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a b s t r a c t 

Wireless security research using Radio Frequency (RF) data is complex and costly, often requiring expensive 

equipment and extensive offline processing. To make wireless research more accessible, we have integrated 

RF signal features with the existing IEEE 802.11 frame layer 2/3 data using the Software Defined Networking 

(SDN) paradigm. Combining low-cost RF hardware, a novel SDN processing method, and unique RF processing 

architecture has resulted in a framework that enables advanced wireless security and control research at a 

significantly lower cost. The method for enabling such functionality consist of the following stages: 

• During the demodulation process, extract Carrier Frequency Offset (CFO) and Pilot Sub-Carrier Offset from the 

Frequency Offset Correction section, in addition to the Vector Magnitude from the equalization section. 
• Append the new RF information to the wireless frame buffer and pass it to the SDR kernel driver module to 

further process before transferring them to a P4 application via a single API instantiation. 
• Compile a custom P4 application that combines the new RF features alongside higher OSI layer features to 

perform advanced networking, security, or control plane operations. 
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Specifications Table 

Subject Area: Engineering 

More specific subject area: IEEE 802.11 Wireless Networking 

Method name: Extraction of IEEE 802.11 RF features for use in Software Defined Networking applications 

Name and reference of 

original method 

Openwifi: A free and open-source IEEE802. 11 SDR implementation on SoC [1] . 

OpenOFDM [2] . 

WP4: A P4 programmable IEEE 802.11 Data Plane [3] . 

Resource availability Original Openwifi Source Code [4] . 

Modified Openwifi Source Code [5] . 

P4 Compiler Source Code [6] . 

WP4 Extension Source Code [7] . 

Analog Devices ADRV9361-Z7035 Evaluation Board [8] . 

Method details 

The native SDN model has limited applicability in wireless networking due to its pipeline’s fixed

packet header format [9] . The OpenFlow protocol [10] , which is the most common SDN approach,

enforces a strict group of header fields based on the IEEE 803.2 Ethernet standard. Thus, any usage

within a wireless networking environment has been limited to the underlying wired network and 

not at the IEEE 802.11 frame level without data plane customizations [11] . Consequently, the SDN

paradigm could not provide the same benefits to wireless networks as it has in data centers. This

new method has addressed these shortcomings in a novel way, facilitating several new SDN research

areas associated with wireless network security, useability, and management. 

This original approach allows a P4 [6] program to use IEEE 802.11 RF information to create more

advanced, targeted networking algorithms. P4 is a domain-specific programming language designed 

for creating custom SDN packet processing pipelines. P4’s strength lies in its protocol independence,

enabling header fields to be defined by the end-user, unlike OpenFlow. In developing this new

method, the goal was to extract, consolidate, and transfer specific RF data from an IEEE 802.11a/g

frame for further processing using a P4 program explicitly written to process these new data types.

This approach enables researchers to combine RF data with existing MAC layer information to develop

new device identification, denial-of-service (DOS) attack detection and service optimization algorithms 

[12] . 

The selection of a test platform that replicated the performance and functionality equivalent 

to a Wireless Access Point (WAP) was essential to ensure an accurate evaluation of capabilities

suitable for domestic applications. The Analog Devices ADRV9361-Z7035 [8] was chosen because it 

delivers the required functionality, supports the Openwifi framework [1] and is relatively low-cost. 

The device utilizes a Xilinx Zynq 7035-2L System-on-a-Chip (SoC) containing a Dual-core ARM Cortex- 

A9 processor operating at 800 MHz and a 275K logic cell Kintex-7 FPGA. Combined with 1 GB DDR3

RAM, 256 MB of flash memory, Gigabit Ethernet, USB2 and UART interfaces, the device is equivalent

to a mid-range domestic wireless router. 

When investigating which RF features to include, it was found that those requiring compensation

due to device manufacturing variations or environmental factors tended to be the best candidates. For

example, Carrier Frequency Offset (CFO), caused by differences in local oscillator frequencies, has been 

shown to be a reliable identifier [13] . Other features such as Carrier Phase Offset (CPO) and Carrier

Frequency Amplitude (CFA) also show strong differential values and therefore facilitate the ability to 

identify individual devices or behaviors [14] . While only modulation features may be available, there

is still the entire PHY layer pipeline to consider, from sample decimation to modulation decoding. The

AD9361 utilizes the OFDM module within the FPGA with a 32-bit serial I/Q data stream composed of

16-bit in-phase (I) and 16-bit quadrature (Q) samples. 

Although OpenOFDM [2] provides some fundamental values in a raw format, such as the 

Received Signal Strength Indicator (RSSI) and timestamps, other features require new extraction 

and computation methods. Several new functions have been added as Verilog code in the FPGA

and the remainder in the SDR Linux kernel module. The capabilities of each component were

used to determine where the new code should reside. For example, functions requiring complex 

mathematics are more suited to C code in the driver, while timing specific functions may only be
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Fig. 1. Method overview. 
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ossible in the FPGA. However, the occasional compromise will be explained, such as the inability

o calculate floating-point numbers within a kernel module resulting in scaled values. The overall

ystem architecture shown in Fig. 1 , with the computation and interface techniques of each RF feature

xtracted in this method, will be discussed in detail in the following sections. 

An IEEE 802.11a/g frame header includes two RF training fields, a Short Training Field (STF)

nd a Long Training Field (LTF). These training fields are used for various synchronization and

requency offset calculations to ensure the frame’s reliable demodulation. The STF consists of 10

dentical repetitions, each containing 16 complex values used for frame synchronization, Automatic

ain Control (AGC), and coarse Carrier Frequency Offset (CFO) estimation. Simultaneously, the LTF

omprises two repetitions of 64 complex-valued samples used for channel estimation and residual

FO correction. While the OpenWifi platform currently supports 802.11n, the methods for decoding

igh Throughput (HT) frames vary from 802.11a/g frames and, therefore, will be addressed in future

ersions of this method. 

xtraction of CFO from STF 

As depicted in Step 1 of Fig. 1 , the CFO is the first calculation in a series of procedures used to

ompute the signal’s frequency offset based on the STF. Oscillator variations in the carrier frequency

re often due to manufacturing tolerances, temperature changes and the Doppler effect resulting from

evice movement. The frame received at frequency f c is down-converted to baseband and sampled at

 R , producing 160 samples. The last five repetitions are used for frequency offset estimation, denoted

s S m 

where m = 0–79, thereby the coarse CFO estimate of αST is produced by: 

αST = ∠ 

( 

64 ∑ 

m =0 

S ∗m 

S m +16 

) 

, (1)
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A division by 16 is typically performed to calculate the offset of a single sample within the FPGA

by shifting four bits to the left before being output to the SDR kernel module. However, doing so

produces a significant loss of accuracy due to rounding. The required division in this method is no

longer performed in the FPGA, and therefore the output is the phase shift across the entire STF,

ensuring no loss of information. Alternatively, performing the division within the kernel module will 

not produce any further accuracy as it is not possible to perform floating-point calculations within

the Linux kernel. 

Previously within the OpenOFDM module, the CFO ε was calculated using: 

ε = 

S R . 
(αST 

16 

)
2 π

, (2) 

S R equals a sample rate of 20 Msp/s, and the CFO of the entire STF is divided by 16 to equal a

single symbol CFO. 

To capture the CFO across the entire STF before division, a new 32-bit register, phase_offset_full_out,

was added to the sync_short.v FPGA module so the phase_out_neg value can be captured in full. If the

traditional CFO is required later, it is possible to calculate it within the WP4 Control Plane by dividing

the value by 16 to produce a floating-point value of higher precision without integer rounding. 

Extraction of vector magnitude from equalizer stage 

Due to several environmental effects, each sub-carrier will exhibit different magnitudes, which 

require normalization before decoding. To compensate for these variations for 802.1a/g, the mean 

value H i of the two LTFs is calculated using: 

H i = 

1 

2 

(
LT F i + LT F ′ i . L i 

)
, i ∈ ( −26 , 26 ) , (4) 

Where L i is the polarity of the LTF sequence at sub-carrier i as per the IEEE 802.11a/g standard. 

Each sub-carrier Y i is then normalized by: 

Y i = 

X i 
H i 

, i ∈ ( −26 , 26 ) , (5) 

Where X i is the FFT of sub-carrier i . 

The mean value H i is sent to the SDR driver as Vector Magnitude (VM), another value that was

previously unavailable outside the FPGA. To facilitate the extraction of the VM, a mag_sq_out wire was

added to the equalizer.v module to capture the value during the calculation, as shown in Step 2 of

Fig. 1 . 

Extraction of pilot carrier offset 

In addition to coarse-grained CFO adjustment, residual CFO correction uses the pilot sub-carriers 

∈ ( −21 , −7 , 7 , 21 ) also shown in Step 2 of Fig. 1 , which is estimated by: 

θn = ∠ 

(∑ 

i ∈ ( −21 , −7 , 7 , 21 ) 
X n i .P 

n 
i . H i 

)
(3) 

Where P n is the polarity of the pilot sub-carrier at symbol n. 

θn of the last symbol, which was not previously available outside of the FPGA, is copied to a new

wire, pilot_phase_out and sent to the SDR driver. 

Additional wires and interconnects were created and added to the Verilog source files to 

consolidate and route the new measurements out of the OpenOFDM into the core Openwifi modules. 

Three new 32-bit input wires, phase_offset_full, mag_sq_out and pilot_phase_out, were added to the 

Openwifi receiver interface module rx_intf.v . 

WP4 data plane 

The Openwifi implementation uses the Xilinx Advanced Extensible Interface (AXI) to transfer data 

between the FPGA and the Linux SoC. There are two AXIs interconnects currently in use, one for
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Table 1 

Header format. 

Data Type Size (bits) Offset (bytes) 

Timestamp (low bits) Unsigned 32 0 

Timestamp (high bits) Unsigned 32 4 

RSSI Unsigned 16 8 

IEEE 802.11 frame length Unsigned 16 12 

Data Rate Index Unsigned 16 14 

Carrier Frequency Offset Integer 32 16 

Pilot Frequency Offset Integer 32 20 

Magnitude Vector Unsigned 32 24 

Unused Unsigned 32 28 

Raw IEEE 802.11 frame data Unsigned - 32 
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rame data and the other for side-channel information such as CSI. Attempting to use data from

oth interfaces simultaneously would create undue complexity. Therefore, this method uses the novel

pproach of adding the RF information to the existing IEEE 802.11 frame interface. A total of 16 bytes

ere appended onto the frame after the existing timestamp and RSSI values, between the metadata

eader and the IEEE 802.11 frame, using the DMA header function in the rx_intf_pl_to_m_axis.v

odule. 

Two options were viable to pass the new feature values from the SDR kernel module to the

4 interface, a function call or frame headers. As the RF feature values are not part of the IEEE

02.11a/g frame, it could be considered acceptable to maintain the separation of the frame’s payload

rom any additional data. However, doing so would circumvent the inherent value of P4, that of the

ustomizable header paradigm. Therefore, new RF values are added to the beginning of the IEEE 802.11

rame before being passed to the P4 interface. 

The system architecture shown in Fig. 2 highlights the overall flexibility of such an approach

hich provides multiple customization opportunities. While the WP4 kernel module is created using

he P4 programming language, the control plane interface facilitates advanced algorithms such as

achine learning. For example, the rule or “flow” table function standard in the SDN model lends

tself elegantly to a Learning Classifier System (LCS). Such a methodology is also well suited to a

evice fingerprinting solution, which parenthetically is the archetype’s genesis. 

Step 3 in Fig. 1 depicts the integration point of the SDR kernel module from the

penwifi_rx_interrupt function within Openwifi’s sdr.c driver file, which allows the new RF values to be

xtracted from the rx_cyclix_buf buffer. Calling the WP4 entry point directly from within this function

llows access to all wireless frame types, including management frames. The wp4_packet_in function

s called passing the frame buffer pointer ( pdata_tmp) , the buffer size ( len ) and a null port value.

his method could also facilitate the inclusion of other information if required by simply adding

dditional parameters. The P4 parser’s flexibility allows data in the new variables to be appended

o the beginning of the frame and parsed the same way as the frame’s native header contents. The

ontents of the header fields, including size, pointer offset and data type, are shown in Table 1 . 

The WP4 kernel module is compiled using the generic P4 compiler [6] with the custom WP4

ackend extension [7] , producing the WP4 target source file from a P4 language [15] file. First, the P4

ompiler source code is installed on a suitable development system, the WP4 backend source is added

o the extensions directory, then the entire P4 compiler binary is built. The P4 compiler’s output from

 P4 file is a C language kernel module source code file called wp4-p4.c and associated header file

p4-p4.h, which are then added to the WP4 driver folder in the Openwifi repository. Modifications

ere made to the driver makefile to allow the WP4 kernel module to be compiled together with the

ther Openwifi driver modules and loaded as part of the startup process. Additionally, a common

unctions file called wp4_runtime.c is included in the wp4 compilation to provide several helper

unctions such as kernel module instantiation, flow table lookup functions, and the control plane

pplication interface. 
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P4 control plane 

The WP4 control plane application has been added as a Linux native user space application

tilizing a memory map (mmap) interface between it and the WP4 data plane kernel module, shown

s Step 4 in Fig. 1 . Using mmap allows the two components to share a common memory space,

llowing flow table updates from the control plane to be read by the data plane. A new folder

as been created in the user_space directory titled wp4_control, which contains the control plane

ource files and required makefile for compilation on the device. The control plane application can

e updated and re-compiled directly on the device independent of the data plane kernel module. The

nly caveat being, if the layout of the flow table data is changed, both components must be modified

o ensure the synchronicity of the data layout in the flow table. 
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