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ABSTRACT

Phase separation-based condensate formation is a
novel working paradigm in biology, helping to ratio-
nalize many important cellular phenomena includ-
ing the assembly of membraneless organelles. Un-
covering the functional impact of cellular conden-
sates requires a better knowledge of these conden-
sates’ constituents. Herein, we introduce the web-
server GraPES (Granule Protein Enrichment Server),
a user-friendly online interface containing the MaGS
and MaGSeq predictors, which provide propensity
scores for proteins’ localization into cellular con-
densates. Our webpage contains models trained on
human (Homo sapiens) and yeast (Saccharomyces
cerevisiae) stress granule proteins. MaGS utilizes
experimentally-based protein features for prediction,
whereas MaGSeq is an entirely protein sequence-
based implementation. GraPES is implemented in
HTML/CSS and Javascript and is freely available for
public use at https://grapes.msl.ubc.ca/. Documen-
tation for using the provided webtools, descriptions
of their methodology, and implementation notes can
be found on the webpage.

GRAPHICAL ABSTRACT

INTRODUCTION

Protein phase separation has been thrust to the forefront of
molecular biology over the past decade (1–3). During pro-
tein condensate formation, driver biopolymers are thought
to seed the formation of protein-rich foci within the cel-
lular milieu (4,5). Stress granules (SGs) are a specific type
of biological condensate which can be induced to form
by glucose starvation (6), viral infection (7), or other ex-
ternal stresses such as temperature shock (8,9). SGs and
other related membraneless organelles are of keen interest
to the biomolecular research community for being linked
to both long-term cell viability and a variety of protein
aggregation-based diseases (10–12). Previously, we found
that proteins within curated SGs sets are more disordered,
soluble, and abundant as well as containing more annotated
post-translational modifications than cytosolic proteins in
general and the proteome as a whole. Furthermore, SG pro-
teins were found to have multiple ordered domains, a large
number of protein-protein interactions, and to interact fre-
quently with RNA (13). Our findings were consistent with
the hypothesis that SGs are liquid phase-separated com-
partments and that proteins which readily enter these as-
semblies are likely resting near their solubility limits to aid
the cell in its capacity to rapidly mobilize proteins into SGs.

Based on our findings and the availability of well-curated
SG sets, we designed two predictors to score the propen-
sity of proteins to localize to SGs. Ample testing revealed
that these prediction scores were elevated for SG constituent
proteins but also for those proteins which localize into
other biological condensates. This finding was somewhat
expected, given the biophysical mechanism of phase separa-
tion that is thought to underly condensate formation. Thus,
by exploiting publicly available proteomic and database in-
formation, we introduced these two generalized predictors
for protein localization into biological condensates, one for
mammalian cells and one for yeast cells, called MaGS (re-
branded here as the Membraneless organelle and Granule
Score to account for both the mammalian and yeast predic-
tors). These tools provide some of the highest known con-
fidence predictions for biological condensate localization,
outperforming similar computational methods (13).
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Herein, we present a user-friendly, web-based interface
called GraPES (Granule Protein Enrichment Server), which
houses the original MaGS as well as the newly developed
and complementary MaGSeq models. On the GraPES web-
site (https://grapes.msl.ubc.ca/) users can look up a variety
of pre-calculated propensity MaGS values for human and
yeast proteins or obtain novel MaGSeq predictions from
FASTA formatted protein sequences which, while these
models have been optimized for mammalian or yeast con-
densate predictions, can in principle be used for any eukary-
otic organism.

MATERIALS AND METHODS

GraPES includes the two predictors: MaGS and MaGSeq.
MaGS has been benchmarked and predictions validated ex-
perimentally previously (13). In short, it is based on a gen-
eral linearized model (GLM) that uses the protein features
of protein abundance (14), percent protein intrinsic disorder
(15), number of annotated phosphorylation sites (16,17),
PScore (18), Camsol score (19), RNA interaction (20,21),
and percent composition of leucine and glycine to gener-
ate predictions for protein localization into biological con-
densates. Based on MaGS predictions, we were able to ex-
perimentally confirm, upon arsenite stress, SG localization
of two highly scored proteins that were previously unknown
to locate into condensates. However, a number of features
used by MaGS are experimentally measured which, due to
the lack of complete experimental data, limits the appli-
cation range of this model. Wanting to expand the scope
of our predictor, we have now complemented MaGS with
MaGSeq, a new model that provides similar analysis utiliz-
ing sequence-based features only.

Datasets

To avoid over training our models on homologous pro-
teins, we first clustered proteins based on sequence simi-
larity using CD-Hit at the 35% sequence homology level
resulting in a total of 13280 non-homologous proteins for
human and 4465 proteins for yeast (22). We then created
the positive SG sets for training and validation by match-
ing these non-homologous proteins with human and yeast
SG proteins that we had previously assembled from high-
confidence mass spectrometry and colocalization immuno-
fluorescence studies (13,23–28). We divided these stress
granule positive protein sets (388 human and 301 yeast pro-
teins) into two-thirds for training and one-third for valida-
tion. Additionally, we created fully-independent test sets of
positive stress granule proteins for performance evaluation
and comparison: 131 human proteins were gathered from
a stress granule database (29) and 116 yeast proteins from
the drLLPS database (30). Importantly, these test sets do
not contain any training or validation proteins and have
less than 35% sequence identity with any of these proteins.
The non-homologous human and yeast proteins that are
not part of the positive training, validation or test sets were
used to generate balanced negative sets (Supplementary Ta-
ble S1).

Data sets for condensate-specific comparisons for P-
bodies, Cajal bodies, Nucleolus, PML-bodies, Nuclear

speckles, Centrosome-Spindle pole bodies, and in vitro con-
densates were constructed from the drLLPS database, using
proteins from the ‘Scaffold’ and Client’ classifications (30).
Additional data sets for comparison of model performance
in different organisms were collected from the drLLPS
database for nematode (C. elegans), mouse (M. musculus),
fruit fly (D. melanogaster), and thale cress (A. thaliana). Pro-
teins were taken from the ‘Scaffold’ and ‘Client’ classifi-
cations of the Cajal body, P-body, Stress granule, U-body,
PcG body, Nuclear speckle, Nucleolus, and proteins in the
‘Other’ groups, where applicable, to construct ‘condensate
protein’ data sets. Size-balanced negative controls were then
constructed using randomly selected proteins not included
in the drLLPS database.

Model parameterization

We parameterized a general linearized model (GLM) for
MaGSeq by following a standard protocol in which the
model is optimized using training and validation sets and
then benchmarked against a fully independent test set (Fig-
ure 1). We initially assessed protein features in the SG sets
(excluding the test sets) with a linear discriminant analysis
(LDA) in order to see which features best separate positive
and negative hits. We used the GLM package in R to gen-
erate the general linearized model (R Core Team (2020).
R: A language and environment for statistical computing.
R Foundation for Statistical Computing, Vienna, Austria.
https://www.R-project.org/). We then removed features sys-
tematically and assessed model performance using Areas
Under Curve (AUC) values of the Receiver Operating Char-
acteristics (ROC) functions on the balanced positive and
negative validation sets while monitoring feature contribu-
tions to the GLM fit. The features selected for the opti-
mized MaGSeq models include: percent protein intrinsic
disorder (15), �-� interaction PScore (18), Soluprot pro-
tein solubility score (31), RNA-binding interaction RBP-
score (32), GRAVY protein hydrophobicity score (33), and
the total composition of charged amino acids as well as spe-
cific amino acids (D, A, V, I, M, F) for human, and the
TANGO score (34), Soluprot score (31), total sequence
length as well as percent composition of some specific acids
(S, A, P) for yeast. This difference in features used for the
human and yeast models is consistent with the differing
viscoelastic properties of the stress granules observed be-
tween the systems. In mammalian cells these granules ap-
pear very liquid-like, while in yeast these granules do not
(35); accordingly, several yeast stress granule proteins that
we assessed display little fluorescence recovery after pho-
tobleaching (27). Protein intrinsic disorder, �-�, solubility,
and RNA-binding scores were calculated using the respec-
tive computational platforms, while the remaining features
were calculated with in-house Perl scripts (36). After the op-
timization of the models, we generated scores for all non-
homologous proteins in the clustered proteomes, which we
then used to generate Z-scores for each protein as the final
output of the model. Finally, we used the independent test
sets for benchmarking and comparisons with established
granule and protein phase separation predictors as well as
with MaGS, which had not seen the test set proteins dur-
ing its training either. To facilitate prediction interpretation,
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Figure 1. The general workflow of the MaGSeq parameterization. SGome positive SG proteins are divided 2/3 for training and 1/3 for validation. Once
the general linearized models were optimized, they were then evaluated on an independent test set and compared to other granule and phase separation
prediction software.

A B

DC

Figure 2. Performance comparison. AUC plots of the MaGS and MaGSeq models for human (A) and yeast (B) parameterizations as compared to the
PScore (18) and catGranule (37) models. Additionally, PR curves for the MaGSeq model for human (C) and yeast (D) parameterizations as compared to
PScore and catGranule.

we estimated cutoff values by approximating the model
worthiness (NCSS 2021 Statistical Software (2021), NCSS,
LLC. Kaysville, Utah, USA, ncss.com/software/ncss). We
determined model specificity at the balance point of
ROC curves for a moderate threshold. High and low
threshold values were estimated by bisecting the speci-
ficity on either side of the moderate threshold (Supple-
mentary Figure S1). The selected cutoffs are provided
below and are available for users on the homepage of
GraPES.

RESULTS

MaGSeq performance

During parameter optimization, the MaGSeq models
reached AUC values of 0.78 and 0.79 on the human and
yeast validation sets, respectively (Supplementary Figure
S2). More importantly, with AUCs of 0.76 and 0.77 for hu-
man and yeast test set proteins, respectively, MaGSeq con-
sistently outperforms the current state-of the-art sequence-
based methods PScore (18) and catGranule (37) (Figure 2A-
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Figure 3. The general workflow of the GraPES server. The user can lookup precalculated MaGS information or, alternately, run their own novel predictions
on the web server. The GRaPES system is separated into a Processing Server and Client Server. The user’s browser interacts with the Client Server to request
results and submit jobs under their session identifier. The Client Server then forwards these requests alongside an authentication token to the Processing
Server via HTTP calls. The Processing Server responds to requests for 1) results by retrieving them from the associated database or cache, 2) queue
information by considering the state of pending and completed jobs, and 3) job submissions by storing the necessary information for future processing.
MaGSeq jobs are scheduled to Job Runners in approximate order of submission while attempting to prevent single users from monopolizing the queue.
Proteomic background distributions and their associated kernel density estimates of protein features are precalculated and cached in memory.

B). It needs to be stressed that catGranule was specifically
designed to predict granule proteins, while the PScore cal-
culates the probable amount of �-� interactions in protein
sequences and, therefore, is a more generic predictor of a
protein’s likelihood to phase separate in vitro. However, it
is thought that proteins which can form protein droplets
in vitro are likely to act as ‘drivers’ in the formation of
biological condensates within the cell. As the number of
proteins that do not localize to SGs is significantly larger
than the ones that do, we also calculated precision-recall
(PR) curves using the complete negative test set not used
in training or validation. Examination of these PR curves
reveals that the MaGSeq models have a higher precision
than the other methods at almost all levels of sensitivity
(Figure 2C-D). We previously showed that, although we
parameterized the MaGS models using SG proteins only,
MaGS also predict localization of proteins in other con-
densates (13). We verified that MaGSeq models also show
significantly higher scores for proteins in other condensates
with the exception of the centrosome/spindle and promye-
locytic leukaemia (PML) bodies (Supplementary Figure
S3). Moreover, MaGSeq models show significantly higher
scores for proteins known to be part of condensates in the
organisms C. elegans, M. musculus, D. melanogaster, and
A. thaliana when compared to randomized controls (Sup-
plementary Figure S4).

Websever description

GraPES is a HTML/CSS and Javascript webserver that
houses four separate biological condensate protein localiza-
tion prediction tools: the two MaGS and MaGSeq predic-
tors, each with one parameterization for Homo sapiens and
one for Saccharomyces cerevisiae. The general workflow of

the server can be seen in Figure 3. The user is initially lo-
cated on the homepage, where the user can choose between
the MaGS and MaGSeq models. The pre-calculated MaGS
database contains predictions for 16947 human and 4883
yeast proteins. The two MaGSeq themed predictors are able
to take any protein sequence comprised of the canonical
20 amino acids. For these MaGSeq predictors, inputs are
passed into a BASH environment where the required calcu-
lations of protein features are completed on computational
clusters on the server’s end. The output files from these pro-
grams are then parsed and tabulated using in-house Perl
scripts and passed to the R software package which houses
the optimized GLM models. Calculated scores are then
passed back to the webserver, which will then generate out-
puts and present them to the user. Users can submit any
number of protein sequences at the same time, but each
sequence will be submitted into the queuing system, and
run separately. Completed jobs will be held on the server for
a minimum of 14 days. Due to the computationally intensive
BLAST alignment required in the disorder calculation, pre-
dictions can take on the order of half an hour to an hour de-
pending on sequence length. Thus, email notifications are
recommended. However, any prediction calculation that is
queued and contains an identical sequence to one that is
currently stored on the server will access the cached re-
sults, and the user will not have to wait for prediction
calculations.

Input

Precalculated MaGS values can be searched using either a
protein’s UniProt accession number or with the gene name.
MaGSeq predictors take a FASTA formatted protein se-
quence with a minimal primary sequence length of 150
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amino acids, a residue limitation due to some of the soft-
ware used in the prediction of protein features used in the
model. An example sequence, showing the correct format,
is provided.

Output

For any query protein, the server provides the prediction Z-
score as well as the feature scores used to generate the pre-
dictions. In addition, distributions of precomputed Z-scores
of the human and yeast proteomes are provided for compar-
ison, as well as the proteomic distributions of each protein
feature used in score computation. As reference, precom-
puted Z-scores and feature scores of the known biological
condensate markers PAB1, G3BP1, DCP1, and DCP2 are
shown. Outputs are available as graphical plots and in nu-
merical form. This information can be downloaded as im-
ages and/or as plain text in either CSV or JSON format.

Usage example

Landing on the GraPES server, the user is first located
on the homepage which gives access to both MaGS and
MaGSeq prediction models. It is recommended that users
obtain predictions from the MaGS models first, as they
are more accurate methods. If a score is available, the user
can reference the suggested cutoffs to interpret whether the
MaGS Z-score obtained represents a high (>1.16 for hu-
man and > 1.08 for yeast), moderate (between 1.16 and
0.66 for human and between 1.08 and 0.58 for yeast) or
low propensity (between 0.66 and −0.36 for human and
between 0.58 and −0.39 for yeast) for cellular condensate
inclusion. However, if no score is available, because exper-
imental features used by MaGS are missing for the query
protein, then MaGSeq can be used. It should be noted
that scores from MaGS and MaGSeq are not directly com-
parable. Therefore, we provide different cutoff values for
MaGSeq. Specifically, proteins with high, moderate and low
propensity for cellular condensate localization are those hu-
man (yeast) proteins with scores > 0.90 (>0.89), between
0.90 and 0.56 (0.89 and 0.25), and between 0.56 and −0.33
(0.25 and −0.45), respectively.

As a specific usage example, we show the results for
Ubiquilin-2 (UBQLN2), a protein in our independent test
set. It receives a MaGS score of 1.08, indicating that it has a
moderate to high propensity to be associated with biological
condensates, and indeed it has been noted to phase separate
in a number of different conditions (38) and has been seen in
stress granules (39) and other ALS/FTD-linked complexes
(40). Users can see where this score falls in the distribution
of all predicted Z-scores (Figure 4A) as well as how this Z-
score compares to known biological condensate markers.
Here the proteomic distribution is shown as a grey kernel
density estimation distribution and biological condensate
markers PAB1, G3BP1, DCP1, and DCP2 are displayed in
different colours. The query protein, UBQLN2 in this case,
is always in light blue. Furthermore, plots of the protein
features used in the model are provided. For UBQLN2, ex-
amples of percent protein disorder (Figure 4B) and protein
abundance (Figure 4C) can be examined for further insight.
We and others have previously shown (13,41) that proteins

in SGs are enriched for percent disorder, likely to allow for
the formation of multivalent interactions (13). Moreover,
SG proteins often have an elevated abundance, which may
allow these proteins to remain close to their saturation con-
centrations (13). UBQLN2 ranks highly in both of these
metrics as compared to the background distribution, and
places among or close to many of the condensate mark-
ers. Examining the feature plots will help in the design of
variants that may enhance or reduce propensity for gran-
ule localization. Importantly, plots are interactive and users
can zoom in on a given range on the plot by clicking and
dragging over the desired values. Images of the plots can
be downloaded in a variety of formats from the dropdown
menu located on the upper right of the plot.

A protein that is not contained in the MaGS database is
LINE-1. This protein has recently been found to phase sep-
arate through its N-terminus and coiled-coil domain (42)
and is associated with stress granules and other cellular con-
densates (43). When examined with MaGSeq, this protein
obtains a Z-score of 0.9804, placing it in the ‘high propen-
sity’ range for condensate localization. Thus, MaGSeq ex-
tends the application range of our approach. However, it
is important to keep in mind that cellular condensate for-
mation is a complex phenomenon and competing factors
could limit the applicability of a purely sequence-based
approach.

FINAL REMARKS

The performance of MaGS is, as expected, higher than that
of MaGSeq due to the model’s use of experimental data.
However, MaGS can only be applied to proteins for which
protein abundance and annotated phosphorylation sites are
known, while the MaGSeq models only use sequence infor-
mation, thus providing flexibility to potentially query splice
variants as well as protein sequences of other species. In-
deed, MaGSeq predictors show significantly higher scores
for known condensate proteins over randomized controls
for a number of organisms (Supplementary Figure S4). A
closer look at these results suggests that the human param-
eterization of MaGSeq is more appropriate for the predic-
tion of condensate proteins in mice and nematode, while
the yeast parametrization would be better for plants. While
MaGSeq scores for condensate proteins in flies are signif-
icantly higher than controls, the scores are less discrimi-
native than in other organisms. In any case, it needs to
be stressed that scores and thresholds are not optimized
for organisms other than human or yeast and, therefore,
care should be taken when evaluating a protein’s prediction
score.

Additionally, while the MaGS and MaGSeq models were
parameterized to predict stress granule proteins, these mod-
els identify proteins associated with many other biologi-
cal condensates (Supplementary Figure S3). This aspect ex-
tends the use of these models to a wide variety of mem-
braneless organelles but also demands that the user criti-
cally assess their proteins after a score is obtained. For in-
stance, histone proteins obtain high MaGS scores and are
unlikely to be found within stress granules due to their bi-
ological context. However, it has been recently found that
these proteins do undergo phase separation in the nuclei
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Figure 4. Example MaGS Z-score prediction and protein feature plots for the UBQLN2 protein. Shown is the predicted MaGS Z-score(A), the percentage
of intrinsic disorder (B), and the protein abundance (C) of UBQLN2. The proteomic background distribution is shown in gray, while the protein of interest
is marked in the distribution by the light blue line. Markers for SGs and p-bodies are also provided to help the user gauge the relative level of that feature
as compared to known condensate constituents.

of HeLa cells (44), and the physicochemical properties that
lead to this behavior are likely similar to those which drive
proteins into granules.

MaGS and MaGSeq are complementary because they
use different features to assess condensate localization and
have different application ranges. Scores cannot be directly
compared between the two models; however, more confi-

dence can be gained if a protein obtains high scores across
both models. If the models disagree in their predictions,
then more weight should be given to the MaGS predictors
as they are more accurate and account for biological fea-
tures that go beyond what the primary sequence can pro-
vide. For instance, the protein Nab6 in S. cerevisiae is known
to localize to stress granules and obtains a MaGS of 1.41
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and a MaGSeq of 0.64, having a ‘high’ propensity in MaGS
and a ‘moderate’ propensity in MaGSeq.

In the analyses and validation of MaGS predictions (13),
we found that several proteins receive high scores that have
not yet been found to belong to known cellular condensates.
There could be several explanations for these results; it is
likely that some of these proteins simply remained unde-
tected by current mass spectrometry techniques, or the pro-
teins contain features that are identical to those of known
condensate proteins, but these proteins are contained within
a complex or have interactions that prevent condensate lo-
calization. The aforementioned histone proteins follow the
latter explanation. Even with these limitations, the MaGS
models can help provide insight into biological condensates
and protein phase separation.

DATA AVAILABILITY

GraPES is an open-source web application designed to
increase the usability and application of the MaGS and
MaGSeq methods for the prediction of protein localization
into biological condensates. This platform is deployed at
https://grapes.msl.ubc.ca/, the website source code is pro-
vided on Github https://github.com/JacobsonMT/GraPES,
and source code for the GLM models and model data can be
found at https://github.com/ekuec/2020 grapes server for
advanced users or those who wish to do high-throughput
calculations using the MaGS or MaGSeq models.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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13. Kuechler,E.R., Budzyńska,P.M., Bernardini,J.P., Gsponer,J. and
Mayor,T. (2020) Distinct features of stress granule proteins predict
localization in membraneless organelles. J. Mol. Biol., 432,
2349–2368.

14. Wang,M., Herrmann,C.J., Simonovic,M., Szklarczyk,D. and von
Mering,C. (2015) Version 4.0 of PaxDb: protein abundance data,
integrated across model organisms, tissues, and cell-lines. Proteomics,
15, 3163–3168.

15. Jones,D.T. and Cozzetto,D. (2015) DISOPRED3: precise disordered
region predictions with annotated protein-binding activity.
Bioinformatics, 31, 857–863.

16. Hornbeck,P.V, Zhang,B., Murray,B., Kornhauser,J.M., Latham,V.
and Skrzypek,E. (2015) PhosphoSitePlus, 2014: mutations, PTMs
and recalibrations. Nucleic Acids Res., 43, D512–D20.

17. Huang,K.-Y., Lee,T.-Y., Kao,H.-J., Ma,C.-T., Lee,C.-C., Lin,T.-H.,
Chang,W.-C. and Huang,H.-D. (2019) dbPTM in 2019: exploring
disease association and cross-talk of post-translational modifications.
Nucleic Acids Res., 47, D298–D308.

18. Vernon,R.M., Chong,P.A., Tsang,B., Kim,T.H., Bah,A., Farber,P.,
Lin,H. and Forman-Kay,J.D. (2018) Pi-Pi contacts are an overlooked
protein feature relevant to phase separation. Elife, 7, e31486.

19. Sormanni,P., Aprile,F.A. and Vendruscolo,M. (2015) The CamSol
method of rational design of protein mutants with enhanced
solubility. J. Mol. Biol., 427, 478–490.

20. Beckmann,B.M., Horos,R., Fischer,B., Castello,A., Eichelbaum,K.,
Alleaume,A., Schwarzl,T., Curk,T., Foehr,S., Huber,W. et al. (2015)
The RNA-binding proteomes from yeast to man harbour conserved
enigmRBPs. Nat. Commun., 6, 10127.

21. UniProt Consortium. (2019) UniProt: a worldwide hub of protein
knowledge. Nucleic Acids Res., 47, D506–D515.

22. Huang,Y., Niu,B., Gao,Y., Fu,L. and Li,W. (2010) CD-HIT Suite: a
web server for clustering and comparing biological sequences.
Bioinformatics, 26, 680–682.

23. Youn,J.-Y., Dunham,W.H., Hong,S.J., Knight,J.D.R., Bashkurov,M.,
Chen,G.I., Bagci,H., Rathod,B., MacLeod,G., Eng,S.W.M. et al.
(2018) High-Density proximity mapping reveals the subcellular
organization of mRNA-Associated granules and bodies. Mol. Cell.,
69, 517–532.

24. Markmiller,S., Soltanieh,S., Server,K.L., Mak,R., Jin,W., Fang,M.Y.,
Luo,E.-C., Krach,F., Yang,D., Sen,A. et al. (2018)
Context-Dependent and disease-specific diversity in protein
interactions within stress granules. Cell, 172, 590–604.

25. Wallace,E.W.J., Kear-Scott,J.L., Pilipenko,E.V., Schwartz,M.H.,
Laskowski,P.R., Rojek,A.E., Katanski,C.D., Riback,J.A., Dion,M.F.,
Franks,A.M. et al. (2015) Reversible, specific, active aggregates of
endogenous proteins assemble upon heat stress. Cell., 162, 1286–1298.

26. Cherkasov,V., Grousl,T., Theer,P., Vainshtein,Y., Glässer,C.,
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mutations affect UBQLN2 oligomerization and phase separation in a
Position- and Amino acid-dependent manner. Structure, 27, 937–951.

40. Alexander,E.J., Ghanbari Niaki,A., Zhang,T., Sarkar,J., Liu,Y.,
Nirujogi,R.S., Pandey,A., Myong,S. and Wang,J. (2018) Ubiquilin 2
modulates ALS/FTD-linked FUS-RNA complex dynamics and
stress granule formation. Proc. Natl. Acad. Sci. USA, 115,
E11485–E11494.

41. Kedersha,N.L., Gupta,M., Li,W., Miller,I. and Anderson,P. (1999)
RNA-Binding proteins Tia-1 and tiar link the phosphorylation of
Eif-2� to the assembly of mammalian stress granules. J. Cell Biol.,
147, 1431–1442.

42. Newton,J.C., Naik,M.T., Li,G.Y., Murphy,E.L., Fawzi,N.L.,
Sedivy,J.M. and Jogl,G. (2021) Phase separation of the LINE-1
ORF1 protein is mediated by the N-terminus and coiled-coil domain.
Biophys. J., 120, 2181–2191.

43. Goodier,J.L., Zhang,L., Vetter,M.R. and Kazazian,H.H. (2007)
LINE-1 ORF1 protein localizes in stress granules with other
RNA-binding proteins, including components of RNA interference
RNA-induced silencing complex. Mol. Cell. Biol., 27, 6469–6483.

44. Shakya,A., Park,S., Rana,N. and King,J.T. (2020) Liquid-Liquid
phase separation of histone proteins in cells: role in chromatin
organization. Biophys. J., 118, 753–764.


