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Machine learning prediction of incidence of Alzheimer’s
disease using large-scale administrative health data
Ji Hwan Park1,11, Han Eol Cho 2,11, Jong Hun Kim3, Melanie M. Wall4, Yaakov Stern4,5, Hyunsun Lim6, Shinjae Yoo1,
Hyoung Seop Kim 7✉ and Jiook Cha 4,8,9,10✉

Nationwide population-based cohort provides a new opportunity to build an automated risk prediction model based on
individuals’ history of health and healthcare beyond existing risk prediction models. We tested the possibility of machine learning
models to predict future incidence of Alzheimer’s disease (AD) using large-scale administrative health data. From the Korean
National Health Insurance Service database between 2002 and 2010, we obtained de-identified health data in elders above 65 years
(N= 40,736) containing 4,894 unique clinical features including ICD-10 codes, medication codes, laboratory values, history of
personal and family illness and socio-demographics. To define incident AD we considered two operational definitions: “definite AD”
with diagnostic codes and dementia medication (n= 614) and “probable AD” with only diagnosis (n= 2026). We trained and
validated random forest, support vector machine and logistic regression to predict incident AD in 1, 2, 3, and 4 subsequent years.
For predicting future incidence of AD in balanced samples (bootstrapping), the machine learning models showed reasonable
performance in 1-year prediction with AUC of 0.775 and 0.759, based on “definite AD” and “probable AD” outcomes, respectively; in
2-year, 0.730 and 0.693; in 3-year, 0.677 and 0.644; in 4-year, 0.725 and 0.683. The results were similar when the entire (unbalanced)
samples were used. Important clinical features selected in logistic regression included hemoglobin level, age and urine protein
level. This study may shed a light on the utility of the data-driven machine learning model based on large-scale administrative
health data in AD risk prediction, which may enable better selection of individuals at risk for AD in clinical trials or early detection in
clinical settings.

npj Digital Medicine            (2020) 3:46 ; https://doi.org/10.1038/s41746-020-0256-0

INTRODUCTION
Screening individuals at risk for Alzheimer’s disease (AD) based on
medical health records in preclinical stages may lead to early
detection of AD pathology and to better therapeutic strategies for
delaying the onset of AD1–3. Current biomarkers of AD requires the
collection of specimen (e.g., serum or fluid) or imaging data. On
the other hand, the electronic healthcare data, such as health
records in clinical settings, or administrative health data, does not
require additional time or effort for data collection. Also, with the
advent of digitalization the amounts of such data have
exponentially increased4. Since it is ubiquitous, cost-effective
and enormous, the digitalized healthcare database may be an
invaluable resource for testing scalable predictive models for AD
and other diseases alike. However, despite of its tremendous
potential value, little is known about the extents to which the
large-scale administrative health data is useful in AD risk
prediction.
For AD risk prediction, prior models are typically based on

predefined health profile variables, such as sociodemographic
(age, sex, education), lifestyle (physical activity), midlife health risk
factors (systolic blood pressure, BMI and total cholesterol level)5,6;
and cognitive profiles7,8. An important outstanding question is
whether those simple predictive models based on the small sets

of selected variables may sufficiently account for the hetero-
geneous etiologies of multi-factorial AD in clinical settings. Indeed,
a meta-analysis study shows that multi-factor models best predict
risk for dementia, whereas single-factor models do poorly6,
suggesting accurate AD risk prediction requires a large feature
space. Here we test the extents to which a data-driven machine
approach harvests salient information from the large-scale
healthcare data containing thousands of data of individuals’
health trajectories and make an individual-specific prediction of
AD risk.
Machine learning is an optimal choice of analytics for analyzing

the large-scale administrative health data containing thousands of
descriptors from hundreds of thousands of individuals. Studies
show successful applications of machine learning to the large-
scale administrative data in predicting incident diseases other
than AD (diabetes, metabolic syndrome, suicide death, opioid
overdose or drug-resistant epilepsy, etc)9–13. Given the recent
rapid growth of the machine learning technology, application of
the AI technology to clinical predictive modeling is likely to have a
deep impact on medicine14–16. But to our knowledge the data-
driven predictive modeling based on nationwide population-
based administrative health data has yet to be tested in AD risk
prediction.
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In testing predictive models, it is important to use sufficiently
large data representative of the population. The size of the data is
important for the model performance (e.g., accuracy), while the
representativeness is important for the model generalizability. In
this study, we used the National Health Insurance Service–national
sample cohort (NHIS-NSC) of one million people representative of
the contemporary South Korean population within the Korean
National Health Insurance Service database17. Using the large-
scale, thorough, longitudinal, administrative healthcare data (e.g.,
insurance claims and health check-ups) within this database, we
constructed and validated data-driven machine learning models
to predict future incidence of AD.

RESULTS
Sample characteristics
Of 40,736 individuals with age above 65 years in 2002, we
identified 614 unique individuals with AD incidence using the
definite AD outcome, 2026 with AD incidence using the probable
AD definition, and 38,710 elders with no AD incidence (Fig. 1). The
rate of AD in this cohort was 1.56% using the definite AD
definition, and 4.97% using the probable AD definition. Demo-
graphic characteristics showed significant differences in age
between both AD groups and non-AD groups and non-
significant differences in income and sex (Table 1).

Model prediction
Classifiers were trained to predict 0, 1, 2, 3, and 4 subsequent-year
incident AD. In balanced samples (bootstrapping with replace-
ment), when using the definite AD definition (based on ICD-10

codes and dementia prescription), in predicting 0 year incidence
of AD, random forest (RF) showed the best performance with
accuracy 0.823 and AUC of 0.898 (Fig. 2 and Table 2). When using
the probable AD definition (based on ICD-10 codes), classification
performance was slightly lower with accuracy of 0.788 and AUC of
0.850 (RF). Classification performance decreased in predicting
future incident AD of later years: using the definite AD definition,
accuracy/AUC of 0.713/0.775(1 year), 0.675/0.730(2 year), 0.632/
0.677(3 year), 0.663/0.725(4 year); using the probable AD
definition, accuracy/AUC of 0.688/0.759(1 year), 0.645/0.693(2
year), 0.610/0.644(3 year), 0.641/0.683(4 year). The results were
similar when we used the entire, unbalanced samples for model
training and evaluation (Supplementary Table 1), RF showed the
best performance in predicting 0 yer incidence of AD with AUC of
0.887 when using the definite AD definition and AUC of 0.805
when using the probable AD definition. Classification performance
decreased as the predicting period getting longer; using the
definite AD definition, AUC of 0.781 (1 year), 0.739 (2 year), 0.686
(3 year), and 0.662 (4 year); using the probable AD definition, AUC
of 0.730 (1 year), 0.645 (2 year), 0.575 (3 year), and 0.602 (4 year).
Numbers of features and look-back periods also decreased in later
year (Supplementary Table 2).

Important features
Logistic regression identified the features positively related to
incident AD. These included age (b= 0.689; odd ratio (OR)=
1.991), elevated urine protein (b= 0.303; OR= 1.353), prescription
of Zotepine (antipsychotic drug) (b= 0.303; OR= 1.353), and the
features negatively related to incident AD, such as, decreased
hemoglobin (b=−0.902; OR= 0.405), prescription of Nicametate
Citrate (b=−0.297; OR= 0.743), diagnosis of other degenerative
disorders of nervous systems (b=−0.292; OR= 0.747), and
disorders of the external ear (b=−0.274; OR= 0.760) (Table 3).

Model prediction using important features only
After identified the important features related to incident AD by
logistic regression, classifiers were trained with top 20 important
features only to predict 0, 1, 2, 3, and 4 subsequent-year incidence
of AD. These models showed overall similar performance: in 0 and
1 subsequent-year prediction, the AUC was higher up to 11.5% in
the all feature model, compared with the top 20 feature model; in
2, 3, 4 subsequent-year prediction, the differences in AUC were
much smaller with the range of negative 5 to positive 1% (Table 2,
Supplementary Table 3).

DISCUSSION
This study assessed the utility of the nationwide population-based
administrative health data in predicting the future incidence of
AD. Using machine learning, we predicted future incidence of AD
with acceptable accuracy of 0.713 (in terms of AUC 0.781) in one-
year prediction. The high accuracy of our models based on large
nationwide samples may lend a support to the potential utility of
the administrative data-based predictive model in AD. Despite of
the limitations inherent to the administrative health data, such as
the inability to directly ascertain clinical phenotypes, this study
demonstrates its potential utility in AD risk prediction, when
combined with data-driven machine learning.
Our model performance with AUC of 0.898, 0.775, and 0.725 in

predicting baseline, subsequent one-year, and four-year incident
AD is relatively accurate compared with the literature. In all-cause
dementia risk prediction based on genetic (ApoE) or neuropsy-
chological evaluations, MRI, health indices (diabetes, hypertension,
lifestyle), and demographic (age, sex, education) variables, prior
models show accuracy ranging from 0.5 to 0.78 in AUC (reviewed
in ref. 18). Of note, no direct comparisons of our results with those
studies should be made because of the differences in the study

433,133 Elderly individuals in 10 %  
random samples of the South 
Korean population who are alive
between 2002 and 2009 (age > 65 
in 2002)

40,736 Elderly individuals with 
Insurance Eligibility data,                  
Healthcare Utilization data, 
Health Screening data

2,026 Elderly individuals with probable
AD incidence between 2002-2009

614 Elderly individuals with definite AD
incidence between 2002-2009

38,710 Elderly individuals without AD
diagnosis or anti-dementia
medications

389,397 Excluded
No Health Screening data

Fig. 1 Consort diagram. Individuals with or without incident AD
were drawn from the Korean National Health Insurance Service-
National Sample Cohort.

Table 1. Sample characteristics.

Definite AD Probable AD Non-AD

Number 614 2026 38,710

Age 80.7 (80.2–81.1) 79.2 (79.0–79.5) 74.5 (74.4–74.5)

Sex (male:
female)

229 (44.6%):
285 (55.4%)

733 (36.2%):
1293 (63.8%)

18,200 (47.0%):
20,510 (53.0%)

Income
levela

6.00 (5.73–6.27) 5.90 (5.87–5.93) 6.02 (5.87–6.17)

Based on the 0-year prediction model; The range indicates minimum and
maximum.
a10 levels based on subject’s monthly salary.
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Fig. 2 Performance of machine learning models in predicting incident AD. Receiver-Operating Characteristic plots are shown for 0, 1, 2, 3, 4-
subsequent year prediction. Incident AD was defined based on ICD-10 AD codes and anti-dementia medication for AD, “Definite AD”, or based
on AD codes only, “Probable AD”. In each year prediction, a best performing model was selected for plotting.

Table 2. Performance of AD predictive models trained on NHIS-NSC by using balanced samples.

Sample Subsequent years of incidence predictedb Classifier Accuracy AUC Sensitivity Specificity

Definite AD (AD/non-AD 614/614) 0 year LR 0.76 0.794 0.726 0.793

SVM 0.763 0.817 0.715 0.811

RF 0.823 0.898a 0.795 0.852

1 year LR 0.677 0.693 0.65 0.704

SVM 0.678 0.705 0.699 0.656

RF 0.713 0.775a 0.686 0.74

2 year LR 0.652 0.684 0.639 0.666

SVM 0.663 0.687 0.572 0.753

RF 0.675 0.730a 0.608 0.742

3 year LR 0.623 0.645 0.562 0.684

SVM 0.607 0.635 0.58 0.633

RF 0.632 0.677a 0.572 0.693

4 year LR 0.627 0.661 0.509 0.745

SVM 0.646 0.685 0.538 0.754

RF 0.663 0.725a 0.621 0.705

Probable AD (AD/non-AD 2026/2026) 0 year LR 0.736 0.783 0.689 0.783

SVM 0.734 0.794 0.652 0.816

RF 0.788 0.850a 0.723 0.853

1 year LR 0.663 0.697 0.634 0.692

SVM 0.661 0.691 0.592 0.729

RF 0.688 0.759a 0.609 0.767

2 year LR 0.643 0.672 0.633 0.654

SVM 0.645 0.68 0.58 0.709

RF 0.638 0.693a 0.564 0.713

3 year LR 0.61 0.635 0.557 0.663

SVM 0.597 0.644a 0.427 0.767

RF 0.581 0.609 0.505 0.657

4 year LR 0.611 0.644 0.516 0.707

SVM 0.601 0.641 0.465 0.738

RF 0.641 0.683a 0.603 0.679

AD Alzheimer’s dementia, LR logistic regression, SVM support vector machine, RF random forest.
aBest performing models based on AUC.
bSubsequent years of incidence predicted= an year of incidence–the last year of health data (e.g., 3 year= an incidence in 2013–the health data used in the
prediction up to 2010; 3 year future prediction).
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design (e.g., predicting AD risk in 20 years later), populations (e.g.,
non-Asians), and analytical model (e.g., linear models). Never-
theless, it should be noted that compared with the prior studies
primarily based on targetted variables obtained from elaborate
neuropsychological, genetic testing, or brain imaging, our
approach is solely based on the administrative health data. This
has important implications for the practical utility, in that it can
provide an early indication of AD risk to clinicians prior to any
assessments or tests. Together with existing screening tools (e.g.,
MMSE), this may assist deciding when to seek a further clinical
assessment to a given patient in an individual-specific manner.
Comparing the models based on the sampled, balanced set and

on the entire, unbalanced set showed small-to-moderate differ-
ences in model performance. For example, based on the RF model
in predicting 0-year definite AD, the AUC’s are 0.887 and 0.898 in
the unbalanced and balanced samples, respectively, showing a 1%
increase. On the other hand, in predicting 4-year definite AD, the
AUC’s are 0.662 and 0.725 in the unbalanced and balanced
samples, respectively, showing a 9.5% increase. These results show
trivial-to-moderate differences in model performance between
balanced and balanced samples. However, we should point that, if
one uses an algorithm capable of processing the temporal
information among the clinical features, such as recurrent neural
networks19, then using the entire data for scalable learning is likely
to be beneficial.
Comparing the model performance across years, the 3-year

prediction is less accurate than the 4-year prediction. This seems
counter-intuitive at first, but our data shows that the length of
data is greater in 4-year prediction than in 3-year prediction
(Supplementary Table 2). We suspect that this difference in data
availability may be a cause of the expected performance increase
in later year prediction. This might be also related to the
irregularity of the NHIS-NSC dataset due to changes in healthcare
policy.
Our model detected the interesting clinical features associated

with incident AD. The data-driven selection of features is
consistent with risk factors found in the literature. A decrease in
hemoglobin level was selected as the feature most strongly
associated with incident AD. Indeed, anemia is known as an
important risk factor for dementia20–22. A study using National
Health Insurance Service-National Health Screening Cohort (NHIS-
HEALS), the NHIS health screening data in Korea, not only found
that anemia was associated with dementia, but also revealed a
dose-dependent relationship between anemia and dementia23.
Likewise, our data-driven model shows the hemoglobin level as
the most significant predictor. This finding has implications for
public health because anemia is a modifiable factor. Given our
finding and the consistent literature on the association between

hemoglobin level and AD and other dementia, future research
may investigate the biological pathway of anemia’s contribution
to AD pathology and cognitive decline.
We also discovered a positive association between urine protein

level and incident AD. In the NHIS-NSC, protein in urine is typically
measured using dip sticks. Though this is not a quantitative
measure of urine protein, it is useful as a screening method for
proteinuria24,25. Literature shows an association between albumi-
nuria and dementia26. Our finding suggests the potential utility of
a urine test as part of the routine health check-up for AD risk
prediction.
Four medications were also associated with incident dementia

within top ten features. We found that Zotepine, Eperisone
hydrochloride had a positive association and Nicametate Citrate
and Tolfenamic acid had a negative association with incident AD.
It is interesting that patients prescribed tolfenamic acid showed
lower incidence of AD. This drug used in Korea for pain control in
conditioner such as rheumatoid arthritis. It is known to lower the
gene expression of Amyloid precursor protein 1(APP1) and beta-
site APP cleaving enzyme 1(BACE1) by promoting the degradation
of specificity protein 1(Sp1)27–29. As a potential modifier of tau
protein, Tolfenamic acid is under investigation as a potential drug
to prevent and modify the progression of AD30. The results of this
study support the above experimental result and show that
tolfenamic acid may be a potential anti-dementia medication.
Zotepine is an atypical antipsychotic drug with proven efficacy

for treatment of schizophrenia. Our model showed the use of
zotepine positively correlated with incident AD. There are two
possible interpretations. Zotepine may have been used to treat
behavioral and psychological symptoms of dementia (BPSD)
before incident AD or diagnosis of AD31. Thus, the prescription
of Zotepine may indicate early AD symptoms and, consequently,
an increasing likelihood of incident AD. Alternatively, some studies
indicate that individuals with schizophrenia may have an
increased risk for the development of dementia32. Given this, it
might be possible that incident AD is high in individuals with
schizophrenic symptoms to whom Zotepine is prescribed.
However, this alternative interpretation may be questionable
considering that, in our model, the disease code of Schizophrenia
has not been selected as an important feature. In either case, it
should be noted that, though our results indicate a potential
relationship between Zotepin and incident AD (likely reflecting
the common practice in dementia), no causal relationship should
be drawn.
Nicametate Citrate, a vasodilator, was also negatively associated

with incident AD. This may be in line with the literature showing
effects of vasodilators on increasing cognitive function and

Table 3. Top ten features and weights from logistic regression (0-year prediction).

Type of data Name b value 95% CI Odd ratio p-value

Health checkup Hemoglobin (g/dL) −0.902 −0.903/−0.901 0.405 <0.001

Demography Age 0.689 0.687/0.690 1.991 <0.001

Health checkup Urine proteina 0.303 0.300/0.306 1.353 <0.001

Medication Zotepine (antipsychotic drug) 0.303 0.280/0.325 1.353 <0.001

Medication Nicametate Citrate (vasodilator) −0.297 −0.298/−0.295 0.743 <0.001

Disease code Other degenerative disorders of nervous system in diseases classified elsewhere −0.292 −0.309/−0.274 0.746 <0.001

Disease code Disorders of external ear in diseases classified elsewhere −0.274 −0.328/−0.220 0.760 <0.001

Medication Tolfenamic acid 200mg (pain killer) −0.266 −0.279/−0.254 0.766 <0.001

Disease code Adult respiratory distress syndrome −0.259 −0.282/−0.236 0.771 <0.001

Medication Eperisone Hydrochloride (antispasmodic drug) 0.255 0.237/0.272 1.290 <0.001

aUrine protein was detected by urine dipstick test (1: negative (−), 2: weak positive (±), 3: positive (1+), 4: positive (2+), 5: positive (3+), 6: positive (4+)).
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reducing the risk of vascular dementia, although the exact
mechanism remains unclear33,34. Further research is required.
One of the limitations of this study is that diagnoses of AD in

our database are not clinically ascertained. For example, there may
be incorrect diagnoses or misdiagnoses of AD in the claim data. To
mitigate this issue, we firstly confirmed the similar prediction
results using two different definitions of incident AD, “probable
AD” (based on AD disease codes) and “definite AD” (based on
both AD disease codes and anti-dementia medication). Secondly,
in South Korea, every elder with age 60 years old is required to
have complementary dementia screening supported by the
National Health Insurance Service at public healthcare centers,
where individuals that high-risk for dementia get referred to
physicians for further clinical examination. Such a system may
help reduce false negative cases. Lastly, Korean health insurance
system and policies support the reliability of the AD diagnoses.
That is, the Health Insurance Review and Assessment Service of
NHIS reviews and supervises the medical claims of AD medication.
For example, it requires the following conditions to consider the
insurance coverage of dementia medication: for donepezil and
rivastigmine patches, MMSE (Mini-Mental State Examination)=
<26 and CDR (Clinical Dementia Rating)= 1–3 or GDS (Global
Deterioration Scale)= 3–7; for galantamine and rivastigmine
capsules, MMSE= 10–26 and CDR= 1–2 or GDS= 3–5; for
memantine, MMSE= < 20 and CDR= 2–3 or GDS= 4–7 (Supple-
mentary Fig. 1). Thus, it is likely that individuals with records of
receiving dementia medication meet strong diagnostic criteria.
These aspects may alleviate potential validity issues of the AD
diagnoses in the Korean administrative health data. Another
limitation is that the features associated with incident AD do not
indicate causality. Rather, this finding indicates a data-driven
discovery from the large administrative data. This knowledge
might be useful to generate new hypotheses, to confirm existing
ones, or to compare relative importance in predicting incident AD
considering large feature space. We believe this is a useful value of
data-driven science.
In sum, this study lends support to a statistically meaningful

detection of individuals with AD risk solely based on the
administrative health data. Generalizability of our findings to
independent data in other nations, ethnicities, and healthcare and
insurance systems remains to be tested. If replicated, this study
may further motivate the implementation of a system in clinical
settings that could alarm a risk for AD, which may enable earlier
and more accurate screening for subsequent clinical testing.

METHODS
Datasets
NHIS-NSC cohort consist of randomly selected 1,025,340 participants
comprising 2.2% of the total eligible Korean population in 2002, and
followed for 11 years until 2013 unless participants’ eligibility was
disqualified due to death or emigration17. This database contains for each
individual’s features of services, diagnoses, and prescriptions associated
with all the health care services provided by the NHIS. Clinical features
include demographics and income levels divided by 10 levels based on
subject’s monthly salary from the Participant Insurance Eligibility database;
disease and medication codes from the Healthcare Utilization database;
and laboratory values, health profiles, and history of personal and family
illness from the National Health Screening database (from bi-annual health
check-up required for elders with age above 40). Of those samples, 40,736
elders were selected in this study, whose records exist in all the three
databases (Participant Insurance Eligibility database, Healthcare Utilization
database, and National Health Screening database).

Operational definition of AD
For an operational definition of AD, a study of Canadian EMR from" 3,404
adults shows sensitivity of 79% and specificity of 99% when they used an
algorithm of “one hospitalization code OR three physician claims codes at
least 30 days apart in a two year period OR a prescription filled for an AD-

RD specific medication”35. In this study, to further improve the accuracy of
an operational definition of AD, particularly sensitivity, we used the
following algorithm to operationally define incident AD, herein labeled as
“definite AD”: ICD-10 codes of AD36 (F00, F00.0, F00.1, F00.2, F00.9, G30,
G30.0, G30.1, G30.8, G30.9) AND dementia medication prescribed with an
AD diagnosis (e.g., donepezil, rivastigmine, galantamine, and memantine).
Furthermore, we considered a broader definition of AD using only ICD-10
codes to minimize false negative cases (e.g., individuals with AD diagnose
who did not take medication); this was labeled as “probable AD”. Within
each individual with either definition of incident AD, the data after the
incidence was excluded. Based on these two operational definitions, the
prevalence rates were 1.5% for definite AD and 4.9% for probable AD; the
former was smaller than what is reported in a door-to-door visit study in
Korean elders (age >65 years old), but the latter was similar to that37.

Data and preprocessing
We used the following variables from the NHIS-NSC data: 21 features
including laboratory values, health profiles, history of family illness from
the Health Screening database; 2 features including age and sex from the
Participant Insurance Eligibility database; and 6412 features including ICD-
10 codes and medication codes. Descriptions of data coding and exclusion
criteria for all the features except for ICD-10 codes and medication codes
are available in Supplementary Table 4.
Our data preprocessing steps are as follows. (i) Data alignment: We

aligned the data to each individual’s initial AD diagnosis (event-centric
ordering). (ii) ICD-10 and medication coding: Since ICD-10 and medication
codes have hierarchical structures, we used the first disease category
codes (e.g., F00 [Dementia in Alzheimer’s disease] including F00.0
[Dementia in Alzheimer’s disease with early onset], F00.1 [Dementia in
Alzheimer’s disease with late onset], F00.2 [Dementia in Alzheimer’s
disease, atypical or mixed type], and F00.9 [Dementia in Alzheimer´s
disease, unspecified]), and the first 4 characters for the medication codes
representing main ingredients. (iii) Rare disease or medication codes found
less than five times in the entire data were excluded from the analysis
(1179 disease and 362 medication codes). (iv) If a participant has no health
screening data (laboratory values, health profiles, and history of personal
and family illness from the National Health Screening database) during the
last two years of the processed data (in Korea a biannual health screening
is required for every elder), we excluded that participant from the analysis.
This preprocessing procedure yielded 4894 unique variables used in the
models (see Supplementary Table 2 for detailed information).
For each n-year prediction, within the AD group, we used the data

between 2002 and the year of incident AD–n because it requires at least n
years prior to the incident AD. Within the non-AD group, we used the data
from 2002 to 2010–n. For example, for 0 year prediction, if a patient was
diagnosed with AD at 2009, we used the data between 2002 and 2009; for
1 year 2002–2008; for 2 year prediction, 2002–2007; for 3 year, 2002–2006;
and for 4 year, 2002–2005.
For model training, validation, and testing, we used the randomly

sampled balanced dataset, as well as the entire, unbalanced dataset. For
the balanced dataset, we performed bootstrap sampling with replacement
10 times.

Machine learning analysis
We implemented three machine learning algorithms: random forest,
support vector machine with linear kernel, and logistic regression. Model
training, validation, and testing was done using nested stratified 5-fold
cross validation with 5 iterations. Feature selection was done within train
sets using the variance threshold method38. Hyper-parameters optimiza-
tion was done within validation sets. The following hyper-parameters were
tuned: for random forest, the minimum number of samples required at a
leaf node and the number of trees in the forest; for support vector
machine, regularization strength; for logistic regression, the inverse of
regularization strength. In logistic regression, L2 regularization was used.
Lastly, generalizability of model performance was assessed on the test sets.
We measured the following model performance metrics in the test set: The
area under the receiver operating characteristic curve (ROC), sensitivity and
specificity.

Ethical approval
This study complies with the Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) reporting
guideline. The study with exemption of informed consent (for
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retrospective, de-identified, publicly available data) was approved by the
Institutional Review Board of National Health Insurance Service (NHIS) Ilsan
Hospital, Gyeonggi-do, Korea (IRB number NHIMC 2018–12–006). All
methods in this study were performed in accordance with the Declaration
of Helsinki.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The data in this study is available upon request.

CODE AVAILABILITY
Codes are available at https://github.com/a011095/koreanEHR.
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