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Background: Plasmodium tryptophan-rich (TR) proteins have been proposed as

potential vaccine candidate antigens. Among them, P. vivax tryptophan-rich antigens

(PvTR-Ags), which have positionally conserved tryptophan residues in a TR domain,

are highly antigenic in humans. Several of these antigens, including PvTRAg-26, have

exhibited erythrocyte-binding activities.

Methods: Subclasses of IgG antibodies against PvTRAg-26 were detected by

enzyme-linked immunosorbent assay in 35 P. vivax infected patients andmice immunized

with the recombinant antigen to characterize its antigenicity and immunogenicity.

Moreover, the antigen-specific immune responses and Th1/Th2-type cytokine patterns

of splenocytes from the immunized animals were determined in vitro. The subcellular

localization of PvTRAg-26 in ring-stage parasites was also detected by indirect

immunofluorescence assay.

Results: The IgG1 and IgG3 levels in P. vivax-infected patients were significantly higher

than those in uninfected individuals. In the PvTRAg-26-immunized mice, elevated levels

of antigen-specific IgG antibodies were observed, dominated by the IgG1 subclass,

and Th1-type cytokines were remarkably increased compared with Th2-type cytokines.

Additionally, the subcellular location of the PvTRAg-26 protein was closely associated

with the caveola-vesicle complex on the infected-erythrocyte membrane in the early ring

stage of P. vivax.

Conclusions: PvTRAg-26, a P. vivax TR antigen, with high antigenicity and

immunogenicity, induces Th1-cytokine response and increases production of IgG1

antibodies. This immune profiling study provided a substantial evidence that PvTRAg-26

may be a potential candidate for P. vivax vaccine development.
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INTRODUCTION

Plasmodium vivax is the predominant malaria parasite epidemic
in Asian and South American countries, which affects millions
of people each year (1). In most cases, the parasite causes benign
malaria. However, it may give rise to a severe, even fatal infection
(2–4). It has been well established that malaria parasites have
presented relative resistance to commonly used anti-malarial
drugs. Thus the identification of novel anti-malarial drugs and
the development of vaccines are urgently needed for effective
control of the disease.

In a long time, development of P. vivax vaccines has been
hindered by the absence of a continuous in vitro culture
system and low-level parasitemia of patients (5). Therefore, the
majority of P. vivax vaccine studies are focused on orthologous
antigens of P. falciparum; circumsporozoite surface proteins
(CSPs), thrombospondin-related adhesive protein (TRAP) of
the pre-erythrocyte stage, apical membrane antigen-1 (AMA-
1), Duffy-binding protein (DBP), rhoptry-associated proteins,
merozoite surface proteins of the erythrocyte stage, and Pvs25
and Pvs28 from sexual stage of the parasite (6–10). Among
them, only three antigens of CSPs, TRAP, and Pvs25 of P. vivax
have been extensively investigated in clinical vaccine trials
(11). However, the novel practical vaccine molecules of P.vivax
remain undiscovered.

Plasmodium tryptophan-rich antigens (TR-Ags) have been
proposed as a group of potential vaccine candidates. The TR-Ags
were first identified in the murine malaria parasite of P. yoelii.
Mice immunized with the recombinant TR-Ags produced highly
protective immunity against P. yoelii infection (12, 13). Similarly,
TR-Ags of P. falciparum could inhibit the invasion of erythrocytes
by its merozoites (14). The genome of P. vivax encodes more TR-
Ags than that of any other Plasmodium species. So far, fifteen
TR-Ags have been found to be able to evoke significant cellular
and humoral immune responses in P. vivax-exposed individuals
(15). A recent study showed that TR-Ags could bind to normal
human erythrocytes and the process could be inhibited by the
sera of malaria patients (16). Our previous research also revealed
that the conserved TR motifs exist in most PvTR-Ags which
have high antigenicity in P. vivax infection, even in patients
from low-endemic regions. We recently demonstrated that there
are five proteins that are associated with the caveola-vesicle
complex (CVC) structure, a unique structure of P. vivax-infected
erythrocytes (17).

Among the five PvTR-Ags, PvTRAg-26 is an erythrocyte-
binding protein (16). Although the antigenicity of PvTRAg-26
was partially tested in the previous study in P. vivax patients, the
nature of the IgG subclass response to PvTRAg-26 in patients and
the immunogenicity of PvTRAg-26 remain unclarified either in
vitro cell experiments or in vivo animal experiments. Moreover,

Abbreviations: P. vivax, Plasmodium vivax; TRAg, tryptophan-rich antigen;

CVC, caveola-vesicle complex; PCR, polymerase chain reaction; PBS,

phosphate-buffered saline; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide

gel electrophoresis; ELISA, enzyme-linked immunosorbent assay; Con A,

concanavalin A; LPS, lipopolysaccharide; IFN-γ, interferon-γ; IL, interleukin; IFA,

indirect immunofluorescence assay; PHIST, helical interspersed subtelomeric;

PVM, parasitophorous vacuolar membrane.

the membrane-associated subcellular localization needs to be
investigated. In the present study, we tested the antigenicity and
immunogenicity of PvTRAg-26 in the serum samples collected
from symptomatic P. vivax patients as well as PvTRAg-26
immunized mice. Total IgG antibody and its subclasses were
detected in the blood and the antigen-specific immune response
and Th1/Th2-type cytokines of splenocytes were measured.
Additionally, the subcellular localization of the PvTRAg-26
antigen on the membrane of P. vivax-infected erythrocytes was
also performed.

MATERIALS AND METHODS

Human Serum Samples
Serum samples of 35 malaria patients were collected in the
hospitals of Bengbu and Hefei, Anhui province of China, all
of them showing positive P. vivax parasite by microscopy.
Simultaneously, fifteen serum samples of the individuals from
malaria non-endemic areas were taken as control. The positive
or negative sera were confirmed by both microscopy and nested
PCR methods (18).

Expression and Purification of
Recombinant PvTRAg-26
Genomic DNAs were prepared from P. vivax isolates and
used as templates for PCR amplifications. PvTRAg-26
coding genes were amplified with primers of PvTRAg-26-F
(5′-CCTTCACTTATAGATAAGTACGATGCT-3′) and PvTRAg-
26-R (5′-TTATATTTTTGAATTCTTCCACTGAATCC-3′) and
inserted into pET-28a (+)-His vector (Sango Biotech, Shanghai,
China). The inserted DNA fragments were sequenced on an
ABI 3730 X 1 DNA Analyzer (Applied Biosystems, Foster City,
CA, USA) by Sango Biotech Co. Ltd. Purified plasmid DNAs
were prepared with a TIANprep Mini Plasmid Kit (TIANGEN,
Beijing, China). The recombinant protein was affinity-purified
by using a Ni-Sepharose column (Sango Biotech) as described
previously (17). Recombinant PvTRAg-26 was then denatured
with β-mercaptoethanol in sample buffer and analyzed by 13%
sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE), followed by immunoblotting assay with an anti-His tag
antibody (Qiagen, Hilden, Germany).

Animal Immunization With Recombinant
PvTRAg-26
Female BALB/c mice, 6-8 weeks old, were purchased from
Vital River Laboratory Animal Technology Co, Ltd (Beijing,
China). The mice were treated following the Guidelines for
the Care and Use of Research Animals established by Anhui
Medical University. Two groups of mice, 5 in each, were
immunized subcutaneously (SC) with 50 µg of PvTRAg-26 in
phosphate-buffered saline (PBS) or Freund’s complete adjuvant
(Sigma-Aldrich, San Francisco, CA, USA), for four times in
a 3-wk interval. Boost injections were given after 3, 6, and
9 weeks of the priming with the same amount of antigen
together with Freund’s incomplete adjuvant (Sigma-Aldrich).
The mouse sera were collected 2 weeks after the final boost
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and antibodies against PvTRAg-26 were measured as described
previously (19).

Enzyme-Linked Immunosorbent Assay
(ELISA)
To investigate the prevalence of IgG subclasses against PvTRAg-
26, serum samples from 35 P. vivax-infected patients and 15
uninfected individuals were selected. The ELISA was performed
following the manufacture’s instructions. Briefly, 5µg/mL of
PvTRAg-26 in coating buffer (0.05M NaHCO3, pH 9.6) was
incubated in 96-well ELISA plates (Corning-Costar, Corning,
NY, USA) overnight at 4◦C. The plates were incubated with 5%
skimmed milk in PBS/T (0.05% Tween-20) for 1 h at 37◦C to
block nonspecific binding sites, and then incubated with 100
µL of individual sera diluted 1:50 in PBS/T. For IgG subclasses,
the plates were washed and then incubated with horseradish
peroxidase (HRP)-conjugated anti-human IgG1, IgG2, IgG3, and
IgG4 antibodies (ImmunoWay, Plano, TX, USA) in dilution of
1:2000 in PBS/T. Chromogenic reactions were developed and
measured based on the previous description (19).

To identify and compare the levels of total and subclasses of
IgG antibodies against PvTRAg-26 in immunized mice sera, we
coated ELISA plates with the recombinant antigen (1.25µg/mL).
The plates were blocked and incubated with mouse sera (1:2000
dilution in PBS/T) at 37◦C for 45min. For total IgG antibody
measurements, the plates were washed and then incubated
with HRP-conjugated anti-mouse IgG (H + L) (Invitrogen,
Waltham, MA, USA) at a 1:50,000 dilution at 37◦C for 45min,
whereas for IgG subclasses the plates were incubated with HRP-
conjugated anti-mouse IgG1 (Invitrogen, MA, USA), IgG2a
(Invitrogen), IgG2b (Abcam, Cambridge, MA, USA), and IgG3
(Abcam) antibodies at 1:30,000, 1:1000, 1:2000, and 1:1000
dilutions, respectively. Chromogenic reactions were developed
and determined as previously described (19).

Splenocyte Proliferation and Cytokine
Assays
Spleens were removed from mice 2 weeks after the fourth
immunization. Splenocytes obtained from PvTRAg-26
immunized or control mice were resuspended at concentrations
of 5 × 106 cells/mL in complete RPMI 1640 supplemented
with 10% FBS. One hundred microliters of the cell suspension,
and 100 µL of PvTRAg-26 proteins were added to 96-well
culture plates at final concentrations of 2.5, 5, 10, or 20µg/mL,
respectively. Concanavalin A (Con A; Sigma-Aldrich) or
lipopolysaccharide (LPS; Sigma-Aldrich) at final concentrations
of 5µg/mL or 10µg/mL were used as positive control and PBS,
as negative control. After a 72 h culture (37◦C and 5% CO2),
100 µL of supernatants per well was collected and stored at
−20◦C for cytokine assays. Viable cells were measured using
a Cell Counting Kit-8 (CCK-8 or WST-8) assay following the
commercial kit protocols. Cytokines of interferon (IFN)-γ,
interleukin (IL)-2, IL-4, and IL-10 were examined in culture
supernatants of immunized mice using BD Cytometric Bead
Array (CBA) Flex Set kit (BD Biosciences, San Diego, CA, USA)
according to the manufacturer’s instructions. The results were

obtained by flow cytometry (FACS Calibur, BD Biosciences, San
Jose, CA, USA) and analyzed using Flow Cytometric Analysis
Program (FCAP) array software (Soft Flow, Kedves, Hungary).

Indirect Immunofluorescence Assay (IFA)
IFA was performed with 4% paraformaldehyde-fixed parasites
(17). Slides were incubated with the following primary
antibodies: mouse anti-PvTRAg-26 sera (1:100) and rabbit
anti-PvPHIST/CVC-8195 sera (1:100) or mouse anti-PvTRAg-26
sera (1:100) and rabbit anti-Band 3 antibody (1:200). After
primary antibody reactions, the samples were then treated with
secondary antibodies, Alexa Fluor 488-conjugated goat anti-
mouse IgG (1:500, Invitrogen) or Alexa Fluor 568-conjugated
goat anti-mouse IgG (1:500, Invitrogen), and 4, 6-diamidino-
2-phenylindole (DAPI) (1:1000, Invitrogen) was used to stain
the nuclei. The slides were then mounted with Prolong Gold
anti-fade reagent (Invitrogen), and visualized with confocal laser-
scanning microscopy (FV1000; Olympus, Tokyo, Japan) under
oil immersion. Images were edited using Adobe Photoshop CS5
(Adobe Systems, San Jose, CA, USA).

Statistical Analysis
Data were analyzed using GraphPad Prism (GraphPad Software,
San Diego, CA, USA). Student’s t-tests were used for comparing
the difference between the means in each group. P < 0.05 was
considered statistically significant.

Ethical Considerations
The protocols of the study were approved by and carried out
following the recommendations of the Life Ethics Committee
of Anhui Medical University (No. 20160118) and the Animal
Ethics Committee of AnhuiMedical University (LLSC20160161).
All subjects gave their written informed consents as per the
Declaration of Helsinki.

RESULTS

Expression of Recombinant PvTRAg-26
The complete PvTRAg-26 (PlasmoDB accession No.
PVX_112660) protein sequence in the sal-1 strain consists
of 223 amino acids (26 kDa), rich in tryptophan residues
(5.8%). The entire exon-2 (450 bp, encoding the tryptophan-rich
domain) of pvtrag-26 was amplified, cloned, and expressed
in Escherichia coli (Figure 1A). The recombinant protein
was purified under non-denaturing conditions, as shown in
Figure 1B. The corresponding immunoblots were probed with
an anti-His tag monoclonal antibody. Sera of P. vivax-infected
patients and PvTRAg-26-immunized mice revealed a similar and
specific migration pattern in PvTRAg-26 blotting (Figure 1C).
Serum samples from uninfected individuals or normal mice were
used as negative controls (data not shown).

IgG Subclasses Recognizing PvTRAg-26 in
Malaria Patients
We evaluated the prevalence of each IgG subclass antibodies
against PvTRAg-26. The results showed that the mean levels
and the hierarchy of IgG subclasses were as follows: IgG3 >
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FIGURE 1 | Schematic diagram showing the expression of PvTRAg-26. (A) Diagram of the gene structure of pvtrag-26; aa, amino acids. (B) Expression and

purification of recombinant PvTRAg-26. T: total translation mix, S: supernatant, P: precipitate, Ft: flow through, W: wash; E: elution treated with reducing buffer. (C)

Recombinant PvTRAg-26 protein under reducing conditions was probed with an anti-His tag antibody, P. vivax malaria patient serum and immune mouse serum. H:

anti-His tag antibody, M: immune mouse serum, P: P. vivax-infected patients’ pooled sera.

IgG1 > IgG4 > IgG2 (Figure 2). IgG1 and IgG3 subclasses
were the predominant antibodies compared to the others (P <

0.0001). Titres of the cytophilic antibodies (IgG3 and IgG1) were
significantly higher than the non-cytophilic antibodies (IgG2
and IgG4) (P < 0.05). The concentrations of IgG1 and IgG3
in P. vivax patients were markedly elevated in comparison with
those of uninfected controls.

Anti-PvTRAg-26 IgG and Its Subclasses in
the Sera of Immunized Mice
The serum levels of antigen-specific total IgG and its subclasses
in response to PvTRAg-26 were determined. The level of total
PvTRAg-26 specific IgG antibodies in antigen-immunized mice
was notably increased in comparison with that in the control (P<

0.001) (Figure 3A). IgG1 subclass dominated compared to IgG2b
and IgG3 in the immunized mice (Figure 3B).

Antigen-Specific Immune Cell Responses
and Cytokine Release
Splenocyte proliferation assays and CBAs were performed to
assess the antigen-specific response and the secretion of cytokines
in immunized BALB/c mice. Splenocytes from the animals
immunized with PvTRAg-26 and controls were stimulated with
various concentrations of the PvTRAg-26 antigen, Con A, or LPS
for 72 h. The cultural supernatants were harvested for CBA and
cell proliferation assay. The splenocyte proliferation in PvTRAg-
26-immunized mice showed a notable proliferative response
compared to those of the control group (P < 0.01, Figure 4A).
Additionally, cytokine determinations demonstrated a biased

Th1-type response, with an elevated level of IFN-γ and IL-2
secretions in the splenocytes of mice immunized with PvTRAg-
26. By contrast, production of Th2-type cytokines of IL-4 and
IL-10 were remarkably dampened (Figure 4B).

Association of PvTRAg-26 With CVC and
the Erythrocyte Membrane in the Early
Ring Stage
Immunofluorescent assay was conducted by using anti-Band
3 (an erythrocyte membrane marker) and anti-PvPHIST/CVC-
8195 (a CVC marker) sera. In the early ring or trophozoite stage
of the parasite, PvTRAg-26 signals weremerged (at least partially)
with Band 3 and PvPHIST/CVC-8195. Specific fluorescence was
visualized on the parasitophorous vacuolar membrane (PVM)
(Figure 5) but the pre-immunized mouse sera did not show any
signals (data not shown).

DISCUSSION

The TR-Ags of different Plasmodium species have been noted
to have potential in malaria vaccine candidate screening (12,
16, 20–22) due to their parasite growth inhibition activity (23–
25). P. vivax contains more abundant TR-Ags than any other
human malaria parasites. Among them, PvTRAg-26, which
contains positionally conserved tryptophan residues in a TR
domain, could elicit a high level of protective IgG antibodies
even in low malaria-endemic areas (17). Studies demonstrated
that PvTRAg-26 possesses erythrocyte-binding ability (16).
However, its immunogenic properties have not been fully
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FIGURE 2 | The levels of IgG subclasses recognizing PvTRAg-26 in sera from P. vivax-infected patients and uninfected individuals. Differences between IgG subclass

levels in the negative and positive groups were analyzed using Student’s t-tests. ***P < 0.001. The P values for IgG1 and IgG3 were <0.001, and those for IgG2 or

IgG4 were >0.05. P < 0.05 was considered to indicate a significant difference.

FIGURE 3 | Levels of serum IgG and IgG subclasses in immunized mice. (A) Antigen-specific IgG levels were detected by ELISA in the sera of mice, as indicated after

the final immunizations with PvTRAg-26, ***P < 0.001. (B) Serum IgG subclass pattern in PvTRAg-26-immunized mice, ***P < 0.001.

explored. Here, we analyzed the cellular and humoral immune
responses to PvTRAg-26 antigen in patients and immune mouse
serum samples.

Antibodies play a crucial role in mediating acquired immunity
to malaria during the intra-erythrocytic development stage of
the parasites (26). The limited polymorphism of PvTR-Ags may
contribute to their high immunogenicity. Our previous study
exhibited that five PvTR-Ags, including PvTRAg-26, produced
an elevated level of IgG antibodies in the sera of vivax patients
(17). Definition of the IgG subclass response to PvTRAg-26
is important because the function of immune effectors varies
in different subclasses (27, 28). Investigation of the antibody

subclass response may provide further insight into the functions
of antibodies and their roles in immune protection. Previous
studies reported that cytophilic subclasses of IgG1 and IgG3
promote opsonic phagocytosis of merozoites or neutrophil-
mediated killing, inducing a protection from malaria (29–31).
Similarly, we noted that cytophilic antibody subclasses, IgG1
and IgG3, were predominant in host response to PvTRAg-
26 antigen stimulation. Augmentation of humoral immune
response mediated by IgG1 and IgG3 antibodies has been
believed to play a pivotal role in reducing the risk of clinical
malaria and parasitemia (32). During this process, complement
activation mediated by IgG1 and IgG3 would be essential for
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FIGURE 4 | Proliferation index and cytokine secretion of splenocytes from mice immunized with PvTRAg-26. (A) Splenocytes from mice immunized with or without

PvTRAg-26 were stimulated with various concentrations of PvTRAg-26 for 72 h before testing, as indicated. The splenocytes were stimulated with Con A or LPS as

positive controls, as indicated, *P < 0.05, **P < 0.01. (B) Cytokine secretion profile of the splenocytes from the antigen-immunized mice.

inhibition of parasite invasion to host erythrocytes (33). Thus,
further studies are needed to elucidate the functional activities of
antibodies and their relationship with host protective immunity
to vivax malaria.

Immunization with recombinant PvTRAg-26 resulted in a
high level of IgG antibody response in mice, in which IgG1
subclass was predominant, followed by IgG2a. Similar results
were also seen in the studies of mice with other malaria vaccine
candidates, such as PvMSP119, PfMSP119, and PvMSP9 (34–
36). The IgG1 and IgG3 antibodies are non-cytophilic and
responsible for Th2-biased response (37), while the IgG2a
and IgG2b are cytophilic and link to Th1 response in mice.
Importantly, IgG2a antibodies in mice are considered to be
most efficacious in complement activation and in activation of
antibody-dependent cellular cytotoxic mechanism, in addition to
ameliorating parasitemia caused by P. yoelii (31). We speculate
that PvTRAg-26 antigen may induce a comprehensive Th1-
Th2 protective response. Other studies have also shown the
protective immunity in the presence of elevated levels of IgG1

and IgG2a with a combined Th1-Th2 immune responses to
P. yoelii infection (38–44).

The mechanism of cellular immunity is closely associated
with activation of phagocytes, antigen-specific cytotoxic
T-lymphocytes and release of cytokines against infectious
protozoan parasites (45). Cytokines are generally responsible for
direct or indirect restriction of pathogenesis of infectious diseases
(15, 46–48). It has been known that CD4+ T cells play a crucial
role in protection against Plasmodium infection both in humans
and in animals (49–51). The phenotype indicators of CD4+ T
cells mainly include IFN-γ and IL-2 for Th1 response, and IL-4
and IL-10 for Th2 response (52, 53). Several studies demonstrated
that PvTR-Ags elicit a combined Th1 and Th2 response in vivax
malaria patients (51, 54). Here, we also observed a simultaneous
up-regulation of cytokines of Th1 (IFN-γ and IL-2) and Th2
(IL-10) types, suggesting a systemic immune response of mice to
PvTRAg-26 stimuation. The Th1 cytokines, e.g., IFN-γ, play an
essential part in controlling malaria parasitemia during the early
stages of infection (48, 55) and provide host with an effective
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FIGURE 5 | Localization of PvTRAg-26 in the early ring/trophozoite stage. (A) Ring stage parasites were double-labeled with mouse antisera against PvTRAg-26 (red)

and a rabbit anti-Band 3 antibody (green). (B) Ring/trophozoite stage parasites were dual-labeled with mouse antisera against PvTRAg-26 (red) and rabbit antisera

against PvCVC8195 (CVC marker, green). Nuclei were visualized with DAPI in merged images. The bar represents 5µm.

protection from malaria (56, 57). IL-2 is a crucial T cell cytokine
associated with proliferation, homeostasis, and differentiation of
CD4+ and CD8+ T cells (58), and regulates the balance between
effector Th1 cells and regulatory T cells in control of blood-stage
malaria infection (59, 60). Contrarily, IL-10, a Th2 type cytokine,
is known to be able to modulate the immune response to malaria
parasites and to be involved in deterioration of parasitemia in
Plasmodium infection (61, 62).

As visualized by IFA, PvTRAg-26 was transported from
the parasite to the erythrocyte membrane through the CVC
structure in the early ring stage. PvTRAg-26 was detectable on
the PVM and its signal might be merged with Band 3 and CVC
proteins. The function of the CVC largely remains unknown.
It is hypothesized that the CVC may link to the transportation
of materials from the parasite to the outside medium through
the red blood cell cytoplasm (63–65). Similar to binding of
PypAg-1/PypAg-3 to the membrane of red blood cells in rosette
formation of P. yoelii (12), the co-localization of PvTRAg-26

with the CVC on the surface of infected erythrocytes suggests
the transportation of PvTRAg-26 to the surface of the host
cells, which may help promote the invasion process of P. vivax
parasites. Further approaches in vivo are needed to determine the
efficacy of PvTRAg-26 as a promising vaccine candidate.

CONCLUSIONS

PvTRAg-26 possesses high antigenicity and immunogenicity
and can induce potent Th1 and Th2 responses in patients and
immunized mice. The recombinant PvTRAg-26 antigen has
the potential in development of a novel molecular vaccine for
prevention of P. vivax infection.
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