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Aberrant expression of G protein-coupled receptors (GPCRs) is frequently associated with tumorigenesis. G Protein-coupled
receptor class C group 5 member A (GPRC5A) is a member of the GPCR superfamily, is expressed preferentially in lung tissues,
and is regulated by various entities at multiple levels. GPRC5A exerts a tumor suppressive role in lung cancer and GPRC5A
deletion promotes lung tumor initiation and progression. Recent advances have highlighted that GPRC5A dysregulation is found in
various human cancers and is related tomany tumor-associated signaling pathways, including the cyclic adenosinemonophosphate
(cAMP), nuclear factor (NF)-𝜅B, signal transducer and activator of transcription (STAT) 3, and focal adhesion kinase (FAK)/Src
signaling. This review aimed to summarize our updated view on the biology and regulation of GPRC5A, its expression in human
cancers, and the linked signaling pathways. A better comprehension of the underlying cellular and molecular mechanisms of
GPRC5A will provide novel insights into its potential diagnostic and therapeutic value.

1. Introduction

The early and accurate diagnosis of cancer is a long-standing
problem which, if solved, can significantly improve the
patient prognoses. For this purpose, modern molecular
diagnosis is an advanced and essential detection technique.
As cancer is the result of the accumulation of adverse disease-
related molecular events, it is reasonable to stratify patients
according to genetic alterations in one or more genes. This
has become an important factor in clinical intervention [1, 2].
However, while a number of cancer biomarkers for molecular
diagnosis have been described recently, the specificity and
diagnostic capacity of currently available biomarkers are
limited [3–5]. Therefore, there remains a requirement for
novel biomarkers with high specificity and sensitivity.

G protein-coupled receptors (GPCRs) are one of the
largest and most diverse superfamilies of receptors and play
a key role in a broad variety of physiological processes [6].
GPCRs are characterized by a common structure of one
bundle of seven transmembrane helices connected by three
extracellular and three intracellular loops. The vast majority

of ligands interact with the extracellular oriented part of the
helices [7, 8]. Due to their broad physiological functions,
aberrant GPCRs activation is frequently associated with
disease initiation and progression. A number of studies have
indicated the critical role of GPCRs in tumor proliferation,
invasiveness, angiogenesis, metastasis, and drug resistance
[9–16]. Notably, GPCRs are highly attractive targets in drug
design, accounting for more than 30% of all commercially
available pharmaceutical drugs [17, 18]. Recently, G protein-
coupled receptor family C group 5 member A (GPRC5A),
a member of class C orphan GPCRs, has been found to be
dysregulated in several human cancers. It has been shown
to have an important effect on tumor progression [19]. This
reviewwill focus on recent advances inGPRC5A research and
on its role in human cancer.

2. The GPCR Family C Group 5

GPRC5A, also known as retinoic acid-induced protein 3
(RAI3) or retinoic acid-inducible gene (RAIG) 1, is a member
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of class C orphan GPCRs. GPRC5A was first described
in the UMSCC-22B cell line as an all-transretinoic acid-
(ATRA-) responsive gene [16], is located on 12p13.1, and
encodes a 40 kDa protein. Three other members of this
group, namely, GPRC5B (also known as RAIG2), GPRC5C
(also known as RAIG3), and GPRC5D, were consequently
identified [16, 20–22]. The four proteins share 31–42% amino
acid sequence identity and have high sequence similar-
ity within their transmembrane domains [22]. GPRC5A,
GPRC5B, and GPRC5C can be induced by retinoic acid (RA)
in a concentration- and time-dependent manner, whereas
GPRC5D cannot. Unlike other members of the C family
of GPCRs, whose ligand binding sites are located within
the large N–terminal domain, the four members of group 5
possess very short N-terminals of 30–50 amino acids. Instead
of binding to the N terminal domain, agonists can bind to
the 7TM domains of the four proteins [22, 23]. The protein
structure of GPRC5A–D is summarized in Figure 1(a).
Interestingly, GPRC5A–D are expressed in a tissue-specific
manner with GPRC5A being preferentially expressed in lung
tissues; GPRC5B is predominately localized in tissues of the
central nervous system, while GPRC5C and GPRC5D are
observed in a variety of tissues (Figures 1(b) and 1(c)) [21, 22,
24].

3. Regulation of GPRC5A Expression

3.1. Transcriptional Regulation. As summarized in a pre-
viously published review, the GPRC5A gene has many
transcription factor binding sites; among these, RA is
the most well studied. RA is a vitamin A-derived mor-
phogen with many effects on cell growth and differentiation
[25, 26]. GPRC5A has a RA response element (RARE)
in its 5’ upstream region, which binds the RA recep-
tor (RAR)/retinoid X receptor (RXR) heterodimer. In the
presence of RA, the inhibitory effect of the RAR/RXR
heterodimer on the transcription of GPRC5A is relieved,
resulting on the transcription of the gene [27, 28].

A custom-made cDNA microarray analysis showed that
GPRC5A expression is induced when the levels of cyclic
adenosine monophosphate (cAMP) increase. Specifically, a
cAMP-responsive element (CRE) motif exists close to the
transcription initiation site of GPRC5A. By upregulating
cAMP levels, forskolin induces GPRC5A transcription and
this effect can be strengthened by RA [29].

Furthermore, microarray and quantitative polymerase
chain reaction (qPCR) assays conducted in four p53-mutant
cell lines (MDA-MB-468, BT-20, BT-549, and SK-BR-3) and
four p53 wild-type cell lines (MCF-7, T47D, ZR-75-1, and
BT-474) have demonstrated that GPRC5A is a target of P53
and is suppressed by wild-type p53 [30]. In the same study,
chromatin immunoprecipitation (ChIP) assays indicated that
p53 binds to GPRC5A in a sequence-specific way in human
ovarian tumor cell line 2774qw1. Additionally, overexpression
of p53 in the p53-null human nonsmall cell lung cancer
(NSCLC) H1299 cells led to increased GPRC5A expression,
while p53 knockdown in the p53 wild-type human NSCLC
A549 cells resulted in decreased expression of GPRC5A,

indicating that GPRC5A is involved in the antitumor effect
of p53 in NSCLC cells [31].

Additionally, GPRC5A expression is also related to
BRCA1 status. In breast tumors with wild-type BRCA1,
GPRC5A expression is higher than in BRCA1-mutated
tumors. In vitro experiments show that knockdown of BRCA1
results in decreased expression of GPRC5A in MDA-MB-231
breast cancer cells, while the opposite results are obtained
with BRCA1 overexpression [32].

3.2. Post-Transcriptional Regulation. Little is currently
known about the post-transcriptional regulation ofGPRC5A.
MicroRNAs (miRNAs), small noncoding RNA molecules
that regulate the expression of target genes in a sequence-
dependent way, are important post-transcriptional regulators
[33, 34]. A computational analysis conducted in a previous
review using the RNA22 algorithm indicated that there are
many putative miRNAs targeting GPRC5A, specifically 343 in
the 5’untranslated region (UTR), 595 in the coding sequence
(CDS), and 1170 in the 3’ UTR [19]. Of these, miR-103a-3p has
been extensively studied. miR-103a-3p has two target sites in
the 5’UTR of GPRC5A, and in vitro studies have found that it
suppresses the expression of GPRC5AmRNA and protein by
binding to either of them [35]. Besides, miR-204 can inhibit
GPRC5A expression via binding to its 3’ UTR in gastric
cancer (GC) [36].

RNA binding proteins (RBPs) also participate in the
posttranscriptional regulation of GPRC5A. HuR, an RBP
encoded by the ELAVL1 gene, was identified to upregulate
GPRC5A expression via mRNA stabilization by binding to
the 3’ UTR of GPRC5A [37, 38]. Other crucial posttranscrip-
tional regulators such as long noncoding RNAs (lncRNAs)
are thought to significantly impact the regulation ofGPRC5A,
but evidence remains lacking [39–41].

3.3. Post-Translational Modification of GPRC5A. GPRC5A
has several phosphorylation sites which have been found to
be involved in many biological processes. Phosphorylation
of serine (SER) 301 and 345 takes place during mitosis
[42, 43]. The phosphorylation of GPRC5A in two conserved
double-tyrosine (TYR) motifs, TYR-317/TYR-320, and TYR-
347/TYR-350 is mediated by epidermal growth factor recep-
tor (EGFR), leading to inactivation of the protein’s tumor
suppressive function [44, 45]. Furthermore, sequence anal-
ysis predicts that the arginine (ARG) 158 site of GPRC5A can
be N-glycosylated. Additionally, several studies indicate that
GPRC5A can be ubiquitinated at a number of sites, although
the details remain to be clarified [46–53].

4. GPRC5A and Downstream
Signaling Pathways

4.1. cAMP Signaling Pathway. GPRC5A is one of several
genes whose expression increases when the cAMP level is
elevated. As mentioned above, cAMP binds to the CREmotif
in the GPRC5A gene inducing its transcription. In the same
study, the authors found that, in the human thyroid epithelial
cell line Nthy, GPRC5A expression is negatively correlated
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Figure 1: (a) The protein structure of GPRC5A–D. The amino acids of the four proteins are detailedly numbered. They have similar length
of 7TM domain and have short N-ternimal of 20-53 amino acids as detailed in the text. (b)ThemRNA expression profile of GPRC5A–D in
different organs. Data was compiled from the RNA sequence conducted by Fagerberg L. et al. (c)Theprotein expression levels of GPRC5A–D
(Data from the Human Protein Atlas http://www.proteinatlas.org/).

http://www.proteinatlas.org/
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with intracellular cAMP and Gs alpha levels and that the
suppression of GPRC5A results in inhibition of cell growth
and induction of apoptosis [29]. These results suggest that
there exists a negative feedback loop between cAMP and
GPRC5A that also involves Gs alpha.

4.2. Nuclear Factor- (NF-) 𝜅B Signaling Pathway. NF-𝜅B
controls the expression of genes involved in many biological
and pathological processes, and plays a critical role in inflam-
mation and tumorigenesis. Dysregulation of NF-𝜅B is related
to pathological alterations in various cells including epithelial
and stromal cells [54, 55]. In vivo studies have demon-
strated that GPRC5A knockout mice are more sensitive to
lipopolysaccharide- (LPS-) induced NF-𝜅B signaling activa-
tion than are GPRC5A wild-type mice and that they have
lower levels of proinflammatory cytokines and chemokines.
Moreover, in vitro studies showed that GPRC5A knockout
cells produce higher levels of chemokines and cytokines
and promote broader macrophage migration through their
conditioned medium compared to GPRC5A wild-type cells
in a NF-𝜅B dependent manner [56]. Additionally, they found
that selective inhibition of NF-𝜅B through the expression
of the superrepressor IkBa in the GPRC5A knockout mice
significantly alleviates the inflammation response and mice
lung injury induced by LPS [57]. However, all of these results
were based on the deletion of GPRC5A, and further in-depth
studies are warranted to further explore the relationship.

4.3. Signal Transducer and Activator of Transcription (STAT)
3 Signaling Pathway. STATs are transcription factors that
regulate cell growth, differentiation, survival and develop-
ment by mediating the expression of target genes [58].
STAT3 is the best studied member of the STAT family.
Aberrant activation of STAT3 has been identified in various
human cancers, and correlates with poor prognosis in gastric,
breast and lung cancer [59–65]. Recent studies suggest that
GPRC5A is involved in the regulation of STAT3 signaling
pathway. Knockdown of GPRC5A correlates with STAT3
activation in cancers such as lung cancer and head and neck
squamous cell carcinoma (HNSCC), pointing to a tumor
suppressive role for GPRC5A. Compared to GPRC5A wild-
type cells, GPRC5A knockout cells have higher levels of
activated-STAT3 and STAT3-regulated anti-apoptotic genes,
independent of the presence of exogenous epidermal growth
factor (EGF), resulting in enhancement of tumor progression
[66, 67]. Contrarily, another study indicates that GPRC5A is
positively correlated with STAT3, and that GPRC5A silencing
is associated with suppression of STAT3 phosphorylation
at TYR705 in human pancreatic cell lines [68]. These data
suggest that in some cases GPRC5A may play an oncogenic
role by activating STAT3 signaling and in others has a tumor
suppressor role through STAT3 phosphorylation inhibition.

4.4. Focal Adhesion Kinase (FAK)/Src Signal Pathway. The
regulation of cell-cell and cell-matrix adhesion plays a vital
role in the integrity and homeostasis of epithelial tissue [69,
70], and interference with this process may contribute to
tumor progression. The most important function of the FAK

signal pathway is regulating cell adhesion [71–74]. GPRC5A
silencing deregulates integrin 𝛽 1 (ITGB1) expression leading
to restrained capacity of integrin-mediated cell adhesion.
GPRC5A knockout interferes with the activation of the
FAK/Src signaling pathway and the activity of downstream
RhoA and Rac1 small GTPases [75].

5. GPRC5A and Its Role in Human Cancer

Although GPRC5A is predominately expressed in normal
lung tissues, dysregulation of GPRC5A expression has been
observed in a variety of human cancers (Table 1).

5.1. GPRC5A and Lung Cancer. GPRC5A exhibits a promis-
ing tumor suppressive role in lung cancer. Its expression,
both at the mRNA and protein level, is much lower in lung
cancer than in healthy lung tissue [66, 76–78]. According to
recent reports, the expression of GPRC5A is the highest in
disease-free normal bronchial epithelia (NBE), intermediate
in cancer-free lungs from patients with chronic obstruc-
tive pulmonary disease (COPD) and the lowest in patients
with COPD and lung cancer [77]. Moreover, homozygous
GPRC5A knockout mice are more likely to spontaneously
develop lung tumors than GPRC5A heterozygous or wild-
type mice, with tumor incidence rates of 76%, 11%, and
10%, respectively [78]. In vitro experiments demonstrated
that overexpression of GPRC5A inhibits cell viability and
colony-formation and enhances apoptosis in NSCLC cell
lines [31, 56, 66, 78]. Similar results were found in another
study, which reported that lung epithelial cells fromGPRC5A
wild-type mice have worse viability and colony-formation
ability than lung cells from GPRC5A knockout mice [56].
Importantly, the effect of GPRC5A knockout on lung tumori-
genesis can be strengthened by tobacco-specific carcinogen
nicotine-derived nitrosamine ketone (NNK). The NNK-
treated group developed lung adenocarcinoma sooner than
the saline-treated control group, an effect which was most
likely enhanced by mutations in multiple genes, such as
those for ATM, histone methyltransferase 2D (KMT2D),
neurofibromatosis type 1 (NF1), transformation related pro-
tein 53 (Trp53), MET, and enhancer of zeste homolog
2 (Ezh2) [79, 80]. Several parallel studies showed that
GPRC5A exerts its tumor suppressive effect by regulating
the NF-𝜅B and EGFR/STAT3 signaling pathways. Com-
pared to wild-type cells, the NF-𝜅B signaling pathway is
activated in GPRC5A knockout cells, which contributes to
lung inflammation and tumorigenesis. These effects can be
reversed by silencing of the P65 subunit of NF-𝜅B [79, 81].
Additionally, GPRC5A knockout enhances the transformed
phenotype in normal and tumor cells through the aber-
rant activation of the EGFR/STAT3 signaling pathway [66].
Interestingly, there is a mutual effect between EGFR and
GPRC5A. On the one hand, EGF induces TYR phospho-
rylation on the C terminal of GPRC5A, resulting in the
suppression of GPRC5A-mediated inhibition of cell invasion
and anchorage-independent growth of NSCLCs [45]. On the
other hand, GPRC5A interacts with EGFR through its 7TM
domains, leading to the activation of EGFR/STAT3 signaling
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pathway and its downstream target genes, preventing spon-
taneous and ionizing radiation-induced lung tumorigenesis
[82].

5.2. GPRC5A and Breast Cancer. Elevated GPRC5A mRNA
expression has been observed in breast cancer cell lines and
clinical tumor tissues (25 primary breast cancer tissues),
and GPRC5A knockdown leads to inhibition of cell growth
in cell lines MCF7 and T47D [83]. Similar results have
been obtained in 293 cells (HEK-293 F cells) which exhib-
ited augmented anchorage-independent growth ability upon
GPRC5A ectopic expression [30]. Furthermore, GPRC5A
together with FXYD domain-containing ion transport reg-
ulator 3 (FXYD3) and PYCARD have been reported as
potential predictors of pathological grading of breast cancer
and might benefit the management of clinical treatments
[84]. However, immunohistochemical (IHC) analysis of a
tissue microarray consisting of 147 invasive breast cancer
samples and 44 normal breast tissue samples showed that
GPRC5A is abundantly expressed in breast cancers, whereas
no association was discovered between GPRC5A expression
and clinicopathological characteristics [85]. Additionally,
knockout of GPRC5A results in reduced cell adhesion and
spreading ability, via deregulation of ITGB1 expression and
suppression of FAK/Src signaling [75]. All these results
reveal a tumor-promoting role of GPRC5A in breast cancer.
However, one early study suggested that GPRC5A exhibits
a tumor-suppressive role in EGFR-expressing MDA-MB-
231 cells and that GPRC5A knockdown promotes colony
formation, cell growth, cell migration and invasion capacities
in this cell line, but has no such effect in EGFR-negative
MCF7 cells. Specifically, GPRC5A knockdown augmented
EGF signaling, an effect which can be reversed by inhibiting
EGFR phosphorylation [86].

5.3. GPRC5A and Colorectal Cancer. GPRC5A is highly
expressed in colorectal cancer (CRC), and elevated GPRC5A
expression is significantly associated with inferior prognosis
[87, 88]. In addition, liquid chromatography analysis demon-
strates that GPRC5A expression is lower in polyps than in
metastatic and non-metastatic CRC samples, suggesting that
GPRC5A may serve as a biomarker to differentiate CRC
from normal tissues [89]. What is more, GPRC5A deficiency
reduces cell proliferation and promotes cell apoptosis in
vitro and inhibits tumorigenesis of a colitis-associated cancer
model in vivo. Furthermore, GPRC5A can be induced by
hypoxia, regulates the NF-𝜅B-mediated expression of Vanin-
1 (a key enzyme of cysteamine generation), and influences
the reactive oxygen levels contributing to tumor progression
[88, 90].

5.4. GPRC5A and GC. GPRC5A is expressed in the mem-
brane of cells in gastric tissues. Compared to normal gas-
tric tissues, GPRC5A mRNA and protein expression lev-
els are significantly elevated in GC tissues [91]. Increased
GPRC5A expression is significantly related to aggressive
clinical parameters (larger tumor size, diffuse type, serosal

invasion, and lymph node metastasis) and shorter overall
survival (OS) [92].

5.5. GPRC5A and Hepatocellular Carcinoma. Conflicting
information exists concerning GPRC5A’s expression status
in hepatocellular carcinoma (HCC). Lower GPRC5A mRNA
levels have been reported in seven cell lines established from
patients-derived tumor xenografts [93]. Conversely, several
studies found that GPRC5A expression is elevated in HCC
compared to in paratumor and normal liver tissues, and
high GPRC5A expression is related to advanced clinical
stage, high serum alpha-fetoprotein (AFP), vascular invasion,
tumor recurrence, and worse prognosis (OS and disease-free
survival) [94, 95].

5.6. GPRC5A and Pancreatic Carcinoma. GPRC5A expres-
sion is generally low in normal pancreatic ductal cells but
is dramatically increased in pancreatic ductal cells of pri-
mary and metastatic tumor samples [37, 96]. Knockdown
of GPRC5A with siRNAs leads to morphological changes in
pancreatic tumor cells AsPc-1 [30]. Suppression of GPRC5A
impaired the cell growth, proliferation, colony formation, and
migration ability of pancreatic ductal adenocarcinoma cells
[37, 68, 96].

5.7. GPRC5A in Other Cancers. In intrahepatic cholangiocar-
cinoma, GPRC5A is up-regulated compared to normal con-
trols [95]. In oral squamous cell carcinoma (OSCC),GPRC5A
is downregulated compared to normal oral epithelium, and
this downregulation is associated with poorly differentiated
OSCCs. Consistently, GPRC5A overexpression reversed the
malignant phenotype of OSCC cell lines, implying that
GPRC5A may serve as a powerful biomarker for malignant
OSCCs [97]. HNSCC is associated with suppressed expres-
sion of GPRC5A, which is positively associated with tumor
grade, along with the activation of STAT3. Overexpression
of GPRC5A suppressed interleukin (IL)-6-induced STAT3
signaling pathway activation and inhibited colony-formation
in HNSCC cells [67].

6. Clinical Application Value of GPRC5A

Asdescribed above, GPRC5A is dysregulated in a broad range
of cancers, which indicates that it can potentially be used as a
diagnostic candidate, especially in lung cancer. Further large-
scale studies are therefore warranted to evaluate its diagnostic
sensitivity and specificity in different cancer types. Moreover,
GPRC5A, as a member of the largest family of protein
targets for approved drugs (GPCRs) [98], is also a potential
therapeutic target in patients with elevated GPRC5A levels.
Until now, only tretinoin (ATRA,DB00755) has been demon-
strated to be related to GPRC5A, whereas its role in antitu-
mor therapy remains unknown. Future studies are therefore
urgentlywarranted.Notably, GPRC5Aalso has great values in
the optimization of clinical medication. In pancreatic cancer,
suppression of GPRC5A was found to increase the cell sen-
sitivity to multiple chemotherapeutic drugs, including gem-
citabine, oxaliplatin, and fluorouracil [37, 96]. Additionally,
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Figure 2: The regulation of GPRC5A expression in cancer cells. GPRC5A is subjected to multiple levels of regulation from transcription to
translation as detailed in the text.

EGFR inhibitors have been shown to be more effective in
GPRC5A knockout lung cancer cells than in GPRC5A wild-
type lung cancer cells, indicating that they are more suitable
for lung cancer patients with lower GPRC5A expression [76].
Therefore, despite few studies having focused on its clinical
application, GPRC5A’s importance is clear as it could benefit
accurate diagnosis and it should be taken in consideration for
targeted-therapies and optimizing clinical medications.

7. Conclusions

The lack of effective biomarkers for early diagnosis and lack
of valid therapeutic methods for the treatment of aggressive
cancers are the most intractable issues in clinical cancer
management. GPRC5A is a member of orphan class C of
the GPCR superfamily and was originally identified as a
tumor suppressor playing an important role in lung tumor
development. The GPRC5A gene contains many binding
sites for transcription factors: this allows the regulation of
GPRC5A expression by RA, cAMP, BRCA1, andmany others.
Additionally, GPRC5A expression is regulated posttranscrip-
tionally and posttranslationally (Figure 2). Accumulating
studies have demonstrated GPRC5A dysregulation in various
human cancers, although its expression status differs among
different cancer types. Aberrant GPRC5A expression induces
the deregulation of signaling pathways such as cAMP, NF-𝜅B,
STAT3, and FAK/Src signaling and is related to prognosis.
Especially, GPRC5A expression is associated with a poor
response rate to chemotherapy. These data suggest that
GPRC5A can be regarded as a potent biomarker for accurate
diagnosis, prognosis prediction, and personalized treatment
for patients with cancer. However, current knowledge of the
exactmechanismof these processes is limited. Further studies
focused on the cellular andmolecular mechanisms will reveal
novel insights into the details of its intricate function in
cancer.
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