to be con-

secutive, and a linear model is used to find optimal numbering.
From the inter-nucleosome distances estimated at 2754 highly

expressed genes, the mean and standard deviation are computed

for each method (Table 3). Substantial differences are found

across methods where, taking Valouev et al. (2011) value of nu-
cleosome spacing as a reference (182 bp), K-means and

TemplateFilter result in an under-estimation of �20bp and
�10bp, respectively, unlike NPS and NucleoFinder that provide

improved estimations. In addition to being biased, K-means re-
sults in a standard deviation almost twice as large as those found

in the other methods, indicating that this method perform poorly
both in term of accuracy and precision.

3.3 Ability to recover nucleosome-specific dinucleotides

The relationship between nucleosome position and DNA se-

quence has been the subject of intense research (Field et al.,
2008; Peckham et al., 2007; Tillo et al., 2010; Valouev et al.,

2011; Yuan and Liu, 2008), which has revealed that, owing to
their poor distortion properties, poly-dA/dT sequences result in

nucleosome exclusion, whereas sequences with 10 bp periodicity
of AA/TT/TA dinucleotides facilitate the sharp bending of DNA

around the nucleosome (Anselmi et al., 1999). In human,

Valouev et al. (2011) demonstrated that in vitro, the centre of
well-positioned nucleosomes is characterized by an enrichment of

G/C motifs and a depletion of A/T motifs.
This information can be used to compare methods, where a

large discrepancy between GC and AT frequencies at the centre

of nucleosome predictions in vitro will suggest a high specificity

of the considered method for well-positioned nucleosomes. To
quantify this pattern, we measure the difference between the GC

and AA/TT frequencies at the centre of nucleosomes predicted in
chromosome 22. To account for the two-fold symmetry axis of

the nucleosome structure (Richmond and Davey, 2003), the GC
and AA/TT frequencies are calculated from both the sense and

antisense sequences associated with the predictions. 95% confi-
dence intervals are then computed for the difference

� ¼ fGC � fAA=TT:

� 2 �̂�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�21ð1� �=mÞ

f̂GC þ f̂AA=TT � �̂2

n

s
ð5Þ

where �̂ ¼ f̂GC � f̂AA=TT, �
2
1ð1� �=mÞ is the 100ð1� �=mÞth per-

centile of the chi-square distribution with 1 degree of freedom, n
the number of sequences used for the estimation ofbfi and m the

number of dinucleotides (Goodman, 1965).
Consistently with their role in promoting or repelling nucleo-

some, AA/TT and GC frequencies display U-like and bell-like

shapes in the four methods (Fig. 2). This pattern is more or less
pronounced across methods, as reflected by the values of �̂ that

vary from 0.0024 (0.0018–0.0030) for K-means to 0.0037
(0.0028–0.0046) for NucleoFinder. When looking at the confi-

dence intervals associated with the four methods, it can be
noticed that they all overlap (Fig. 2), implying that none of

these methods significantly outperform the others. However,
the larger values found in NPS and NucleoFinder support the

idea that these two approaches have a greater ability to detect
well-positioned nucleosomes.

4 DISCUSSION

The recent development of high-throughput sequencing methods
has provided a global insight into how the combination of nu-

cleosome positions and their post-transcriptional modifications
are key to gene regulation. The precise identification of nucleo-

somes is therefore crucial to understanding what determines the
nucleosome architecture and how changes in this organization

induce variation in gene expression. This task is made non-trivial
by the fact that nucleosomes are assayed across cell populations

and consequently result in complex patterns of reads. Another
difficulty also arises from the known bias of MNase toward

AT/TA motifs, which potentially can limit the accuracy of nu-
cleosome detection. From our knowledge, no existing

MNase-Seq methods have addressed this issue. To fill this gap,

Table 3. Estimation of the inter-nucleosome distance (mean and standard

deviation)

Region/Method Inter-nucleosome distance

Mean SD

Active promoters 178–187 –

K-means 159 36

NPS 187 21

NucleoFinder 180 24

TemplateFilter 172 20
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we introduce NucleoFinder, which looks for regions having both

a high level of nucleosome positioning and a significant nucleo-

some enrichment relative to a control sample.
Despite the absence of large scale regions consistently popu-

lated by nucleosomes that could be used for methods compari-

son, we demonstrated that NucleoFinder is robust to outliers

and generates fewer false positives than the other methods. We

further showed that NucleoFinder captures important features of

the nucleosome organization to an equal or greater extent than

the other methods: (i) the estimation of nucleosome spacing from

its in vivo predictions was consistent with Valouev et al. (2011),

and (ii) the characteristic G/C-rich and A/T-depleted signals at

the centre of in vitro nucleosomes was more pronounced at

NucleoFinder predictions.
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