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The proteins of the complement and coagulation systems are major transducing 
mechanisms of  p lasma whereby small initiating signals are amplified and  translated 
into biological events. T o  date, these systems have largely been studied in isolation, 
a l though interactions between them may  be expected. Indeed  the similarity of  
structure and mechanism of  inhibition o f  Cls and  Clr of  the complement  system (1) 
and  H a g e m a n  factor, Factor  XI ,  and  prekallikrein of  the intrinsic coagulat ion system 
(2) are so similar as to raise the possibility of  genetic reduplicat ion in their develop- 
ment.  Furthermore,  p lasma kallikrein has been shown to be capable  of  cleaving and  
act ivat ing both  Cls and  Clr  (3). 

In  the present study, we report  the ability of  kallikrein purified from rabbit  p lasma 
to generate chemotact ic  activity for rabbit  neutrophils  from rabbit  C5. T h e  study was 
p rompted  by previous reports that  h u m a n  kallikrein was directly chemotact ic  for 
h u m a n  neutrophils  (4), an observation that  we have not been able to confirm for the 
rabbit  system. T he  results suggest the existence of  a novel interaction between the 
H a g e m a n  factor and  complement  systems which may  have biological relevance. 

Materials and Methods 
Purified Proteins from Rabbit Plasma 
HAGEMAN FACTOR (HF).I HF and the two-chain, 80,000-M, form of activated HF (wHFa) 

were purified from rabbit plasma (Fig. 1). 2 
PREV~LLIKREIN (PK). PK was purified from citrated rabbit plasma in collaboration with 

Dr. William McGuire of the Research Institute of Scripps Clinic, La Jolla, Calif., by a three- 
step procedure. 

Step I. Solid-Phase Immunoabsorption of PK from Rabbit Plasma. An IgG fraction ofmonospecific 
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Fro. I. Proteins purified from rabbit plasma (used in these studies) analyzed by SDS-PAGE in the 
presence (R) and absence (NR) of ~-mercaptoethanol. Zymogen HF is a single polypeptide chain 
of 82,000 M,. HFa (enzyme) is dissociated into fragments of 52,000 and 28,000 M, in the presence 
of reducing agents. Residual native HF remains at 82,000 M~ in the presence of reducing agents. 
PK zymogen is a single polypeptide chain of 85,000 M,. Upon activation to kallikrein, the single 
polypeptide chain is cleaved into fragments of 55,000 and 35,000 Mr. High-M~ kininogen is a single 
polypeptide chain of 100,000 Mr in the presence and absence of reducing agents. Rabbit C5 is a 
two-chain disulfide-linked molecule of unreduced 180,000 Mr, which dissociates into chains of 
130,000 and 85,000 Mr in the presence of reducing agent. HF, PK and high-Mr kininogen are shown 
here on 7.5% SDS gels, whereas C5 is shown as a 5% SDS gel. 

goat-anti-rabbit PK was prepared by: (a) absorption of plasma with kaolin (25 mg kaolin/ml) 
incubated for 10 rain at 37°C and then centrifuged for 15 rain at 5,000 g to remove the kaolin; 
(b) dialysis of the kaolin-absorbed serum against 0.01 M phosphate buffer, pH 7.7, followed by 
absorption in batches using DEAE-cellulose (10 g/g protein) equilibrated in the above buffer; 
(c) concentration of the globulin fraction by precipitation with 50% ammonium sulfate and 
subsequent dialysis against 0.1 M phosphate buffer, pH 7.5. The IgG fraction thus produced 
contained no detectable goat kallikrein (<20 ng/ml), as measured by the chromogenic tripeptide 
assay. 

This IgG fraction in 0.1 M phosphate buffer, pH 7.5, was coupled to cyanogen bromide- 
activated Sepharose-4B (5) at a ratio of 5 mg of protein/1 g of Sepharose-4B. The washed 
beads were incubated overnight at +4°C with 5 mM diisopropyi fluorophosphate in water. 
The beads were rewashed and poured into a 2.5- X 30-cm plastic column to a bed height of 26 
cm. The column was washed with 5 M guanidine, followed by 0.1 M Tris buffer, pH 7.4, 
containing 1 M NaCI, 20 mM EDTA, 10 mM benzamidine, 0.05% hexadimethrene bromide 
(Polybrene; Aldrich Chemical Co., Inc., Milwaukee, Wis.) and 0.02% sodium azide. 

Citrated normal rabbit plasma (200 ml) was made 10 mM with benzamidine, 0.7 M with 
NaCI, 20 mM EDTA, 0.05% Polybrene, and 0.02% sodium azide. The plasma was run through 
the column at room temperature at a flow rate of 100 ml/h~ The column was washed with 10- 
column volumes of starting buffer and then eluted with 5 M guanidine (Sigma Chemical Co., 
St. Louis, Mo.). The fractions calculated to contain the initial guanidine step and one-column 
volume thereafter were pooled for the second step. 

Step 2. Ion-Exchange Chromatography on SP-Sephadex C-50. The pool from Step 1 (200 ml) was 
dialyzed against 0.1 M acetate buffer, pH 5.3, containing 0.04 M NaCl, 2 mM EDTA, 1 mM 
benzamidine, 0.05% Polybrene, and 0.02% sodium azide. 2 g of SP-Sephadex C50 (Pharmacia 
Fine Chemicals, Div. of Pharmacia, Inc., Piscataway, N. J.) hydrated overnight in the above 
buffer was poured into a siliconized 2.5- X 30-cm column. After two changes of dialysis, the 
pool was loaded at 40 ml/h. The column was washed with four-column volumes of starting 
buffer. A step elution was effected with 0.1 M acetate buffer, pH 5.3, containing 0.35 M NaC1 
(= 40 mS). 

Step 3. Affinity Chromatography on Concanavalin A-Sepharose. The pooled fractions containing 
PK (40 ml) were dialyzed against 0.1 M sodium phosphate buffer, pH 7.5, containing 1 M 
NaC1, 0.02% sodium azide, and 1 mM benzamidine. The dialyzed material was loaded at 3 
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ml /h  onto a 1.7-cm diameter siliconized glass column containing 6 ml of concanavalin-A 
Sepharose. The column was washed with 60 mi of the above buffer. Elution of PK was effected 
with the above buffer containing 0.5 M a-D-methyl glucoside at 2 ml/h. Analysis of the eluted 
protein from the above column by sodium dodecyl sulfate-polyacrylamide gel electrophoresis 
(SDS-PAGE) under both reducing and nonreducing conditions showed a single protein band 
with a molecular weight (Mr) of 83,000 (Fi~. 1). Assays of PK were performed by immunodif- 
fusion, using goat anti-rabbit PK antiserum. 

KALLXKREIN OENrRATIO~. Kallikrein wa:~ generated by incubating PK with a -HFa  in the 
following manner. PK (1 ml, 220 #g) was incubated with a -HFa  (50 #l, 10 #g) in the presence 
of 10 #1 2 M Tris buffer, pH 8.0, for 60 min at 37°C. The HFa was not removed from the 
kallikrein preparation, but constituted <1% of the protein present. The extent of proteolytic 
cleavage of prekallikrein as measured by SDS-PAGE (Fig. 1) varied between 58 and 94% in 
different preparations. The enzymatic activity of kallikrein in each preparation was measured 
colorimetrically using the tripeptide suhstrate N-Benzoyl-L-Pro-l:phe-L-arginine-p-nitroanalide 
(Bz-pro-phe-arg-pNA; Vega Biochemicals, Tucson, Ariz.) under the conditions described below. 
The calculated I~, t  value obtained for different preparations varied between 300 and 400 
rain -I. The PK purified in this manner showed a line of identity with rabbit PK purified by 
ion-exchange chromatography (6) and generously donated by Dr. Richard Ulevitch of the 
Research Institute of Scripps Clinic. 

HIOH-Mr KmINOOEN. High-Mr kininogen was purified from rabbit plasma by a three-step 
procedure. 

Step I. Solid-Phase Immunoabsorption of High-Mr Kininogen from Rabbit Plasma. Goat anti- 
rabbit high-Mr kininogen was coupled to Sepharose 4B as described for PK. Citrated normal 
rabbit plasma was passed over an anti-high-Mr kininogen-Sepharose 4B column and eluted 
with 5 M guanidine as described above. 

Step 2. DEAE-Sephadex A50 Ion-Exchange Chromatography. The pool from Step 1 (500 ml) was 
dialyzed against buffer containing 0.4 M Tris, 0.1 M succinic acid, pH 8.2, containing 40 mM 
NaCI, 10 mM benzamidine, 2 mM EDTA, and 0.02% sodium azide. This material was loaded 
onto a 2.5- × 30-era siliconized column containing 3 g of DEAE-Sephadex AS0 equilibrated in 
the starting buffer. The column was washed with five-column volumes of starting buffer and 
eluted with a gradient consisting of 150 ml of the starting buffer in the proximal chamber and 
150 ml of 0.3 M Tris, 0.12 M suecinic acid, pH 7.4, containing 0.3 M NaCI, 2 mM EDTA, 10 
mM benzamidine, and 0.02% sodium azide. The high-Mr kininogen eluted in the distal shoulder 
of the protein peak, whereas low-M, kininogen eluted in the proximal shoulder of the peak. 

Step 3. SP-Sephadex Ion-Exchange Chromatography. The pool containing high-Mr kininogen 
from Step 2 (70 ml) was dialyzed against 0.1 M acetate buffer, pH 5.3, containing 75 mM 
NaCI, 10 mM benzamidine, 2 mM EDTA, and 0.02% sodium azide. This material was loaded 
onto 2 g SP-Sephadex C50 equilibrated in the above buffer. The column was washed with 10- 
column volumes of the above buffer with the NaCI increased to 60 mM, and the high-Mr 
kininogen was then eluted with a salt gradient to 0.4 M NaCI in 0.1 M acetate buffer, pH 5.3. 
The eluted material analyzed by SDS-PAGE in the presence and absence of reducing agents 
revealed a single predominant protein band with an Mr of 100,000 (Fig. 1). This material had 
a specific clotting activity of 6.5 clotting U/rag, where 1 U is the amount of rabbit high-Mr 
kininogen present in 1 ml of plasma when assayed in human high-Mr kininogen-deficient 
(Fitzgerald) plasma. 

C5. C5 was purified from normal rabbit plasma by euglobulin precipitation (pH 5.0), and 
ion-exchange and gel-filtration chromatography as previously described (7). Rabbit  C5 thus 
prepared was homogeneous on SDS-PAGE (Fig. 1) and contained no detectable C3 by 
functiona_~l or immunoehemical analysis. 

EAC423 Preparation. Sheep erythrocytes bearing the classical pathway C5 eonvertase were 
prepared from human complement components by the method of Rapp and Borsos (8). 

Chromogenic Tripeptide Assay. The synthetic ehromogenic tripeptide Bz-pro-phe-arg-pNA 
HC1 was dissolved in 0.1 M Tris, pH 8.3, containing 0.05 NaCI and 0.02% sodium azide at a 
final concentration of 0.1 mg/ml.  The sample to be assayed (2-5 #1) was added to a 300-/LI 
volume of substrate in a cuvette and the change in absorbance was measured at 405 nM. The 
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values for K~at were calculated using a molar  extinction coefficient of 10,000 M -x cm -~ at 405 
nM. 

Neutrophil Function Assays. These were performed using leukocytes isolated from New Zealand 
White rabbits as previously described (9). The  modified Boyden assay was performed using the 
two-filter technique of Keller et al. (10). The  leading front method was performed according to 
Zigmond and Hirsch (11). Each sample was measured in triplicate and the results were 
expressed as the mean :t: 1 SD from the mean. For each assay positive (5% zymosan-activated 
rabbit serum [ZARS] and negative (Hanks' balanced salt solution-bovine serum albumin 
[HBSS-BSA]) controls were incorporated. The  Keller assay and leading front assays were 
sensitive to 5 ng and 0.2 ng of human G5a, respectively (9). 

Kinin Bioassay. This was performed using the estrogen-sensitized rat uterus assay as previ- 
ously described (12). 

SDS-PAGE. Analysis by SDS-PAGE was performed using cylindrical gels and the Weber- 
Osborne system (13). Gels were stained for protein with Goomassie Blue dye or cut into 1.2-ram 
slices and counted for 1~nI on an automated T-counter (Searle Radiographics, Inc., Des Plaines, 
Ill.). 

Miscellaneous. Protein determinations were performed by the method of Lowry et al. (14) 
using BSA (5 times recrystallized; Reheis Chemical  Co., Chicago, Ill.) as a standard. Radiola- 
beling was performed with 125I using the chioramine T method (15). Neutrophil  enzyme release 
was measured as described in reference 16. 

Results 

Chemotactic Activity Generated from C5 by Plasma Kallikrem. W h e n  r a b b i t  C5  was  

i n c u b a t e d  w i t h  r a b b i t  p l a s m a  kal l ikre in ,  c h e m o t a c t i c  ac t iv i ty  c o u l d  easi ly be  d e m -  

o n s t r a t e d  ( T a b l e  I). In  con t ras t ,  no  c h e m o t a c t i c  ac t iv i ty  c o u l d  be  d e m o n s t r a t e d  w h e n  

the  z y m o g e n  P K  was  tes ted  w i t h  C5  u n d e r  i den t i ca l  condi t ions .  C h e m o t a c t i c  a c t i v i t y  

was also g e n e r a t e d  w h e n  r a b b i t  C5  was i n c u b a t e d  w i t h  a - H F a ,  t rypsin ,  ( T a b l e  I), o r  

E A C 4 2 3 .  N o  c h e m o t a e t i c  a c t i v i t y  was p r o d u c e d  w h e n  C5  was  absen t  f rom the  

i n c u b a t i o n  mix tu res ,  o r  w h e n  in t ac t  C5  a l o n e  was  assayed.  

Direct Chemotactic Effect of Plasma Kallikrein. Because  p l a s m a  ka l l ik re in  has  b e e n  

r e p o r t e d  to be  d i r ec t ly  c h e m o t a c t i c  for n e u t r o p h i l s  (4), we inves t i ga t ed  the  ab i l i t y  o f  

r a b b i t  p l a s m a  ka l l ik re in  a lone  to a t t r a c t  r a b b i t  neu t roph i l s .  As s h o w n  in T a b l e  II ,  

ove r  a dose - range  f rom 2.5 × 10-7-10 - l °  M kal l ikre in ,  no  d e t e c t a b l e  c h e m o t a c t i c  

TABLE I 

Reagent 
Chemotactic activity (celIs/HPF* ± 1 SD) 

No C5 Added C5 

Buffer 2.4 ± 2.2 2.0 ± 0.9 
Kallikrein 0.6 ± 0.4 50.1 + 3.8 
PK 0.2 ± 0.3 1.8 ± 0.4 
a-HFa 1.5 ± 2.3 25.8 ± 7.7 
Trypsin 1.5 ± 1.2 20.4 ± 1.5 
EAC423 3.0 :k 0.9 18.2 ± 2.4 
ZARS 87.8 ± 23.6 - -  

Chemotactic ac t iv i t~as  generated when kallikrein (1.4 pg), a-HFa (2.4/~g), trypsin 
(0.2/zg), and EAC423 cells (1 x 107) were incubated with C5 (10 gg). All incuba- 
tions were for 20 min at 37°C with the exception of trypsin, which was for 2 min at 
22°C. The reaction was stopped with SBTI (40 pg) added for 5 min at 22°C. ZARS 
(5%) was used as a positive control. Each assay was performed in triplicate. 

* High power field. 
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TABLE II 
Effect of Plasma Kallikrein upon Neutrophil Chemotaxis 

Plasma Boyden chamber Leading front 
kallikrein (celIs/HPF* 3= 1 SD) (distance 4- I SD) 

M 

2.5 × 10 -7 1.6 + 1.2 14.3 4- 0.6 
10 -7 3.2 4- 2.0 

2.5 × 10 -8 0.7 4- 0.1 23.0 4- 4.6 

10 -8 0.6 4- 0.2 

2.5 × 10 -8 1.5 4. 1.6 26.7 4. 3.8 
10 -9 0.6 "4- 0.6 

2.5 × 10 -1° 27.7 4. 4.9 

Buffer control 0.8 4. 0.4 29.3 4. 5.1 
5% ZARS 87.8 "4- 4.0 145.0 4. 20 

Plasma kallikrein at the above concentrations was tested for chemotactic 
activity in the presence of HBSS containing BSA (20 mg/ml)  by both the 
modified Boyden assay and the leading front method (n = 3). 

* High power field. 

activity was observed using the modified Boyden chamber (see Materials and Meth- 
ods). This was found consistently in four experiments using two different kallikrein 
preparations. Furthermore, using the more sensitive leading front method (see Mate- 
rials and Methods), again, no chemotactic activity could be detected (Table II) in 
two experiments. 

Enzymatic Activity of the Rabbit Plasma Kallikrein 

To confirm that the kallikrein used in these experiments was biologically active, 
the following assays were performed. 

TRIPEm'm~. HYDROLYSIS. The rate of hydrolysis of the synthetic substrate Bz-pro- 
phe-arg-pNA was measured spectrophotometrically. The calculated K~t value ranged 
from 300 to 460 rain -x under the conditions of assay (see Materials and Methods). 

PROTEOLe'rlc CLEAVAGe OF m',DIOLAneLED SUSSTRATeS. The ability of the kallikrein 
to cleave its natural substrates, HF and high-Mr kininogen, was measured, x25I-HF 
(200 #g, 0.2 #Ci) or a25I high-Mr kininogen (250 #g, 0.2 #Ci) were incubated with 
dilutions of kallikrein and PK in the presence of 0.1 M Tris, pH 7.4, and BSA (1 mg/  
ml). Typical cleavage patterns are shown in Fig. 2, where 12SI-HF was cleaved into 
fragments of 28,000 and 50,000 Mr, and 12sI high-Mr kininogen was cleaved to one 
major fragment containing 12hi with an Mr of 70,000. 

KINtN OEN~TmN. The ability of kallikrein to release biologically active kinin 
from rabbit high-Mr-kininogen was measured using an estrogen-sensitized rat uterus 
bioassay system (Table III). 

As confirmed by these studies, the kallikrein was capable of releasing biologically 
active kinin from high-Mr kininogen in association with proteolytic cleavage of the 
molecule. In contrast, PK did not cleave high-Mr kininogen and did not generate 
kinin. However, if a-HFa was incubated with PK, the PK was activated with 
subsequent release of kinin from high-Mr kininogen. We conclude that all the proteins 
used in these studies were capable of biological activity and that the kallikrein 
preparation was indeed kallikrein. 

Chemotactic Effect of HF and High-Mr Kininogen. Because kallikrein appeared not to 
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1251-High M r Kininogen 
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FI6. 2. Radioactivity profiles from reduced SDS-PAGE of ~25I-HF and l~I-high-Mr kininogen 
incubated with PK or with kallikrein. Kallikrein caused proteolytic cleavage of high-Mr kininogen 
into a major 125I-containing fragment of 70,000 M,. Kallikrein caused cleavage of I~I-HF into 
fragments of 52,000 and 28,000 Mr. 

T A B L E  III 

Kinin Generation by Purified Components of the Rabbit HF System 

Kallikrein PK a-HFa High-Mr Response Bradykinin 
kininogen time equivalents 

0.9 #g 0.91~g 1.8 #g 71zg s ng 
+ -- - + 3.0 38.0 
- + - + N R  < 4  

- - + + N R  < 4  

- + + + 3.5 30.4 
+ - - - NR <4 
- -  + + - N R  < 4  

Purified proteins of the rabbit HF system were incubated together for 10 min at 37°C 
in the presence of 0.05 M Tris buffer containing BSA (1 mg/ml) in a total volume of 
80/~1. 100/~1 of hot (100°C) saline was added to each tube and the samples were 
boiled for 4 min before the assay using an isolated estrogen-sensitized rat uterus (see 
Materials and Methods). NR, no response. 

h a v e  a n y  c h e m o t a c t i c  ac t iv i ty ,  t h e  n a t u r a l  ka l l ik re in  s u b s t r a t e s  in t h e i r  a c t i v a t e d  f o r m  

( a - H F a  a n d  k in in - f r ee  h i g h - M r  k i n i n o g e n )  were  t e s t ed  for t he i r  ab i l i ty  to a t t r a c t  cells. 

a - H F a ,  t h e  t w o - c h a i n ,  80 ,000-Mr  f o r m  o f  a c t i v a t e d  H F ,  was  t e s t ed  over  a d o s e  
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range of 7 × 10-7-7 × 10 -t° M using the Boyden assay system. No chemotactic 
activity was observed (data not shown). 

Rabbit high-Mr kininogen (220 #g) was preincubated with rabbit kallikrein (20 #g) 
for 30 min at 37°C in the presence of 0.1 M Tris, pH 7.4. No chemotactic activity 
could be detected in this incubation mixture over a dose range of 2.5 × 10-7-2.5 X 
10 -x° M high-Mr kininogen (data not shown). 

We conclude that neither kallikrein nor HFa  nor high-Mr kininogen is capable of 
attracting rabbit neutrophils under the conditions of study. 

Finally, PK (40 #g/ml), HF (22 #g/ml), a-HFa (3 #g/ml), and high-Mr kininogen 
(55 #g/ml) were incubated together for 20 min at 37°C in the presence of BSA (1 
mg/ml).  Activation of protein was confirmed by measurement of kinin generation by 
bioassay. No chemotactic activity could be demonstrated using the Boyden method. 
We conclude that no detectable chemotactic fragments were generated during acti- 
vation of these proteins. 

Dose-Response Curve of Generation of Chemotactic Activity from C5 by Kallikrein. A dose- 
response curve of rabbit plasma kallikrein incubated with rabbit C5 (at a final 
concentration of 100 #g/ml) demonstrated the production of chemotactic activity by 
kallikrein down to a level of ~ 1 #g/ml (Fig. 3) (the physiological concentration of PK 
in rabbit plasmas is ~25 #g/ml). Thus, plasma kallikrein at physiological concentra- 
tion appears to be capable of generating chemotactic activity from C5. 

As indicated in Table I, a -HFa also generated chemotactic activity from C5. A 
dose-response curve for a-HFa indicated that a-HFa was about one-third as active as 
kallikrein in this respect. 

Kallikrein-blocking Studies. To establish whether the kallikrein effect on C5 could be 
due to a contaminating enzyme, blocking studies were performed with anti-kallikrein 
IgG and with soybean trypsin inhibitor (SBTI). Rabbit  kallikrein (20 #g/ml) was 
incubated with anti-PK or anti-HF antisera at a final concentration of 8 mg/ml  for 
20 min at 22°C in the presence of 0.1 M Tris buffer, pH 7.4. The kallikrein 
preparations were then assessed for their ability to (a) hydrolyse Bz-pro-phe-arg-pNA; 
(b) generate kinin from purified high-Mr kininogen as measured by the rat uterus 
bioassay; and (c) generate chemotactic activity from C5. For each assay system, the 
amount of the kallikrein-anti-HF preparation (control) used was on the upper portion 
of the dose-response curve. The response of the kallikrein-anti-PK preparation was 

Ceils 4(] 
per 3C 
HPF 
+ISO 

2C 

1C 

1 10 1()0 
KalUkndn (/aglml) 

FIG. 3. Dose-response curve for kallikrein-induced chemotaxis in the presence of C5 (10 #g). The  
final incubation volume was 100/.tl in the presence of 0.05 M Tris, pH 7.6, containing 0.5 m g / m l  
ovalbumin.  After incubation for 20 min at 37°C, SBTI (40 #g) was added for 5 min at 22°C before 
chemotaxis assay. 
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compared with this value and expressed as the percent of the control. As shown in 
Fig. 4, the anti-PK IgG blocked the tripeptide hydrolysis response by only 26%, 
whereas the chemotaxis and kinin generation responses were blocked by 41 and 68%, 
respectively. This difference in blocking effect by antibody was reproducible and was 
not effected by changing the ratio of kallikrein to anti-PK. It probably reflects greater 
steric hindrance by the anti-PK IgG-kallikrein complex for the larger substrates and 
possibly the requirement for two clips to liberate kinin from kininogen. 

Kallikrein (5 #g) was also incubated with various doses of STBI (2.9, 1.5, and 0.7 
#g) to generate inactive SBTI-kallikrein complexes in varying proportions such that 
~xA, ½, and a~ of the kallikrein molecules would remain active. These partially 
inhibited kallikrein preparations were compared with a noninhibited control for their 
ability to (a) hydrolyse the tripeptide Bz-pro-phe-arg-pNA; (b) generate bradykinin 
from purified high-Mr kininogen; and (c) generate a chemotactic response from C5. 
As shown in Fig. 5, the ability of SBTI to inhibit kallikrein activity on three different 
substrates was similar, indicating that the kallikrein-induced chemotactic response 
was due to kallikrein itself and not due to a contaminating enzyme. 

Nature of the Chemotactic Substance Generated from C5 by Kallikrein 

SECRETION OF •-GLUCURONIDASE FROM NEUTROPHILS. C 5 a  is capable of causing 
specific release of granular contents from cytochalasin B-treated neutrophils (9). To 
determine whether kallikrein-treated C5 generated a fragment capable of causing 
specific release as well as chemotaxis, the following experiment was performed. 

Isolated rabbit neutrophils were suspended in HBSS in the presence of BSA (0.25%). 

IO0 

80 

-~ 6O 

~ 40 

2O 

0 

Tripgptide Hydrolysis 

1 
Anti-Anti- 
HF PK 

Kinin 
Chemotaxis Geflefation 

Anti-Anti- Anti-Anti- 
HF PK HF PK 

Fzc. 4. Comparison of the effect of anti-PK IgG and anti-HF IgG upon the ability of kallikrein to 
(a) hydrolyze the tripeptide Bz-pro-phe-arg-pNA; (b) generate chemotactic activity from C5; and 
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Aliquots containing 4 X l06 neutrophils were incubated for 5 min at 37°C with 
cytochalasin B (5/lg/ml prepared at 5 mg/ml  in dimethyl sulfoxide). The cells were 
then exposed to C5 (25 #g), which had been preincubated for 120 min at 37°C either 
with buffer, kallikrein (550 ng), EAC423 (5 × 107 cells), or trypsin (300 ng), after 
which SBTI (1 #g) was added to each incubation mixture and allowed to stand for 5 
min at 22°C. Purified human C5a (15 ng) (generously donated by Robert O. Webster, 
National Jewish Hospital and Research Center, Denver, Colo.) was used as a positive 
control. The release of a granular enzyme,/~-glucuronidase, and a cytosol enzyme, 
lactic dehydrogenase (LDH), was measured as previously described (16, 17) after 30 
rain incubation with the stimulus. No significant release of LDH occurred (<5% of 
total releasable by detergent), indicating that no cell lysis had occurred. The base-line 
release of~8-glucuronidase with C5 alone after 120 rain at 37°C was 9.8% of the total 
enzyme releasable by detergent lysis from an equivalent number of cells. In contrast, 
incubation of C5 with kallikrein, EACA23 cells or trypsin resulted in 45.3, 51.4, and 
49.4% ~8-glucuronidase release, respectively. Purified human C5a caused 53.4% release. 
Thus kallikrein, like EAC423 cells and trypsin, generated from C5 a factor that 
caused rabbit neutrophils to release a specific granular enzyme. 

EFFECT OF CARBOXYPEPTIDASE N. Carboxypeptidase N cleaves the C-terminal 
arginine from human C5a to generate C5a des arg, a molecular species with 100-fold 
less secretogogue activity than C5a (9). To determine whether the chemotactic factor 
generated from C5 by plasma kallikrein was susceptible to carboxypeptidase N, the 
following experiment was performed. Kallikrein or trypsin was incubated with C5 
under the conditions described above. Human C5a and the rabbit C5-kallikrein and 
C5-trypsin incubates were treated for 5 min at 22°C with 1 mg SBTI to inhibit the 
enzymes and then incubated with or without carboxypeptidase N (endopeptidase- 
free; Worthington Biochemical Corp., Freehold, N. J.), 1% carboxypeptidase N (wt/ 
wt) in 1% NaHCO3, pH 7.0, for 15 min at 37°C. The ability of human C5a and the 
C5-kallikrein and C5-trypsin incubates to release fl-glucuronidase in the absence of 
carboxypeptidase N were 64, 61, and 60% of the total detergent-releasable enzyme, 
respectively. After incubation with carboxypeptidase N, the respective values were 18, 
25, and 16%. Thus, carboxypeptidase N partially inhibited the specific release of fl- 
glucuronidase from neutrophils by the kallikrein C5 incubate. Furthermore, the extent 
of inhibition was similar to that seen for carboxypeptidase-treated human C5a. 

C L E A V A G E  FRAGMENTS OF C5 GENERATED BY KALLIKREIN.  Studies were performed to 
determine the size of cleavage fragments generated from C5 by incubation with 
kallikrein. Fragments of C5 were visualized by both Coomassie Blue staining and 
autoradiography of 125I-C5 before and after incubation with kallikrein. Analysis of 
the cleaved proteins in the presence and absence of reducing agents was performed on 
exponential gradient (8-20%) acrylamide gels in the presence of SDS. In the absence 
of reducing agents, a single cleavage fragment was consistently seen by autoradiog- 
raphy with an apparent molecular weight of ~14,000. In the presence of reducing 
agents, only the a-chain of rabbit C5 appeared to be cleaved when analysed both by 
autoradiography and stained gels. In the presence of reducing agents, fragments were 
observed with apparent molecular weights of 50,000, 34,000, and 25,000 in addition 
to the 14,000-Mr fragment. 

These findings indicate that plasma kallikrein can release a 14,000-Mr fragment 
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from C5 and that the C5 molecule may also be cleaved by kallikrein at additional 
sites. The 14,000-Mr fragment could be a chemotactic C5a-like molecule. 

Generation of Chemotactic Activity in Kaolin-activated Plasma. Addition of kaolin to 
plasma results in activation of the HF system with consequent kallikrein activation. 
Previous studies have reported both that chemotactic activity is (4) or is not (18) 
generated during kaolin activation of plasma. To resolve this discrepancy, rabbit 
plasma (containing 0.38% sodium citrate) was activated with kaolin (10 mg/ml  final 
concentration, 10-min incubation at 37°C) under conditions that activate >70% of 
PK to kallikrein. As a negative control, citrated plasma was used, and as a positive 
control, citrated plasma was activated with zymosan. Each plasma was assayed for 
chemotactic activity in triplicate. The results are shown in Table IV. Although there 
was a consistent trend for kaolin-activated plasma to contain more chemotactic 
activity than control plasma, this was only statistically significant when low concen- 
trations of plasma were used. These results and other studies consistently indicated 
that kaolin-activated plasma tends to contain more chemotactic activity than control 
plasma but much less chemotactic activity than zymosan-activated plasma. However, 
when kaolin was added to zymosan-activated rabbit plasma at a final concentration 
of 50 mg/ml,  the chemotactic activity was reduced from 58.7 :t: 10.3 to 3.5 zt: 1.6 (n 
-- 3, P < 0.01). Thus, at high concentrations kaolin blocks detectable chemotactic 
activity, probably by binding positively charged C5a to the negatively charged kaolin 
surface. 

Therefore, although the assessment of chemotactic activity in kaolin-activated 
plasma is complicated by the probable binding of C5a to kaolin, the chemotactic 
activity of plasma did appear to increase after incubation with kaolin. 

Discussion 

Previous studies using partially purified preparations of human plasma kallikrein 
have indicated that kallikrein itself might be directly chemotactic for neutrophils (4, 
19-21). This observation is surprising, because no other enzyme is known to have 
direct chemotactic activity. In particular, trypsin, with its ability to hydrolyse peptide 

TABLE IV 
Chemotactic Activity in CeUs/HPF* 

Plasma con- Control plasma, Kaolin-activated Zymosan-activated 
centration plasma, (mean ± 1 plasma, (mean ± 1 

used (mean + 1 SD) SD) SD) 

% 

0.5 3.2 1.8 5.5 0.1~ 71.3 38.2~: 
1.0 3.1 1.5 4.9 0.8 77.4 20.9{} 
5.0 4.5 2.4 8.4 2.2 107.6 25.9{} 

10.0 5.0 1.6 5.6 1.7 103.1 21.6{} 

Chemotactic activity present in plasmas after incubation alone or with kaolin (5 
mg/ml)  or zymosan (5 mg/ml )  for 10 rain at 37°C. Each sample was tested in 
triplicate as described in Materials and Methods. Section marks indicate indicate 
the degree of significance between the treated and control plasmas as indicated by 
a paired t test. 

* High power field. 
1: P < 0.05. 
§ P <  0.01. 
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bonds adjacent to positively charged residues in a rather unrestricted fashion, is not 
itself chemotactic. This contrasts with the fact that the trypsinlike arginine esterase 
plasma kallikrein appeared to require enzymatic activity for its chemotactic activity 
(4). 

The findings from this study, using highly purified and well characterized proteins 
and cells of rabbit origin, indicate that rabbit plasma kallikrein is not chemotactic. In 
addition, HF, HFa, high-Mr kininogen, activated high-Mr kininogen, and PK were 
not chemotactic alone or when incubated together so that activation occurred in the 
incubation mixture. Thus, activation of the purified proteins of the HF system did 
not generate a chemotactic fragment that was detectable under the conditions 
employed in this study. 

However, plasma kallikrein was capable of producing a chemotactic effect if C5 
was included in the incubation mixture. Plasma kallikrein at concentrations as low as 
1 #g/ml  appeared to be capable of generating a chemotactic effect from C5 when the 
latter was present at physiological concentrations (100 #g/ml). It is unlikely that this 
effect was due to a contaminating protease that was not detected in the kallikrein 
preparation by SDS or alkaline gel analysis, because specific anti-kallikrein IgG 
inhibited kallikrein-mediated kinin generation and kallikrein-mediated chemotaxis ~o 
a similar extent. The finding that the antibody only partially inhibited both effects 
provides stronger evidence that the same enzyme was involved. Furthermore, SBTI 
also inhibited the kinin-generating, chemotactic, and tripeptide-hydrolysing effects to 
the same extent. We conclude that the chemotaxis generation was due to the action 
of plasma kallikrein on C5. 

The nature of the chemotactic substance generated from C5 by kallikrein appeared 
to be similar to C5a. Thus, it was chemotactic, it stimulated fl-glucuronidase release 
from cytochalasin B-treated neutrophils, it was sensitive to carboxypeptidase N 
digestion, and its activity was associated with the generation of a low-Mr fragment 
(-14,000) from C5. In addition, the amount ofchemotactic and secretagogue activity 
generated from C5 by kallikrein was consistent with calculations of the amount of 
C5a activity that could be released from the quantity of C5 in the initial incubation 
mixture. Furthermore, kallikrein, like trypsin, is an arginine esterase and the C- 
terminal amino acid of both human and porcine C5a is arginine (22). From the above 
considerations, it seems likely that C5a can be released from rabbit C5 by plasma 
kallikrein. 

The potential importance of kallikrein in liberating CSa from C5 in vivo is not yet 
known. However, during tissue injury, substances such as bacterial lipopolysaccharides 
(23), collagen and elastin (24-26), basement membrane (27), and sodium urate and 
pyrophosphate crystals (28) may act as negatively charged surfaces upon which 
assembly and activation of the molecules of the HF system can occur (29). Damaged 
endothelial cells contain an enzyme capable of directly activating HF (12). Under 
these conditions, kallikrein could be generated that might then release C5a from C5. 
The importance of the capacity of C5a to bind to negatively charged substances, 
thereby creating a stable surface-bound gradient for orientation of migrating neutro- 
phils, has previously been emphasized (30). Thus, it is not surprising that negatively 
charged agents, such as kaolin, used to activate the HF system in the laboratory, 
should also have the capacity to bind C5a. Although this fact makes the measurement 
of CSa in the presence of a kallikrein-generating system in plasma more difficult, it 
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may reflect the importance of exposure of negatively charged substances such as 
basement membrane,  collagen, or elastin during tissue injury. It is possible that these 
negatively charged substances may not only allow activation of the HF system with 
kallikrein generation, but may also bind C5a locally generated by kallikrein with 
consequent effects on vascular permeability and attraction of two major effector cells 
of inflammation: neutrophils and macrophages (31-34). 

There remains the apparent  discrepancy between the findings described in this 
study using rabbit  proteins and previous observations using human proteins (4, 19- 
21). One possible explanation for this discrepancy would be that human leukocytes 
have a membrane-associated C5-9 complex (35). H u m a n  kallikrein might therefore 
release C5a from membrane-bound C5 and thus appear  to be chemotactic in the 
assay system. It is possible that the concentrations of rabbit  kallikrein used in this 
study were not sufficient to observe this effect with rabbit leukocytes. 

S u m m a r y  

Rabbi t  plasma kallikrein incubated with rabbit  C5 resulted in the generation of 
chemotactic and secretagogue activity for rabbit neutrophils. This effect on C5 
appeared to be due to kallikrein itself and not to a contaminating enzyme, because it 
could be inhibited by anti-kallikrein IgG or by soybean trypsin inhibitor to the same 
extent that kinin generation by the same kallikrein preparation was inhibited by these 
agents. The  chemotactic response was consistent with the generation of a C5a-like 
peptide from C5 because the effect could be partially inhibited by carboxypeptidase 
N and was related to the generation of a small (~ 14,000 mol wt) fragment of C5. 

No direct chemotactic response was detectable for kallikrein, activated Hageman 
factor, high-molecular weight kininogen, or intact C5. Incubation of kallikrein, high- 
molecular weight kininogen, and Hageman  factor together, so that activation of all 
three proteins occurred, did not result in the generation of detectable chemotactic 
activity. 

We wish to acknowledge the skilled technical performance of the chemotaxis assays by Bettina 
Zanolari and Pamela J. Keeling, and the constructive secretarial help of Betty Goddard. 
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