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Abstract

Background: Guinea fowl (Numidia meleagris) production as an alternative source of meat and poultry has shown
potential for economic viability. However, there has been little progress in characterizing the transcriptome of the
guinea fowl. In this study RNA-sequencing and de novo transcriptome assembly of several Guinea fowl tissues
(pancreas, hypothalamus, liver, bone marrow and bursa) which play key roles in regulating feed intake, satiety,
and immune function was performed using Illumina’s Hi-Seq 2000.

Results: 74 million sequences were generated and assembled into 96,492 contigs using the Trinity software suite.
Over 39,000 of these transcripts were found to have in silico translated protein sequences that are homologous to
chicken protein sequences. Gene ontology analysis uncovered 416 transcripts with metabolic functions and 703
with immune function.

Conclusion: The transcriptome information presented here will support the development of molecular approaches
to improve production efficiency of the guinea fowl and other avian species.
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Background
Population projections and high production costs necessi-
tate research to identify and develop alternative sources of
meat and poultry. The guinea fowl (GF) is a provocative
poultry alternative due to its superior nutritional value and
economic potential [1]. Over the past decade poultry
research has benefited greatly from advances in sequencing
technology, with the genome and various transcriptome
projects of both the chicken and the turkey being
completed. While there are efforts to generate similar
data in non-model avian species [2-4], to date there
is very limited genetic information available to aid the
effort of bringing GF meat and poultry products into
mainstream consumption at a reasonable price [5-17]. The
application of transcriptome data generated through
RNA-sequencing has the potential to provide clues that
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will increase our understanding of the metabolic regulation
of appetite, feed utilization, immune function, growth and
overall production performance of guinea fowl.
Transcriptome analysis of the guinea fowl will provide

fundamental data needed to develop species-specific
management tools, such as feed and disease prevention
regimens. The coupled selection of metabolic and immune
function traits is of the utmost importance, as continual
selection for single metabolic or growth traits have had a
detrimental effect on immune function in poultry [18]. At
first glance this may seem a bit surprising because a rapid
growth rate is normally associated with good overall health,
to include immune function. It has been shown however,
that trait selection imposes an energy trade-off within
organisms [18]. Previous studies have investigated the
trade-offs between immune function versus reproduction,
production traits, and growth in birds, sheep, and insects
respectively [19-21]. Collectively these studies have shown
that immune function as a trait is dynamic, energetically
costly and requires optimization in concert with other
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selected traits. Interestingly, van der Most et al. found that
while the selection for growth was detrimental to immune
function, the selection of immune function does not
comprise growth performance in poultry [18]. These
findings open the door for the establishment of high-
performance lines of poultry by allowing for the selection
of disease resistance and growth simultaneously.
Attaining these goals requires a wealth of genetic

information and an in-depth understanding of the
role played by each gene involved in the regulation of
metabolism, satiety, feed utilization, conversion and
metabolism, and immune function. De-novo sequencing
and transcriptome assembly of the guinea fowl pancreas,
hypothalamus, liver, bone marrow and bursa was performed
as a first step to developing this required pool of data
unique to the GF. Such information is essential in revealing
new metabolic pathways that may be utilized to improve
growth and production performance of both traditional
and non-traditional poultry such as chickens and guinea
fowl, respectively.
The aim of this study was to (i) perform targeted

de novo assembly of the guinea fowl transcriptome of
the pancreas, liver, hypothalamus, spleen, bursa and
bone marrow; (ii) to compile a database of functional
annotations for the assembled guinea fowl transcriptome;
(iii) to perform comparative analysis of the assembled
Figure 1 Analysis of Contig Assembly. Contig assembly resulted in 96,491
bases and a N50 value of 14,660.
guinea fowl transcriptome using chicken and turkey pro-
tein databases; (iv) to identify guinea fowl transcripts with
metabolic and immune function.

Results and discussion
In this study we set out to develop a transcriptome library
that would reveal unique gene sequences to aid the under-
standing of key and unique metabolic and immune
processes in the guinea fowl. Application of the data
generated in this study will serve to improve the pro-
duction performance of guinea fowl and other related
avian species.

Transcriptome assembly
As mentioned above, the original 74 million Illumina
reads (4.9GB of raw data) was reduced to approximately
53 million reads through trimming and filtering. These
remaining reads were assembled into 96,491 contigs
(Additional file 1). The GC content per contig was 52%
for both the pancreas and liver samples and 49% for the
hypothalamus and bursa/bone marrow samples.
The average length of the assembled contigs was 866

bases with a N50 of 1630 nucleotides. Over 45,000 of
these assembled contigs ranged from 200–399 base pairs
(Figure 1). The large number of short contigs appears to
partially be the result of single end sequencing and
contigs with a minimum length of 200 bases, a mean length of 865
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partially due to the assembly method. While Trinity
tends to recover more correct transcripts overall than
other methods, it also tends to recover a great deal of
partial transcript sequences [22].

Functional annotation
A total of 47,079 contigs assembled by Trinity returned
statistically significant (1.0e-5) hits after blastp and
BlastX searches against the SwissProt section of UniProt
and the entire Chicken and Turkey proteomes.
The Gene Ontology terms assigned to the contigs were

well distributed between the categories of biological
process, cellular component and molecular function, with
a mean level of 6 (Figures 2 and 3). Of these, 38,673 were
assigned at least one Gene Ontology term. In addition
3,354 were assigned an enzyme annotation (Figure 4).
Transcripts that had e-values rising above 1e-10 were
annotated. This Transcriptome Shotgun Assembly project
Figure 2 Distribution of GO Annotation. In total 433331 annotations across a
function) were assigned to the GF contigs with the mean GO level of 6.
has been deposited at DDBJ/EMBL/GenBank under the
accession GBYG00000000. The version described in this
paper is the first version, GBYG01000000.
Gene coverage analysis for the annotated sequences

revealed that 5,796 or 23.5% of the sequences that
yielded hits covered more than 50% of the gene to which
they shared homology. A total of 866 sequences showed
100% gene coverage. The predicted open reading frames
encoded by the sequences analyzed ranged from 200 to
4000 bases in length of with the majority falling between
100 to 200 bases. Due to the low coverage of the reads
and lack of replicates a differential expression analysis
between the individual tissues was not performed.
FastAnnotator identified 24,349 domains in the query
nucleotide sequences with coverage greater than 50% by
searching against domain models from the Conserved
Domains Database at an expectation value (e-value) limit
of 0.01 (Figure 4).
ll categories (P: biological processes, C: cellular components, F: molecular



Figure 3 Distribution of Level 2 GO Terms. These bar charts illustrate the distribution of GO terms categorized as biological process, cellular
components or molecular function assigned to GF contigs. Distribution within the molecular function category indicates some role in binding for
over 80% of the contigs.
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Figure 4 GF contigs Annotation results from Fast Annotator. Depicted in this venn diagram are the annotation results from Fast Annotator
software which assigned a total of 38,723 GO terms, detected 24,349 domains, and identified 3354 homologous enzyme-related sequences.
3,072 contigs had all three levels of annotation.

Table 2 Immune function related GO term search of
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Identification of orthologus contigs
Forty percent of the contigs were homologous with
protein sequences deposited in the blastp database for
chicken (39,376) and turkey (39,474) (Additional file 2).
GO terms were used to mine the Trinotate output
(Additional file 3) and identify contigs annotated with
metabolism or immune function. In total 416 transcripts
with metabolic function and 703 with immune function
were uncovered (Tables 1 and 2).

Conclusion
Most of the desired traits in farm animals such as
body mass, production yield, and disease resistance
are quantitative. Over the centuries traditional selective
breeding of superior individuals has resulted in the marked
enhancement of production traits based on phenotypic
expression of desirable traits [23]. These traditional means
of breed improvement through phenotypic selection have
Table 1 Metabolic function related GO term search of
Trinotate output

Metabolic Function Terms Contigs

GO:0005976 polysaccharide metabolic process 4

GO:0006109 regulation of carbohydrate metabolic process 2

GO:0006629 lipid metabolic process 252

GO:0008152 metabolic process 151

GO:0016052 carbohydrate catabolic process 6

GO:0019538 protein metabolic process 4

GO:0044262 cellular carbohydrate metabolic process 13

GO:0051246 regulation of protein metabolic process 13
led to enhancement of economically important traits in
cattle, sheep, pigs, poultry and other livestock [24]. One
drawback however, is that traditional methods of breeding
are limited in their ability to select for traits that are
difficult to measure such as fertility, longevity and
disease resistance. These traits do not lend themselves
to such dramatic improvement through selection alone
[23]. It is in these areas that transcriptomic data has the
most potential for direct and immediate application.
By focusing on those genes that code for proteins related

to traits of interest, poultry scientists have gleaned and
applied genetic information to increase the production
and performance of chicken and other poultry birds.
The transcriptomic data set presented in this study
contributes to the genomic and proteomic resources
available for GF development. These genetic tools will
Trinotate output

Immune Function Terms Contigs

GO:0045087 innate immune response 445

GO:0006959 humoral immune response 37

GO:0006955 immune response 244

GO:0050776 regulation of immune response 36

GO:0002682 regulation of immune system 7

GO:0050778 positive regulation of immune response 8

GO:0033025 regulation of mast cell apoptotic 4

GO:0045637 regulation of myelo cell differentiation 3

GO:0002683 negative regulation of immune system 1

GO:0034121 regulation of protein metabolic process 2
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support the progression of molecular approaches to
improve the profitability of guinea fowl production.
Our results show that sixty percent of the contigs
were non-homologous with protein sequences deposited
in the blastp database for chicken. The continued curation
of this putative set of novel GF genes is essential for
downstream comparative analysis, expression profiling,
functional studies and trait selection across avian species.

Methods
Animals and RNA preparation
The pancreas, liver, hypothalamus, bone marrow and bursa
were harvested from an eight week old male guinea fowl
which was housed under a 12-hour light/dark cycle and
fed a diet comprising of 3,340 kcal of metabolizable
energy/kg of diet and 23% crude protein. Feed and
water were provided for ad libitum consumption. Animal
use for this study was approved by Tennessee State
University Institutional Animal Care and Use Committee
(IACUC). Following sacrifice by cervical dislocation, liver
(approximately 5 g from the mid-portion of the anterior
sub-segment of the right lobe), pancreas (approximately 2
grams of tissue from the duodenal loop), tibial bone
marrow, and bursa (whole organ) were removed and
submerged in an RNA stabilization solution (pH 5.2)
containing 0.5 M EDTA, 1 M sodium citrate, and 700 g
ammonium sulfate dissolved in ultrapure water overnight
at 4°C. Whole heads were flash-frozen in liquid nitrogen.
Subsequently, hypothalami were excised by micro-
dissection and submerged in an RNA stabilization solu-
tion. All tissue samples were stored at −80°C until use.
Total RNA was isolated from each tissue using Qiagen’s
RNeasy® Mini Kit according to the manufacturer’s proto-
col. (Qiagen, Valencia, CA) Total RNA concentrations
were determined via NanodropTM Spectrophotometer
(Thermo Scientific; Wilmington, DE). Each sample was
diluted to 50 ng/μl, separated into 50 μl aliquots and
immediately frozen at −80°C. Sample quality was evaluated
by visual inspection of a 1% formaldehyde gel ran at
100 volts for 1 hour. Gel images were captured using
the Kodak Gel Logic 1500 Imaging System (Kodak;
Rochester, NY). Experion™ Automated Electrophoresis
System (Bio-Rad; Hercules, CA) was used to confirm
RNA quality according to the manufacture’s guidelines.
Sample quality was also confirmed using a BioAnalyzer
(Agilent; Santa Clara, CA). The resulting RIN values for
the hypothalamus, pancreas, liver and bursa/bone marrow
samples were 9.5, 7.9, 5.3 and 5.5 respectively.

Library construction and iillumina sequencing
The cDNA library construction was conducted at the
Vanderbilt University’s Genomic Sciences Resource Center
(VUGSR), Nashville, TN (VUGSR). During library
construction, mRNA was isolated from 100 ng of total
RNA followed by fragmentation, 1st then 2nd strand cDNA
synthesis. The cDNA was end-repaired, size selected and
then ligated to adapter sequences. The cDNA libraries were
multiplexed and sequenced in one lane using Illumina’s
Hi-Seq 2000 (Illumina, Inc., San Diego, CA) single
end read sequencing platform. The sequencing run
produced approximately 74 million single end reads
with average length of 101 bp. The resulting reads
were de-multiplex and reported as separate runs and
deposited in the National Institutes of Health (NIH)
Short Read Archive (http://ncbi.nlm.nih.gov/sra) (Pancreas:
SRS584523, Hypothalamus: SRS413447, Liver: SRS585609,
Bone Marrow/Bursa: SRS586251).

Assembly, annotation, and gene ontology analysis
Prior to assembly, all reads were run through quality
control procedures to ensure that Illumina adapters were
removed and that only high quality data was used in the
assembly. The FastQC program was used to perform an
examination of the reads. Based on those results, tools in
the fastx toolkit were used to remove Illumina adapters,
performing end trimming of reads, as well as filtering
reads out of the dataset that had average quality
values < 30 (sup. Figure 1). After these trimming and
filtering procedures, approximately 54 million reads
remained for assembly.
Assembly and annotation was performed on Blacklight, a

SGI UV 1000 cc-NUMA shared-memory system available
to U.S. academic researchers through the NSF XSEDE
program (www.xsede.org).
Transcripts were assembled de novo using Trinity

(r2012-08-14) (available at http://trinityrnaseq.source
forge.net/) using the default settings [22,25]. To ensure a
uniform transcriptome reference across the datasets, all
reads were pooled for assembly then the datasets were
individually aligned back to the reference transcriptome.
The transcriptome produced was annotated using

Trinotate (r2013-08-26) (available at http://trinotate.source
forge.net). The Trinotate suite provides for the functional
annotation of de novo assembled transcriptomes and
makes use of several annotation techniques including
blastp/blastx database searches against reference sequence
databases, PFAM domain searches, and various signal
predictions. Trinotate integrates this initial annotation
information into a relational database that includes
reference information from Uniprot, and eggNOG/GO
Pathways databases. Due to the modular design of the
system and the use of an SQL database, the system
was modified to include information contained within
the complete proteome sequences of both the chicken
and turkey.
The assembled transcripts were also submitted to

FastAnnotator for comparative annotation and identi-
fication of domains and potential enzyme functions.

http://ncbi.nlm.nih.gov/sra
http://www.xsede.org
http://trinityrnaseq.sourceforge.net/
http://trinityrnaseq.sourceforge.net/
http://trinotate.sourceforge.net
http://trinotate.sourceforge.net
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Fast Annotator (available at fastannotator.cgu.edu.tw)
was used to analyze the distribution of gene ontology
terms, develop graphical representations of the data set
and for enzyme identification [26]. Gene Ontonlogy (GO)
terms used to identify associated with metabolic functions:
GO:0005976, GO:0006109, GO:0006629, GO:0008152,
GO:0016052, GO:0019538, GO:0044262,GO:0051246. GO
terms used to identify associated with immune functions:
GO:0045087, GO:0006959, GO:0050776, GO:0002682,
GO:0050778, GO:0033025, GO:0045637, GO:0002683,
GO:0034121.
Availability of supporting data
The data sets supporting the results of this article are
included within the article and its supplemental files.
Additional files

Additional file 1: GF_Trinity Output Fasta.

Additional file 2: Blastp XLS.

Additional file 3: Trinotate Annotation Report.
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