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ABSTRACT

The first step of homology-dependent DNA double-
strand break (DSB) repair is the 5’ strand-specific
processing of DNA ends to generate 3’ single-
strand tails. Despite extensive effort, the nuclease(s)
that is directly responsible for the resection of 5’
strands in eukaryotic cells remains elusive. Using
nucleoplasmic extracts (NPE) derived from the
eggs of Xenopus laevis as the model system, we
have found that DNA processing consists of at
least two steps: an ATP-dependent unwinding of
ends and an ATP-independent 5’!3’ degradation
of single-strand tails. The unwinding step is cata-
lyzed by DNA helicases, the major one of which is
the Xenopus Werner syndrome protein (xWRN), a
member of the RecQ helicase family. In this study,
we report the purification and identification of the
Xenopus DNA2 (xDNA2) as one of the nucleases
responsible for the 5’!3’ degradation of single-
strand tails. Immunodepletion of xDNA2 resulted
in a significant reduction in end processing and
homology-dependent DSB repair. These results
provide strong evidence that xDNA2 is a major
nuclease for the resection of DNA ends for
homology-dependent DSB repair in eukaryotes.

INTRODUCTION

Among the numerous types of DNA damages that a cell
encounters, DNA double-strand breaks (DSBs) are per-
haps the most deleterious. If not repaired or improperly
repaired, DSBs would lead to chromosome deletions and
translocations, causing premature cell death or oncogenic
transformation. In eukaryotes, three major pathways have
been identified to repair DSBs: non-homologous end join-
ing (NHEJ), homologous recombination (HR) and single-
strand annealing (SSA) (1–3). In NHEJ, DNA ends are
ligated either directly (for compatible or blunt ends) or

after some limited fill-in/degradation (for incompatible
ends). In HR, DNA ends are processed into extensive 30

single-stranded (ss-) tails, which then invade a homolo-
gous sequence to copy the missing information. SSA is
often used to repair a break that occurs between two
direct repeats, which are common in the genome of
higher eukaryotes. DNA ends are also processed into 30

ss-tails, but the two tails on each side of the break anneal
with each other, leading effectively to the deletion of one
of the two repeats and the intervening sequence.
The first step of HR and SSA is the processing of DSBs

into 30 ss-tails. In Escherichia coli, the RecC nuclease in the
RecBCD complex is a major nuclease for degrading
the 50 strand after the ends are unwound by the RecB
and the RecD helicases (4). In addition, the RecJ 50!30

ssDNA exonuclease has been proposed to degrade the 50

strand following end unwinding mediated by RecQ (5). In
eukaryotes, the nuclease responsible for the strand-specific
degradation of DNA ends has yet to be definitively identi-
fied. Genetic analyses in the budding yeast Saccharomyces
cerevisiae suggest that the MRE11-RAD50-XRS2 (MRX)
complex (MRE11-RAD50-NBS1 or MRN in higher
eukaryotes) plays an important role in end processing
(6). MRE11 has both an exonuclease and an endonuclease
activity (7–10), but the directionality of the exonu-
clease activity is 30!50 rather than 50!30. Furthermore,
a nuclease-inactivating mutant that can still form the
MRX complex shows no significant defect in end proces-
sing, whereas other mutations that block end processing
appear to do so by destabilizing theMRX complex (11–13).
Mre11 interacts with Sae2 (Ctp1 in Schizosaccharomyces
pombe and CtIP in higher eukaryotes), and disruption of
Sae2/CtIP blocks end processing (14–16). Sae2 has an
endonuclease activity on DNA structures like hairpins,
but how this activity contributes to the 50!30 resection is
unclear (17). Another candidate nuclease is EXO1, which,
when overexpressed, can suppress the mitotic DNA repair
defect of mre11, rad50 and xrs2mutants (18). While EXOI
has a 50!30 exonuclease activity, an exoI null mutant has
no significant defect in recombinational repair (19,20)
and only minor defect in DNA end processing (12).
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Therefore, if EXOI is directly involved in end processing, it
must do so in redundancy with other 50!30 exonucleases.
We have used the Xenopus nucleoplasmic extract (NPE)

as the model system to study DSB repair and end proces-
sing. We found that this system can efficiently reconstitute
both NHEJ and SSA. This allowed us to show by immu-
nodepletion that the Xenopus Werner syndrome protein
(xWRN) plays an important role in SSA (21). Further
analysis of xWRN’s role in SSA led to the elucidation of
a mechanism for the 50 strand-specific processing of DNA
ends (22). End processing in NPE consists of two steps:
first the end is unwound and then the 50 ss-tail is specif-
ically degraded, resulting in the 30 ss-tail as the final prod-
uct. This mechanism is remarkably similar to the model
that has been proposed for the E. coli RecQ helicase and
the RecJ 50!30 ssDNA exonuclease. While xWRN is one
of the eukaryotic homologs of RecQ, database search did
not reveal the existence of an eukaryotic homolog of RecJ.
We thus used biochemical methods to purify and identify
the 50!30 ssDNA exonuclease in Xenopus extracts. In this
study, we show that DNA2 (xDNA2) is one of the major
50!30 exonucleases in Xenopus extracts. We also show
that depletion of xDNA2 from NPE results in a significant
reduction in DNA end processing and this defect can
be complemented by the purified xDNA2 protein.
Corresponding to the defect in end processing, the effi-
ciency of the SSA repair pathway is reduced. Together,
these results provide stsrong evidence that xDNA2 is a
major nuclease for the strand-specific processing of
DNA ends and the subsequent homology-dependent
DSB repair.

MATERIALS AND METHODS

Extract preparation

Crude extracts, membrane-free cytosol and nucleoplasmic
extracts were prepared from unfertilized Xenopus eggs fol-
lowing the standard protocols (23,24).

Nuclease purification

Approximately 10ml membrane-free cytosol was diluted
with equal volume of buffer ELB [10mM HEPES
(pH 7.5), 250mM sucrose, 2.5mMMgCl2, 50mMKCl,
1mM dithiothreitol (DTT)] and then fractionated by
ammonium sulfate at 37.5–50% saturation (25). The
pellet was dissolved in buffer A0 (25mM Tris.HCl/1mM
EDTA/10% glycerol), adjusted to 100mM conductivity
with A1000 (A0+1M NaCl), and fractionated on a 5ml
Q Sepharose column (GE Healthcare, NJ, USA) with
100ml of buffer delivered in a gradient from A100
(A0+100mMNaCl) to A500 (A0+500mMNaCl). The
active fractions (peak at 250mMNaCl) were pooled and
directly loaded onto a 2ml Heparin Sepharose column (GE
Healthcare) and eluted with a 40ml gradient from A200
(A0+200mMNaCl) to A650 (A0+650mM NaCl). The
active fractions (peak at 380mM NaCl) were dialyzed
against 50 volumes of buffer H5 [5mM KiPO4 (pH 7.5)/
10% glycerol/1mM DTT] and loaded on a 1ml
Hydroxyapatite column (BioRad, CA, USA) and eluted
with a 20ml gradient from K5 to K500 (500mM KiPO4/

10% glycerol/1mM DTT). The active fractions (peak at
190mMof KiPO4) were concentrated with Amicon Ultra-4
(Millipore, MA, USA) down to 0.5ml and fractionated
on a 24ml Superdex 200 gel filtration column (GE
Healthcare) with buffer A100. The active fractions (peak
at 9ml elution volume) were concentrated with Amicon
Ultra-4 down to 100 ml and then incubated with 33 ml of
Streptavidin magnetic beads (Invitrogen, CA, USA) pre-
coated with 33 pmol of a 48-mer ss-oligonucleotide with
a biotin at the 30-end. After 1 h of incubation at 48C,
the beads were washed twice with 0.5ml A100, once
with 50 ml A100, and finally eluted with 40 ml A1000
(A0+1M NaCl).

Mass spectrometry

The proteins in the oligonucleotide beads elute were sepa-
rated on a 4–12% SDS–PAGE and visualized by
Coomassie blue staining. The selected gel bands were
excised and destained with 50% MeOH/5% HOAC in
water for overnight and then dehydrated completely
with 100% acetonitrile. Reduction and alykylation were
performed with 20mM DTT and 50mM iodoacetamide
(IAA). After a second dehydration, the gel bands were
rehydrated at 48C for 45min in trypsin solution [10 ng/ml
sequencing grade modified trypsin (Promega, WI, USA)/
10mM NH4HCO3/5% acetonitrile]. Proteins were
digested at 348C for 4 h. For MALDI-TOF peptide mass
fingerprinting, 0.3 ml sample and 0.3 ml matrix (CHCA)
were spotted onto MALDI target plate and allowed to
dry. Mass spectra were acquired with a Reflex IV mass
spectrometer (Bruker Daltonics, Billerica, MA, USA)
between 500 and 5000m/z in reflectron mode and peptide
peaks were calibrated internally using trypsin autolysis
peaks. Proteins were identified using automated
MASCOT (www.matrixscience.com) and BioTool
(Bruker Daltonics) software, and further analyzed
through database searches (SwissProt, BLAST, NCBI,
and MSDB).

Nuclease assay

The substrates for the nuclease assay were prepared
as previously described (22). 32P-labeled biotinylated
48-mer oligonucleotides, in either the single-stranded
form or the double-stranded form, were coated onto
Streptavidin paramagnetic beads following the manufac-
turer’s instruction (Invitrogen). The substrates were desig-
nated as 50 or 30 depending on the accessible end on the
32P-labeled strand after attachment to beads. A typical
nuclease reaction contained 5 ml protein to be assayed (in
A250 buffer or equivalent buffer), 5 ml ELB buffer, and
0.1 ml of oligonucleotide beads (0.5 ng DNA/ml beads).
After incubation at room temperature for 30–60min
with rotation, the reactions were terminated with 1%
SDS, heated at 958C for 10min and analyzed by 10%
TAE/PAGE.

DNA end processing assays and unwinding assays

End processing assays and unwinding assays were per-
formed essentially as previously described (22). The DNA
substrate for end processing was prepared by digesting
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pUC19 or pBS DNA with BamHI and filling the ends with
dGTP and 32P dATP. Single-stranded DNA was prepared
by denaturing the labeled pUC19 by heat and then imme-
diately chilling it on ice. A typical DNA end processing
assay contained: 5 ml depleted NPE, 0.5 ml 10�ATP mix
(20mM ATP/200mM phosphocreatine/0.5mg/ml creative
kinase/50mM DTT), 0.375 ml DNA (40 ng/ml), 0.75ml
2.5mM ddNTPs, 0.875 ml xDNA2 protein or ELB buffer.
The reactions were incubated at room temperature, sam-
ples were taken at the indicated times and mixed with equal
volume of 2% SDS/25mMEDTA. At the end, the samples
were brought up to 10 ml with H2O and supplemented with
1 ml proteinase K (10mg/ml). After incubation at room
temperature for at least 2 h, the samples were analyzed by
1% TAE/agarose gel electrophoresis. Gels were stained
with SYBR Gold (Invitrogen) for detection of total DNA
and then dried for exposure to Phosphoimager (Fuji) to
detect 32P.

The substrate for unwinding was a 48-mer double-
stranded oligonucleotide with one strand carrying a
biotin at the 50 end and the complementary strand con-
taining 21 thionucleotides (incorporated by Klenow) on
the 30 half and 32P-label at the 30-end. The DNA was
coated onto Streptavidin magnetic beads (Invitrogen) fol-
lowing the standard procedure. A typical unwinding reac-
tion contained: 5 ml depleted NPE, 0.5ml 10� ATP mix,
0.5 ml DNA beads (0.5 ng/ml), and 1.5ml ELB buffer. After
incubation at room temperature with rotation, 3.75 ml of
each reaction was withdrawn at the indicated time and
mixed with 11.25 ml washing buffer (10mM Tris HCl
(pH 8)/1mMEDTA/1M NaCl/0.05% NP-40). The
beads were isolated by magnet (10 ml of the supernatants
were saved), washed with 15 ml washing buffer and resus-
pended in 10 ml washing buffer. The supernatant and bead
fractions were mixed with 3.3ml 4% SDS/50mM EDTA,
6.7 ml H2O and 2 ml Proteinase K (10mg/ml). After incu-
bation at room temperature for 3 h, samples were analyzed
on a 10% TAE/PAGE.

SSA assay

The SSA was assay was performed essentially as pre-
viously described (21). The substrate was plasmid pRW4
linearized by XhoI, which cut between two 1.2 kb direct
repeats, and then partially filled-in with TTP and dCTP.
A typical SSA assay contained 0.5ml 10� ATP mix, 5 ml
xDNA2-depleted (supplemented with the purified xDNA2
or ELB) or mock-depleted NPE, and 20 ng/ml DNA in
a 7.5 ml reaction. After incubation at room temperature,
1.8 ml samples were taken at the indicated times and
mixed with 1.8 ml 2% SDS/25mM EDTA, 6.4ml H2O,
and 1 ml Proteinase K. After incubation at room tempera-
ture for 6 h, the DNA samples were separated on 1%
TAE/agarose gels and detected by SYBR Gold
(Invitrogen).

Antibody preparation and immunodepletion of xDNA2

The cDNA encoding the N-terminal 712 amino acids of
xDNA2 was isolated by PCR and subcloned into a pGEX
expression vector. The GST–xDNA2 fusion protein was
expressed in BL21(DE3), isolated from a SDS–PAGE gel,

and injected into two rabbits. The anti-xDNA2 antibodies
were purified with two affinity columns constructed
respectively with the GST–xDNA2 fusion protein and
the GST affinity tag following a protocol published pre-
viously (26). To deplete xDNA2, NPE (40 ml + 20 ml ELB)
was incubated at 48C for 2.5 h with 20 ml Protein
A Sepharose beads precoated with 7.5mg of the affinity-
purified rabbit anti-xDNA2 antibodies or buffer. The pro-
cedure was repeated and the depleted NPE was saved as
5 ml aliquots at –808C.

RESULTS

Purificationand identificationofa5’!3’ ssDNAexonuclease

The xWRN-mediated end processing pathway is remark-
ably similar to the model that has been proposed for the
E. coli RecQ helicase and the RecJ 50!30 ssDNA exonu-
clease. While xWRN is one of the eukaryotic homologs of
RecQ, our database search did not reveal the existence of
an eukaryotic homolog of RecJ. We thus used biochemical
methods to purify and identify the 50!30 ssDNA exonu-
clease in Xenopus egg extracts (Figure 1A). The Xenopus
extract contains efficient 50!30 ss-exonuclease activity but
no significant 30!50 ss-exonuclease activity or endonu-
clease activity (22). By biochemical fractionation, the
major 50!30 ssDNA exonuclease activity could be
separated into two fractions, one with a low level of
nuclease activity and one with a stimulating factor,
by heparin column. The nuclease assay used a 48-mer
ss-oligonucleotide with two 32P dA and a biotinylated dC
at the 30-end as the substrate. After binding to Streptavidin
magnetic beads, the 30 end was blocked but the 50 end
accessible. The 250mM NaCl elute, but not the flow
through, contained a low nuclease activity. When the two
fractions were combined, the nuclease activity was greatly
stimulated (Figure 1B). The nuclease fraction was further
purified by hydroxyappatite and gel filtration. For the final
step of purification, the active fraction from the gel filtra-
tion column was incubated with 50 ss-oligonucleotides
(unlabeled) attached to magnetic beads. As shown in
Figure 1C, a major band of �120 kD could efficiently
bind to DNA beads and then be eluted with a buffer con-
taining 1MNaCl. Correspondingly, the 50!30 exonuclease
activity was depleted from the DNA bead-treated super-
natant but recovered in the elute (Figure 1D, lanes 1–3).
These data strongly suggested that the 120 kD protein was
responsible for the 50!30 ssDNA nuclease activity. Mass
spectrometry analysis of this protein excised from an SDS–
PAGE identified it as the Xenopus homolog of the budding
yeast DNA2 (xDNA2). (The faint band just below was a
partial degradation product of xDNA2.) Consistent with
this identification, the sequence of xDNA2 contains a
RecC-type nuclease domain (27).

Identification of the stimulatory factor for xDNA2

We also identified the stimulating factor for xDNA2 as
xRPA based on three lines of evidence. Western analysis
showed that the heparin column flow through contained
xRPA (Figure 2A). As expected, this xRPA could be
removed by incubation with 50 ss-oligonucleotide beads.
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Concomitantly, the stimulating activity was also removed
after incubation with ssDNA beads (Figure 2B, lanes 1
and 2). Most importantly, the purified xRPA could
equally stimulate the 50!30 ss-exonuclease activity of the
purified xDNA2 (Figure 2B, lanes 3 and 4). 30 nM and
90 nM xRPA showed similar stimulatory activity, while
xRPA by itself showed barely detectable degradation
even at 90 nM (Figure 2B, lane 6). Together, these data
suggest that xRPA is the stimulating factor for xDNA2.
The stimulatory effect of xRPA was highly specific for the
50!30 ssDNA exonuclease activity of xDNA2. As shown
in Figure 2C, even in the presence of xRPA, xDNA2 dis-
played no detectable activity toward 30 ssDNA or dsDNA.
In a previous study, the recombinant Xenopus DNA2 dis-
plays only a very low level of ssDNA exonuclease activity
(27). However, RPA was not used in that study, which
probably accounted for the failure to detect the 50!30

ssDNA exonuclease activity.

Effect of xDNA2 depletion on DNA end processing

To determine if xDNA2 is indeed involved in DNA end
processing, we prepared antibodies against the N-terminal
712 amino acids of xDNA2. The anti-xDNA2 antibodies
were purified and then used to deplete xDNA2 from NPE.
As shown in Figure 3A, xDNA2 could be removed to a

level below detection (>98% depletion). The substrate for
DNA end processing was a linear pUC19 DNA that had
been labeled with 32P-dATP at the 30-end by Klenow. NPE
can efficiently process this DNA in the 50!30 direction if
NHEJ pathway is blocked by ddNTPs (22). In mock-
depleted NPE, the DNA was rapidly processed, as
detected by both SYBR Gold DNA staining and the 32P
label (Figure 3B). In contrast, in xDNA2-depleted NPE,
end processing was greatly inhibited (Figure 3B, �xDNA2
NPE). Even after 120min of incubation, there was still
a significant amount of partially processed DNA left in
xDNA2-depleted NPE. The remaining end processing was
probably due to a combination of the residual xDNA2
and the presence of a functionally redundant nuclease.
The xDNA2 depletion effect was specific because
it could largely be reversed by the addition of the
purified xDNA2 protein (Figure 3B, compare the 1200

time points of the �xDNA2 NPE+xDNA2 or buffer).
Notably, the xDNA2 protein itself displayed no nuclease
activity towards the dsDNA substrate, consistent with
its specificity towards ssDNA and dependence on
RPA (which was not included in these reactions)
(Figure 3B, buffer+xDNA2). Together, these results
indicate that xDNA2 is indeed important for DNA end
processing.
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Effect of xDNA2 on single-strand tail degradation

We next investigated the mechanism by which xDNA2
promotes DNA end processing. End processing proceeds
in at least two steps: unwinding of the dsDNA end and the
degradation of the 50 ss-tail (22). As a 50!30 ssDNA exo-
nuclease activity, xDNA2 was expected to catalyze the
50 ssDNA degradation. This hypothesis was tested by
incubating heat-denatured linear ss-pUC19 DNA in
xDNA2-depleted or mock-depleted NPE. As shown
in Figure 4, while the ssDNA was rapidly degraded in
mock-depleted NPE, it was much more stable in
xDNA2-depleted NPE. This effect was specific because
when the purified xDNA2 protein (no RPA) was added
back to the reaction, the ss-pUC19 DNA was again
degraded. [The kinetics was slightly slower than in
mock-depleted NPE due to the limited amount of
xDNA2 added back (�5% of the endogenous xDNA2).]
These results show that xDNA2 is indeed important for
ss-tail degradation.

xDNA2 is not important for the unwinding of DNA ends

Yeast DNA2 is both a nuclease and a helicase. While
Xenopus DNA2 displays no helicase activity in vitro, this
might be similar to the exonuclease activity in that a

stimulatory factor for the helicase activity is missing. We
thus examined the potential effect of xDNA2 on DNA end
unwinding. The substrate for the unwinding assay was a
48 bp oligonuleotide duplex, with one strand carrying a
biotin moiety at its 50-end and the complementary strand
carrying 24 normal nucleotides in the 50 half followed by
21 thionucleotides (resistant to nuclease digestion) in the 30

half and 32P-dA near the 30-end (Figure 5A). The oligonu-
cleotide duplex was first bound onto Streptavidin mag-
netic beads and then incubated with xDNA2-depleted
or mock-depleted NPE. End processing could only pro-
ceed from the 50-end of the thio-strand and then stall at
thionucleotides (22). Without unwinding, the partially
degraded thio-strand would have remained annealed to
the biotin strand and thus bound to the beads. With
unwinding, in contrast, it would have been released from
the beads. In mock-depleted NPE, the partially degraded
thio-strand was as expected unwound and released into
the supernatant (Figure 5B). In xDNA2-depleted NPE,
the thio-strand was also efficiently released into the super-
natant, suggesting that xDNA2 depletion did not affect
unwinding. Notably, the released oligo migrated much
slower than the oligo released in mock-depleted NPE.
This again showed that in the absence of xDNA2, the
unwound ssDNA was not efficiently degraded. Together,
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these data indicated that xDNA2 is not required for the
unwinding of dsDNA ends.

xDNA2 is important for SSA

Strand-specific end processing is the initiating step for
homology-dependent DSB repair. While the above data
showed that xDNA2 plays an important role in DNA
end processing, it is unclear if this function contributes to
DSB repair or is merely for degrading DNA. To address
this question, we determined the effect of xDNA2 deple-
tion on SSA, which could be efficiently reconstituted in
NPE (21). The substrate for SSA was a 5.6 kb linear
DNA with two 1.2 kb direct repeats at the ends. SSA in
NPE occurs preferentially intermolecularly, resulting in
dimers with only one repeat (as opposed to two repeats
by NHEJ) retained at the junction. NHEJ is also active
and produces circular monomers (both supercoiled and
relaxed) and dimers. Multimers composed of more than
two molecules are also produced after longer incubation
by continued intermolecular repair. As shown in Figure 6,
depletion of xDNA2 caused a dramatic reduction in the
formation of SSA repair products. This effect was specific
as it could be complemented to a significant extent by the
addition of the purified xDNA2 protein (to �5% of the

endogenous level). For NHEJ products, there was no
reduction but a slight increase in dimer formation, presum-
ably because more DNA molecules were channeled to this
pathway. (The circular monomers migrated mostly as the
relaxed form in xDNA-depleted NPE, but this effect was
not reproducible.) Together, these data demonstrate that
the xDNA2-mediated end processing is coupled to the
downstream homology-dependent DSB repair pathway.

DISCUSSION

Previously, we have shown that dsDNA ends are pro-
cessed by a two-step mechanism (21). The end is first
unwound by a helicase, mainly xWRN in NPE, into 50

and 30 ssDNA tails in an ATP-dependent reaction. An
unknown 50!30 ssDNA exonuclease(s) then degrades
the 50 ss-tail in an ATP-independent reaction. The lack
of significant 30!50 ss- exonuclease activity in NPE
ensures that the 30 ss-tail remains as the final processing
product. This mechanism is remarkably similar to the
model that has been proposed for the E. coli RecQ/RecJ
proteins except that the exonuclease corresponding to
RecJ is unknown. In this study, we purified and identified
xDNA2 as one of the major 50!30 ssDNA exonucleases in
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Xenopus egg extracts. In a previous study, recombinant
xDNA2 displayed only a very low level of ssDNA exo-
nuclease activity (27). However, the difference between the
two studies is superficial because, as shown in this study,
the 50!30 ssDNA exonuclease activity is greatly stimu-
lated by RPA, which was not used in the previous study.
The role of xDNA2 in end processing was confirmed by
the immunodepletion experiments showing that in the
absence of xDNA2, end processing was significantly inhib-
ited. In addition, depletion of xDNA2 caused a dramatic
inhibition of SSA. Both defects could be complemented by
the purified xDNA2 protein. Mechanistically, xDNA
affects specifically the degradation of the 50 ss-tail but
not the unwinding of the DNA end. Functionally, the
xDNA2-mediated end processing is not merely for degrad-
ing DNA but rather coupled to homology-dependent DSB
repair. Taken together, these results indicate that, despite
the lack of significant sequence homology between
xDNA2 and RecJ, xDNA2 serves a function equivalent
to what has been postulated for the E. coli RecJ exonu-
clease in end processing (Figure 7).

Yeast DNA2 has both helicase activity and ssDNA
endonuclease activity, but only the nuclease activity is
essential for viability (28,29). It appears to participate in

Okazaki fragment maturation, telomere maintenance and
DNA DSB repair (30). There is strong evidence that
DNA2 and RecQ helicases interact functionally.
A double mutant of DNA2 and SGS1, the yeast RecQ-
type helicase, is conditionally lethal (31). Human WRN
and BLM are both able to complement the yeast DNA2
mutant (32,33). There is also evidence that DNA2 might
be involved in end processing. A double mutant of DNA2
and EXO1, which by itself has a certain albeit minor effect
on end processing, is lethal (34). In addition, in the fission
yeast S. pombe, DNA2 affects the 50!30 resection of
telomeres, which are essentially natural DSBs (35).
Interestingly, the intermediates in end processing and
Okazaki fragment maturation are both branched mole-
cules and in both cases it is the 50 ss-branch that is cleaved.
Previous studies have suggested that DNA2 is the nuclease
that cleaves long 50 branches sometimes generated during
Okazaki fragment maturation (36). Notably, in this capac-
ity, DNA2 does not act as a classical flap endonuclease
like FEN1 to cleave at the branch point but rather as an
exonuclease to shorten the 50 branch. This role for DNA2
is essentially the same as that in end processing. In light of
these observations, we conclude that our finding that
xDNA2 is important for DNA end processing in the
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Xenopus system is consistent with genetic studies in yeast
and the known mechanistic role of DNA2.

In summary, our biochemical studies in the Xenopus
system have suggested that xWRN and xDNA2 work in
sequence to execute the strand-specific end processing by
acting respectively in end unwinding and 50 ss-tail degra-
dation. While these two proteins appear to constitute the
basic mechanical components, they cannot be the only
proteins for end processing. Depletion of neither xWNR
nor xDNA2 led to a complete block to end processing,
suggesting that there might exist other helicases and
nucleases that could perform similar functions. In addi-
tion, WRN requires a 30 ss-tail to initiate unwinding, but
natural DSBs are expected to be blunt ended or nearly
blunt ended. This suggests that there might be other pro-
teins to load WRN to DSBs. One tantalizing possibility is
that the MRN complex, which can rapidly bind to DSB
ends, and Sae2/CtIP, which interacts with MRN, might
serve such a role in the early stage of end processing
(15,16,37). Potentially, MRN, in concert with other pro-
teins like Sae2/CtIP, might recruit WRN to DNA ends by
direct protein–protein interaction or by partially unwind-
ing ends to provide the landing pad for WRN (9,38). The
Xenopus system should provide an excellent opportunity
for the elucidation of the mechanistic roles of these pro-
teins and for the identification of additional proteins for
end processing.
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