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ABSTRACT: We incorporate the Poisson−Boltzmann (PB) theory of
electrostatics into our variational implicit-solvent model (VISM) for the
solvation of charged molecules in an aqueous solvent. In order to numerically
relax the VISM free-energy functional by our level-set method, we develop
highly accurate methods for solving the dielectric PB equation and for
computing the dielectric boundary force. We also apply our VISM-PB theory to
analyze the solvent potentials of mean force and the effect of charges on the
hydrophobic hydration for some selected molecular systems. These include
some single ions, two charged particles, two charged plates, and the host−guest
system Cucurbit[7]uril and Bicyclo[2.2.2]octane. Our computational results
show that VISM with PB theory can capture well the sensitive response of
capillary evaporation to the charge in hydrophobic confinement and the
polymodal hydration behavior and can provide accurate estimates of binding
affinity of the host−guest system. We finally discuss several issues for further improvement of VISM.

I. INTRODUCTION

Aqueous solvent plays a significant role in dynamical processes
of biological molecules, such as conformational changes,
molecular recognition, and molecular assembly, that control
cellular functions of underlying biological systems.1,2 Implicit-
solvent models are efficient descriptions of such dynamics of
biomolecular interactions in an aqueous environment.3−5 In
such a model, the solvent is treated implicitly as a continuum
and the effect of individule solvent molecules are coarse
grained. A large class of implicit-solvent models are based on
dielectric boundaries that separate charged solutes from the
solvent. Such description of a biomolecule in water using a
dielectric solute−solvent interface is rather natural, as it has
long been realized that there is indeed a vapor−liquid-like
interface separating a biomolecule from the solvent.6−8

Moreover, electrostatic properties of biomolecules can
presumably be accurately described by dielectric boundaries,
as the dielectric environment of biomolecules is quite different
from that of the aqueous solvent. Recent studies have shown
that, with properly defined and estimated surface tension and
other coarse-grained quantities, solute−solvent dielectric
interfaces are crucial in the accurate description of biomolecular
hydrophobic interactions.9−11 It is therefore clear that, with an
implicit solvent, dielectric solute−solvent interfaces are
fundamental in the accurate and efficient prediction of
biomolecular interfacial properties, electrostatic interactions,
and solvation free energies. Providing such predictions by

properly defining and precisely locating dielectric boundaries is
one of the main goals of a recently developed variational
implicit-solvent model (VISM).12,13

The principle of VISM is to minimize a free-energy
functional of all possible solute−solvent interfaces. Such a
free-energy functional consists of the surface energy, solute−
solvent van der Waals (vdW) interaction energy, and
electrostatic interaction energy, all depending on the solute−
solvent interface. The minimization of VISM free-energy
functional determines stable equilibrium solute−solvent dielec-
tric boundaries and solvation free energies. For years, we have
developed a level-set method to numerically minimize such a
VISM free-energy functional.14−22 With such a method, we
begin with a large surface that encloses all the solute atoms and
then evolve the surface in the direction of steepest descent of
the VISM free energy. The surface evolution is tracked by
solving numerically a partial differential equation of a level-set
function that represents the surface. Our extensive computa-
tional results have demonstrated that the level-set VISM can
capture polymodal hydration states, describe well the curvature
and charge effect to the dry-wet transition, and provide accurate
estimates of solvation free energies. We believe that VISM is
the first implicit-solvent model that can capture multiple
hydration states including hydrophobic cavities and dry-wet
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transitions of charged molecules in water that are important in
protein−ligand binding.2,17,23−26 Such pockets are hard to be
described by traditional and popularly used, fixed-surface,
implicit-solvent models, where a van der Waals surface (vdWS),
solvent-excluded surface (SES), or solvent-accessible surface
(SAS) is used as the dielectric boundary.27−31

In this work, we incorporate the classical Poisson−
Boltzmann (PB) theory of continuum electrostatics into our
VISM formulation of the solvation free energy. This will
improve our previous work using the Coulomb-field approx-
imation (CFA) for electrostatics that does not describe the
effect of ionic charges in the solvent.19−21 The PB theory is a
well-established continuum description of electrostatic inter-
actions of biomolecules in an aqueous solvent.32−42 To couple
the PB theory into VISM, here we develop robust numerical
methods to solve the PB equation with arbitrarily shaped
dielectric boundaries and to calculate the effective dielectric
boundary force (DBF) that is the electrostatic part of total force
as the negative variation of the VISM functional with respect to
the location change of dielectric boundary.39,43−47 The concept
of DBF only arises in the variational approach to implicit
solvation. In our previous work,39,45 we derived the formula of
DBF. Our numerical method generalizes the coupling interface
method (CIM)48 to have a compact discretization scheme. Our
compact CIM (CCIM) has high accuracy for solving the PB
equation and computing the DBF, required to evolve
numerically the dielectric boundary during the relaxation
dynamics.
We test the convergence and accuracy of our numerical

algorithm by considering a single charged particle in ionic
solvent for which analytical results are available. We then apply
our level-set VISM with PB theory to several systems. First, we
study the solvation of single ions and compare our level-set
VISM results with experimental data. Second, we apply our
VISM to study the potential of mean force of the solvent
mediated interaction between two charged particles along their
center-to-center distance. Third, we consider the hydrophobic
interaction of two parallel plates in water with differently charge
patterns and compare our VISM calculations with existing
molecular dynamics (MD) simulations. Finally, we apply our
level-set VISM with PB theory to the study of the hydration
behavior, charge effect, and binding affinity of the host−guest
system Cucurbit[7]uril and Bicyclo[2.2.2]octane.
Our extensive numerical calculations show that the level-set

VISM with the PB theory is able to capture multiple local
minimizers of the VISM free-energy functional that correspond
to different hydration states. Moreover, we find that the
electrostatic interaction has a strong influence on the
conformation and solvation free energy of charged molecules
in solvent. In particular, the PB description is more accurate
than the CFA approximation of electrostatics. Our studies of
the host−guest system also show that the VISM with PB theory
can provide reasonably good estimates of the system solvation
free energies.
We notice that other theories and models that are related to

our VISM approach exist in literature.49−53 In some of these
works, geometrical partial differential equations coupled with
the PB equation are solved to determine equilibrium solute−
solvent interfacial structures. Here, we relax our VISM
functional to find stable equilibrium structures by computing
the effective boundary force that includes the DBF. We also use
our approach to analyze in detail some model systems in terms

of the multimodal character of the potentials of mean force and
the strong charge effect on hydration.
The rest of the paper is organized as follows. In section II, we

present the VISM free-energy functional with the PB
description of the electrostatic solvation free energy. In section
III, we describe briefly the level-set method for minimizing the
VISM free-energy functional, and numerical methods for
solving the PB equation and computing the dielectric boundary
force. In section IV, we apply our level-set VISM to the
solvation of several charged molecular systems. Finally, in
section V, we draw our conclusions.

II. THEORY

A. Free-Energy Functional. We consider the solvation of a
charged solute molecule in an aqueous solvent that is treated
implicitly as a continuum. We assume that the solute consists of
N atoms that are located at x1,...,xN and carry partial charges
Q1,...,QN, respectively. We assume also that a solute−solvent
interface Γ separates the solute region, Ωm, from the solvent
region, Ωw, cf. Figure 1. In the variational implicit-solvent
model (VISM),12,13 one minimizes the solvation

free-energy functional

among all possible solute−solvent interfaces Γ.
The first term in eq II.1, proportional to the volume of solute

region Ωm, describes the work it takes to create a solute cavity
in the solvent. P is the pressure difference between the solvent
liquid and solute vapor. The second term is the surface energy,
where γ is the surface tension. It is known that at the molecular
scale the surface tension depends on local geometry of the
surface.54,55 Here, we use γ = γ0(1 − 2τH), where γ0 is the
surface tension for a planar interface, τ is the curvature
correction coefficient or the Tolman length, and H is the mean

Figure 1. Schematic view of a solvation system with an implicit
solvent. A solute−solvent interface Γ separates the solvent region Ωw
from the solute region Ωm that can have multiple components. The
solute atoms are located at x1,...,xN and carry partial charges Q1,...,QN,
respectively. The dielectric coefficients of the solute and solvent
regions are denoted by εm and εw, respectively.
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curvature defined as the average of the two principal
curvatures.54 We denote by Ggeom[Γ] the sum of the first two
terms in (II.1) and call it the geometrical part of the solvation
free energy.
For each i (1 ≤ i ≤ N), Ui(|x − xi|) in eq II.1 is the van der

Waals (vdW) type interaction potential between the solute
particle at xi and a solvent molecule at x that is coarse grained.
The summation term represents the vdW interaction between
the solute and solvent, where ρw is the bulk density of the
solvent. We define Ui to be the Lennard-Jones (LJ) potential
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The parameters εi of energy and σi of length can vary with
different solute atoms as in a conventional force field in
molecular dynamics (MD) simulations. We denote by GvdW[Γ]
this summation term in (II.1), and call it the vdW part of the
solvation free energy.
The last term Gelec[Γ] in (II.1) is the electrostatic part of the

solvation free energy. It is given by32,34−36,39
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Here, ψ = ψ(x) is the electrostatic potential, ψreac = ψ − ψref is
the reaction field, and ψref is the potential for the reference state
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with ε0 being the vacuum permittivity and εm the dielectric
coefficient of solutes. We have assumed here that there are M
ionic species in the solvent, with cj

∞ and qj being the bulk
concentration and charge for the jth species. In eq II.2, β−1 =
kBT with kB the Boltzmann constant and T the absolute
temperature. The first term in eq II.2 is the electrostatic
potential energy corresponding to the fixed solute charges
Q1,...,QN, and the others terms in eq II.2 are the free energy of
electrostatics due to the mobile ions in the solvent.
The potential ψ = ψ(x) solves the boundary-value problem of

the Poisson−Boltzmann (PB) equation
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Here, εw is the dielectric coefficient of solvent, [[u]] = u|Ωw −
u|Ωm denotes the jump across Γ of a function u from Ωm to Ωw,
ε = ε(x) takes the value εm in Ωm and εw in Ωw, respectively, the
unit normal n at Γ points from Ωm to Ωw (cf. Figure 1), and ψ0
is a given boundary value which is often given in practice by
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where κ = (ε0εwkBT/Σj = 1
M cj

∞qj
2)1/2 is the inverse Debye length.

In our numerical computations, we solve the following
equations for the reaction field ψreac, instead of eq II.3 for ψ:
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B. Effective Boundary Force. We minimize the free-
energy functional (eq II.1) by evolving an initial surface in the
direction of steepest descent of the free energy. The evolution
of the surface is therefore driven by the (normal component of
the) effective boundary force, Fn, defined to be Fn = −δΓG[Γ],
the negative variational derivative of the free-energy functional
G[Γ] with respect to the location change of the boundary Γ.
With our convention that the unit normal vector n = n(x) for a
point x on the boundary Γ points from the solute region Ωm to
the solvent region Ωw, we have the effective boundary
force14,18,19
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where K = K(x) is the Gaussian curvature, defined as the
product of the two principal curvatures at a point x on Γ. Here
Fn
elec(x) is the electrostatic part of the boundary force, the

dielectric boundary force (DBF). It is given by45
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where I is the identity matrix. Note by eq II.3 that the normal
component of the electric displacement ε∂ψ/∂n and the
tangential component of the electric field (I − n ⊗ n)∇ψ are
both continuous across Γ. Note also from eq II.6 that Fn

elec(x) <
0 for any point x on Γ, since in general εm < εw. This implies
that the DBF always points from the solvent to the solute
region.

C. A Shifted Dielectric Boundary. To compare with MD
simulations, we use the LJ parameters in our solute−solvent
vdW interactions the same as those in the MD simulations.
Previously,19,20,22 we found that an optimal VISM surface often
corresponds to the surface with the first peak of water density
determined using the position of oxygen atoms in water
molecules. Such a surface is not necessary the best choice of
dielectric boundary. This is because the center of charge of a
polarized water molecule is displaced near a charged molecule,
with the amount of displacement differing significantly between
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the two cases of positive and negative charges. This well-
documented issue of charge asymmetry gives rise to the
subtlety in defining a dielectric boundary.5,13,20,56−61 Our VISM
does not explicitly treat the charge asymmetry. As a result, if we
use a VISM surface as the dielectric boundary to calculate the
electrostatic solvation energy, then the error can be sometimes
significant.19,20 Here we use an empirical method developed in
our previous studies: after we obtain a VISM free-energy
minimizing surface, we shift it in parallel toward the solute by ξ
(in Å) and then use the shifted surface as the dielectric
boundary to calculate the electrostatic solvation energy, cf.
Figure 2. The parameter ξ should in principle depend on the

local environment such as the sign of charges near the surface.
However, to avoid being too complicated, we use a uniform
value of shift and usually set it to be close to 1 Å.
D. Potential of Mean Force. Consider the solvation of a

solute that consists of two groups of atoms. One group of
atoms are located at x1,...,xM and the other at xM+1,...,xN,
respectively. We choose the distance d between the geometrical
centers (Σi = 1

M xi)/M and (Σi = M+1
N xi)/(N−M) of these two

groups of atoms as a reaction coordinate. Also, we choose the
system that two groups are infinitely far from each other as a
reference state, that is, dref = ∞. For every fixed finite d, the
minimization of the VISM solvation free-energy functional
leads to a local minimizer, that is, a stable equilibrium solute−
solvent interface Γd. We define the (total) potential of mean
force as the sum of three contributions19
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Here, a quantity at ∞ is understood as the sum of two separate
contributions

Γ = Γ + Γ∞G G G[ ] [ ] [ ]I II (II.8)

where ΓI and ΓII, both independent of d, correspond to the
VISM equilibrium solute−solvent interfaces of those two solute
groups that are treated individually. The quantity G in the
above eq II.8 can be replaced by Ggeom, or GvdW, or Gelec. In the
above definition of GvdW

pmf (d), we include the contribution of the
vdW interaction between the two solute groups. In the
definition of Gelec

pmf(d), we include the Coulombic interaction
between the two solute groups in the reference medium with
the dielectric constant εm.
For a given reaction coordinate d, different initial conditions

can result in multiple equilibrium interfaces, corresponding to
different local minimizers of the VISM free-energy functional.
The PMF therefore may have multiple branches along the
reaction coordinate d, leading to a hysteresis. We call these
branches equilibrium PMFs in contrast with the ensemble PMF
that is the averaged PMF weighted with Boltzmann factors.

III. NUMERICAL METHODS
Numerically, we minimize the VISM free-energy functional II.1
by relaxing an initial surface that encloses all the solute atoms in
the direction of steepest descent of free energy. We relax the
surface by solving the level-set equation

ϕ ϕ∂
∂

+ |∇ | =
t

F 0n (III.1)

Here, ϕ = ϕ(x,t) is a level-set function representing the
evolving surface Γ = Γ(t) at time t; that is, Γ(t) consists exactly
all the points x such that ϕ(x,t) = 0. The function Fn = Fn(x) is
the effective boundary force given in eq II.5. This force is
extended away from the surface so that the level-set eq III.1 can
be solved in a finite computational box or a narrow band
surrounding the surface Γ(t). Note that pseudo-time t here
represents the optimization step.
Due to the nonconvexity of the VISM free-energy functional,

different initial surfaces can relax to different local minimizers
with our steepest descent strategy. To capture different local
minimizers, we usually start with two types of initial surfaces: a
tight wrap that is a union of vdW spheres centered at solute
atoms with reduced radii and a loose wrap that is a large surface
loosely enclosing all the solute atoms. See Figure 3.

To discretize the level-set eq III.1, we rewrite it as14−16,18

ϕ ϕ ϕ∂
∂

= − |∇ | = + |∇ |
t

F A Bn

where

Figure 2. Effective dielectric boundary is obtained by shifting the
VISM surface to the solute region by ξ in Å.

Figure 3. Typical initial surfaces of the level-set VISM calculations.
Left: A tight initial. Right: A loose initial.
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The B|∇ϕ| is a hyperbolic term. We discretize it using an
upwind scheme. In our implementation, we use a fifth-order
WENO (weighted essential-no-oscillation) scheme. For the A
term, we first linearize A = A(ϕ) at ϕ that is computed in the
previous time step and adjust the parameter τ to enforce
parabolicity of the linearized equation. We use the central
differencing to discretize the derivatives in A with the adjusted
τ.18

We use the forward Euler method to discretize the time
derivative in the level-set eq III.1:
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where φ(k)(x) and Fn
(k)(x) are the approximations of ϕ(x,tk) and

Fn(x,tk), respectively, at time tk = kΔt (k = 1,2,...) and Δt is the
time step size. We update the level-set equation ϕ by III.2 in a
narrow band surrounding the surface. To satisfy the Courant−
Friedrichs−Lewy condition, we choose
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where h is the step size in space discretization, C = C(ϕ) is the
matrix obtained in linearizing A(x) with respect to φ and is
determined by A(ϕ) = γ0C(ϕ):∇2ϕ, and
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The maximum in III.3 is taken over all the grid points in the
band.18,19

To solve eq II.4, we use Newton’s iteration

∑

∑

ε ε ψ χ β ψ

χ β ψ

−∇· ∇ +

= +

=

β ψ ψ

β ψ ψ

+

=

∞ − + +

=

∞ − +

q c

q c q

i p

( e )

(1 )e ,

1, ...,

i

j

M

j j
q i

j

M

j j j
i q

0 reac
( 1)

w
1

2 ( )
reac
( 1)

w
1

reac
( ) ( )

j
i

j
i

reac
( )

ref

reac
( )

ref

(III.4)

where χw is the characteristic function of the solvent region Ωw,
that is, χw(x) = 1 in Ωw and 0 otherwise, and the number of
iteration p can vary from 1 to 30. In each iteration, we solve a
linear partial differential equation with two jump conditions on
Γ, cf. eq II.4 . We solve this linearized interface problem with a
compact Coupling Interface Method (CIM) that is an
improved version of CIM.48,62 To compute the DBF (eq
II.6) on the interface, we approximate ψ and ∇ψ by the
interpolation of the potential at adjacent grid points.

IV. TEST AND APPLICATION
We use the TIP4P water model to determine the parameters
for water and employ the Lorentz−Berthelot mixing rules for
the LJ potentials of interaction between water and individual
solute atoms. We also use kBT for energy and Angström for
length. Throughout our calculations, we fix T = 300 K, P = 0
bar, γ0 = 0.1315 kBT/Å

2, ρw = 0.0331 Å−3, εm = 1, εw = 78, and τ
= 0.76 Å.

A. One Charged Particle. We consider a single particle
with charge value Q centered at the origin. The VISM free-
energy functional for this system reduces to a one-variable
function of radius R:19
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This function can be numerically minimized with a very high
accuracy. We use the LJ parameters ε = 0.3 kBT and σ = 3.5 Å.
We perform a series of test with different charge values: Q = 0.0
e, 0.5 e, 1.0 e, 1.5 e, 2.0 e. In our level-set calculations, we use a
120 × 120 × 120 computational grid to resolve a computational
box (−4,4) × (−4,4) × (−4,4).
In Table 1, we show the result of our level-set calculations

(labeled as level-set) and numerical minimization of (IV.1)
(labeled as analytical). We compare the optimal radii, the
nonpolar and polar solvation energies, and the total solvation
energies for different values of Q. Clearly, the level-set
relaxation gives very accurate results. Note that the optimal
radius decreases as the charge value increases due to the strong
dielectric boundary force acting on the solute−solvent interface.
With a smaller radius, the reaction potential ψreac becomes

Table 1. Solvation Free Energies (in kBT) and VISM Optimal Radii (in Å) for a Spherical Particle with Different Charge Values
Q (in e)

optimal radii nonpolar energy polar energy total energy

charge level-set analytical level-set analytical level-set analytical level-set analytical

0.0 3.167 3.157 4.845 4.836 0.0 0.0 4.845 4.836
0.5 3.040 3.030 5.216 5.273 −22.614 −22.686 −17.398 −17.412
1.0 2.810 2.801 9.406 9.660 −97.857 −98.144 −88.451 −88.484
1.5 2.610 2.605 20.977 21.285 −237.083 −237.455 −216.106 −216.170
2.0 2.459 2.453 40.512 41.304 −447.352 −448.281 −406.840 −406.977
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larger and the system thus gains more electrostatic solvation
energy. Meanwhile, the nonpolar part of the solvation energy
also increases because of the rapidly increasing solute−solvent
vdW interaction. Compared with the nonpolar part, the
electrostatic part of the solvation energy becomes more and
more dominant as the charge value increases.
We also apply our level-set VISM to the solvation of single

ions K+, Na+, Cl−, and F−. We take the LJ parameters for these
ions from the publication.63 In our calculations, the dielectric
boundary of the anion Cl− or F− is obtained by shifting the
VISM equilibrium surface by ξ = 1 Å, which is the length of the
water OH bond.13,19,20,57−59,64 In Table 2, we display the

nonpolar and polar parts of the solvation free energy obtained
by our level-set VISM calculations, and the experimental values
of solvation free energy65 for these ions. We see that our VISM

result agrees well with experiment. Again, we observe that the
polar part of solvation free energy contributes more than the
nonpolar part.

B. Two Charged Particles. We consider a system of two
ions K+ and Cl− in water and in monovalent (1: 1) ionic
solution with different bulk concentrations c±1

∞ = 0.1 M, 0.5 M,
and 0.8 M, respectively. The LJ parameters are εK = 0.2104 kBT,
εCl = 0.2104 kBT, εO = 0.2622 kBT, σK = 3.250 Å, σCl = 3.785 Å,
and σO = 3.169 Å,66 where O means the oxygen in water. When
we calculate the electrostatic solvation energy, we employ a
parallel shift of the equilibrium surface by ξ = 0.6 Å. This value
is determined by trying several ξ-values. For each trial ξ-value,
we compute the VISM solvation energy for each of the ions.
We then compare the sum of these two computed energy
values with the sum of the two experimental solvation energy
values of the two ions, respectively. In other words, we
determine the best uniform shift ξ = 0.6 Å for the two ions as
they are infinitely separated from each other and use it for the
system when the two ions are apart from each other with a
finite distance. We choose the center-to-center distance of the
two ions as the reaction coordinate and study the solvent-
mediated PMF of the system. For each distance d, we minimize
the VISM free-energy functional to get an equilibrium solute−
solvent interface and compute each component of the solvation
free energy with the obtained interface.

Table 2. Solvation Free Energies (in kBT) for Single Ions K
+,

Na+, Cl−, and F−: VISM Calculations vs Experiment65

ions
ε

(kBT) σ (Å)
nonpolar
energy

polar
energy

total
energy expt.

K+ 0.008 3.85 16.5 −128.2 −111.7 −117.5
Na+ 0.008 3.49 17.3 −147.8 −130.5 −145.4
Cl− 0.21 3.78 11.7 −137.8 −126.1 −135.4
F− 0.219 3.3 11.2 −182.8 −171.6 −185.2

Figure 4. Different components of the PMF for the two-particle system of K+ and Cl−. Upper left shows the geometrical part Ggeom
pmf of the PMF.

Upper right shows the vdW part GvdW
pmf of the PMF. The solute−solute vdW interaction is included. Lower left shows the electrostatic part Gelec

pmf of the
PMF. The Coulomb law and Debye−Hückel (DH) screening law for two-particle interactions are shown as references. Three inset figures are
effective dielectric boundaries at d = 4 Å, d = 6 Å, and d = 10 Å, respectively. Lower right shows the total PMF Gtot

pmf in the mainframe and MD
simulation results (with 0.5 M salt) in the inset.
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Figure 4 shows different contributions to the PMF. The
geometric part of the PMF in the upper left of the figure shows
a pronounced desolvation barrier at d = 5 Å, where the two
VISM surface branches of charged particles start to merge
together. The concavity of the merged solute−solvent interface
accounts for the distortion of the water molecules in the
overlapping hydration shells. At a small separation, the
geometric part of PMF shows water-induced attraction due to
less water-accessible area. The upper right of Figure 4 displays
the vdW part of PMF with the solute−solute vdW interaction.
It shows significant repulsions as the two objects merge
together and peaks at d = 6 Å where the two objects begin to
break.
In the lower left of Figure 4, we observe that the electrostatic

part of the PMF varies with the ionic concentration. At a small
separation d ≤ 3 Å, the attraction between two oppositely
charged particles is greatly enhanced due to the short
interaction distance and weak dielectric screening in the solute
region. There is a high electrostatic desolvation barrier at d = 4

Å, due to the concave dielectric boundary. Such a barrier
depicts the energy penalty of the steric depletion of polar water
molecules that are originally attracted to the charged particles.
In contrast, the favorable electrostatic interaction between
water molecules and particles is only partially reduced at d = 5
Å. After two objects are completely solvated at d > 5 Å, the
effect of solvent and ionic solution comes into play. Overall, the
attractive interaction between the two particles is gradually
screened, and the profiles converge asymptotically to the
Coulomb law Q1Q2/4πε0εwd and Debye−Hückel (DH)
screening law (Q1Q2 e−κd)/(4πε0εwd). We see that after the
two objects separate, the decay of electrostatic attraction as the
separation increases is faster than that for the Coulomb or DH
interaction. This is due to the solvent screening and the shape
change of dielectric boundary. From the snapshots in the lower
left of Figure 4, we can see that the dielectric boundary for the
particles at the distance d = 6 Å are not perfect spheres. They
are deformed slightly in the direction of the reaction
coordinate, due to the strong electrostatic interaction between

Figure 5. Homogeneously (a and b) and heterogeneously (c, d, and e) charged plates. Blue means a positive charge 0.2 e. Red means a negative
charge −0.2 e. Gray means neutral.

Figure 6. Total PMF and its different components vs the separation distance d between the two plates that are charged as Pattern I. PS denotes pure
water and PB denotes ionic solutions. The inset snapshot shows the solute−solvent surface of the dry state at d = 10 Å. Color on the surface
represents the mean curvature.
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two particles. As the separation becomes larger, the electrostatic
interaction becomes weaker and the shape of the dielectric
boundary becomes more spherical. This indicates that the
nonpolar and polar contributions affect each other via the
equilibrium solute−solvent surface.
In the lower right of Figure 4, we show the PMF obtained by

our VISM-PB in the mainframe and by MD simulation (for c±1
∞

= 0.5 M) in the inset.66 For d < 3 Å, both results show the
repulsion that stems from the vdW interaction between the
overlapping particles. Near d = 3 Å, both capture the significant
electrostatic attraction due to the weak dielectric screening and
short interaction distance. At a distance close to d = 4 Å, the
two results show a desolvation barrier. For the distance
between d = 5 Å and d = 6 Å, in which the solute−solvent
surface of two particles breaks apart, both PMFs again show the
attraction. The MD simulations show some oscillations for d >
6 Å while our mean-field VISM only predicts a monotonic
PMF. Overall, however, there is a remarkable agreement
between our VISM calculations and the MD simulations.
C. Two Parallel Charged Plates. We consider the

solvation of a strong hydrophobic system of two parallel
paraffin plates with different charge patterns,19,67,68 and study
the effect of charge pattern to the hydrophobic attraction,
capillary evaporation between the plates, and the hysteresis of
the PMF profiles. Each plate contains 6 × 6 fixed atoms with
the LJ parameters ε = 0.265 kBT and σ = 3.532 Å. The two
plates are placed in pure water (labeled “PS”) or monovalent
ionic solutions with 0.2 M bulk concentration (labeled “PB”).
The plate−plate separation distance is chose to be the reaction
coordinate to define the PMF.
We define five different charge patterns:

• Pattern I: Each atom in the two plates carries a positive
charge 0.2 e, cf. Figure 5 a.

• Pattern II: One plate is positively charged and the other
negatively charged. Each atom in the two plates is
charged with the same charge value 0.2 e, cf. Figure 5a
and b.

• Pattern III: One plate is charged as shown in Figure 5c
and the other plate is oppositely charged with the same
value in corresponding positions.

• Pattern IV: One plate is charged as shown in Figure 5d,
and the other plate is oppositely charged with the same
value in corresponding positions.

• Pattern V: One plate is charged as shown in Figure 5e,
and the other plate is oppositely charged with the same
value in corresponding positions.

Figure 6 shows the total PMF and its different components
for Pattern I. We observe the capillary evaporation when 6 Å <
11 Å. In this range of the plate−plate separation, there are in
general two branches of the PMF. The lower one corresponds
to the dry state and the upper one the wet state. We observe
from the upper left and upper right of Figure 6 that, at a short
plate−plate separation, the geometric part of PMF exhibits a
strong attraction due to a small water-accessible area but the
vdW part (including the solute−solute interaction) is repulsive.
The dry state resulting from a loose initial leads to a higher
vdW desolvation barrier. The electrostatic PMF is shown in the
lower left part. The electrostatic repulsion results from the like-
charge interaction. For a wet state, the electrostatic interaction
is greatly screened at the distances d > 6 Å, due to the presence
of solution between the plates. Clearly, a stronger screening
occurs with ionic solution (PB). For a dry state, the
electrostatic interaction gradually decreases as the separation

Figure 7. Different components of the PMF vs separation distance d between the two plates that are charged as Pattern II. PS denotes pure water
and PB denotes ionic solutions. The inset snapshot shows the solute−solvent surface of the dry state at d = 7 Å.
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increases where the solvent partially penetrates into the region
between plates. The lower-right plot in Figure 6 displays the
total PMF of the system, with a snapshot showing the solute−
solvent surface of the dry state at d = 10 Å. We can see that the
electrostatics attracts the solvent close to the charged atoms,
pushing the solute−solvent surface deep into the middle
regions of the two plates. We also observe that the total PMF
profile is mainly determined by the electrostatic part with small
nonpolar contributions at short separations.
Figure 7 shows the total PMF and its components for Pattern

II. We see that the capillary evaporation only occurs at shorter
separations d < 8 Å, due to the strong electrostatic interaction
between oppositely charged plates that drags polar water
molecules and ions into the inter plate region. This can also be
seen from the analytical formula II.6 of dielectric boundary
force (DBF): a stronger electric field leads to a larger DBF. The
nonpolar contributions, both Ggeom

pmf and GvdW
pmf , show a strong

sensitivity to the local electrostatics, due to the very different
solute−solvent surface geometries induced by different charge
patterns. For the electrostatic part, there are obvious desolva-
tion barriers when two solute−solvent surfaces of the plates

begin to merge together, especially for a dry state. The polar
water molecules between the charged plates are firmly attracted
to the charged atoms by the strong electric field. However, they
are sterically depleted away when two plates come closer than
the critical distance, resulting a concave solute−solvent surface
between the plates. The corresponding energy cost of the
depletion is responsible for the high desolvation barriers in the
electrostatic PMF. For a large distance, similar screening effects
of the solvent and ionic solution can also be observed.
For two plates that are charged as Pattern III, IV, and V, we

focus on the electrostatic part of the PMF and the total PMF,
cf. Figure 8. We see that the largest distance of capillary
evaporation for Patterns III and IV is increased to d = 18 Å
This is because that the electrostatic interaction is reduced by
the surrounding opposite charges. Again, we observe electro-
static desolvation barriers when water molecules between two
plates evaporate. From the snapshots shown in Figure 8, we
also see that the solute−solvent surfaces are concave between
two plates when there are desolvation barriers. Compared with
the results for Pattern I and Pattern II, the water molecules
between the plates are easier to evaporate away from the

Figure 8. Electrostatic part of the PMF and the total PMF. Top panel: Pattern III. The inset snapshot shows the solute−solvent surface of the dry
state at d = 17 Å. Middle panel: Pattern IV. The inset snapshot shows the solute−solvent surface of the dry state at d = 17 Å. Bottom panel: Pattern
V. The inset snapshot shows the solute−solvent surface of the dry state at d = 12 Å.
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charged plates, because of the weaker electrostatic interactions
between the plates. The electrostatic desolvation barriers are
therefore much lower. Since the electrostatic contribution is
weak, the nonpolar contribution dominates and therefore the
total PMFs for Pattern III and IV are very close to each other.
Pattern V is a rearrangement of III or IV, cf. Figure 5. Such a

rearrangement increases largely the electrostatic contribution.
We can see from the bottom panel of Figure 8 that the largest
separation distance for capillary evaporation decreases down to
d = 12 Å Remarkably, our VISM solute−solvent interface
captures the stepwise cavitation for the dry state when the
capillary evaporation takes place, cf. the snapshot of the solute−
solvent surface in bottom-right plot of Figure 8, agreeing
qualitatively with the MD simulations by Hua et al.68 The
electric field generated by the charged atoms at the two corners
attracts polar solvent molecules, while the hydrophobic sites
still keep dry. The desolvation barrier in the electrostatic PMF
is consistent with this stepwise dewetting transition. For a
distance between d = 9 Å and d = 12 Å, the desolvation barrier
reaches its first plateau, because of the desolvation of water
molecules near the hydrophobic, neutral atoms. When d < 9 Å,
the desolvation barrier goes up further with a larger magnitude,
since it costs larger energy penalties to desolve the water
molecules near the hydrophilic, charged atoms. The total PMF
shows another different type of hysteresis, induced by the
different distribution of charged atoms in Pattern V. We can see
that our level-set VISM has accurately captured the hydro-
phobic−hydrophilic coupling effects in this heterogeneously
charged two-plate system.
Finally, we consider the water density between the plates,

defined by

ρ ρ=
V
VWD w

sol

tot

where ρw is the bulk water density, Vsol is the solvated volume
between the plates, and Vtot is the total volume between the
plates. Figure 9 displays the water density along the reaction
coordinate for dry (loose initial) and wet (tight initial) states.
The results predicted by tight initials do not show dewetting
transitions. For loose initials, the region between the plates
becomes solvated with the increasing separation for all the
patterns except Pattern II where a complete solvation occurs
suddenly when the separation increases from 7 Å to 8 Å. These
dewetting transitions predicted by our VISM calculations have

also been observed in MD simulations on similar two-plates
systems.68

D. Host−Guest System. We now apply our VISM with PB
theory to the solvation of a host−guest system: a
bicyclo[2.2.2]octane (B2) binding to a synthetic host
cucurbit[7]uril (CB[7]). This host−guest system has wide
applications in many fields, such as molecular machines,
supramolecular polymers, gene transfection, and drug trans-
port.69−74 Its ultrahigh binding affinity has attracted exper-
imental and computational attention.75−81 We studied this
system in our recent work with a Coulomb-field approximation
(CFA) of the electrostatics.21 Here, we use our VISM with PB
theory to investigate the hydration behavior and the binding
affinity of the host−guest system. We use a parallel shift of our
VISM surface toward solute region by ξ = 1 Å when we
calculate the electrostatic solvation energy. In our calculations,
the host CB[7] and guest B2 are both modeled as rigid bodies.
The force-field parameters and coordinates are taken from an
MD study.82 To show the effect of electrostatics to the
hydration and free energies, we study both charged and
uncharged cases. The uncharged case is simply treated by
setting the values of partial charges to be all zero. More details
of parameters can be found in our recent work.21

1. Hydration Behavior of Isolated Host and Bound Host−
Guest System. Figure 10 displays our VISM equilibrium
surfaces of the isolated host with loose (upper panel) and tight
(lower panel) initials. We observe both dry and wet states that
result from loose and tight initials, respectively. Moreover,
VISM equilibrium surfaces are tighter when charges are
included. In such a case, the VISM surface with the PB
description is tighter than that with the CFA of electrostatics.
Table 3 displays individual contributions to the solvation free

energy. We see that the electrostatic solvation energy is
underestimated without the parallel shift of the VISM surface.
Also, the electrostatics plays a dominant role in the solvation.
Without charges, the solvation free energy of a dry state
corresponding to a loose initial is lower than that of a wet state
corresponding to a tight initial. However, with charges, the
solvation free energy with a wet state is much lower. These
conclusions are in line with recent explicit MD simulations of
the identical nonpolar and polar systems.21,82 Enhanced
fluctuations are observed in MD simulations due to the
toroidal confinement of the host cavity, and the host is mostly
found in the wet state. Also, the average water density near

Figure 9. VISM estimate of water density between the two plates for different charge patterns (Ptn means Pattern). Left: Tight initials. Right: Loose
initials.
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solute atoms is much higher when the charges are included (cf.
Figure 5 in ref 21).
The VISM equilibrium surfaces for the bound host−guest

system are shown in Figure 11. For the bound system, both the
loose initials and tight initials give nearly the same equilibrium
surfaces. The free energies listed in Table 3 also show this
independence of the initial surfaces. Again, we can see that the
electrostatic interaction pushes the equilibrium surface to be
closer to the solute atoms, and the charge effect predicted by
CFA is not as strong as that by the PB description. MD
simulations also show that the water molecules distribute much
closer to the charged atoms and water densities around atoms
are much higher when charges are included.21,82

2. Binding Free Energies. The binding affinity is described
by83

Δ = Δ + Δ + ΔG G G GB tot
pmf

TS Val

where

Δ = Δ Γ + Δ Γ + Δ + Δ Γ + ΔG G G G G G[ ] [ ] [ ]R R
tot
pmf

geom vdW vdW elec elec

is the difference between the total PMF (eq II.7) of the bound
state and that of an unbound state, ΔGTS is the entropy penalty
upon binding, and ΔGVal is the valence energy differences,
including the energy changes of bond-stretch, angle-bend,
dihedral, etc. The superscript R denotes the reference state.83

Table 4 lists individual contributions computed with loose
initials and tight initials. For comparison, reference results from

Figure 10. VISM equilibrium surfaces of the host CB[7] without and
with charges. Left: No charges. Middle: With charges and the
electrostatics is described by the CFA. Right: With charges and the
electrostatics is described by the PB theory. Upper: Loose initials.
Lower: Tight initials. The color on the surface represents the mean
curvature being convex (red), flat (green), and concave (blue).

Table 3. Individual Contributions to the Charged and Uncharged Host−Guest Solvation Free Energy (in kBT) predicted by
Level-Set VISM with Different Initial Surfacesa

systems electrostatics initials Ggeom[Γ] GvdW[Γ] Gelec[Γ] total energy

CB[7] uncharged loose 91.5 −88.3 0.0 3.2
tight 104.7 −97.6 0.0 7.1

charged loose 93.0 −81.8 −204.6(−96.9) −193.4(−85.7)
tight 103.5 −91.1 −216.2(−101.3) −203.8 (−88.9)

B2 uncharged loose 28.1 −18.6 0.0 9.5
tight 28.1 −18.6 0.0 9.5

charged loose 27.8 −18.1 −20.6 (−3.5) −10.9(6.2)
tight 27.8 −18.1 −20.6 (−3.5) −10.9(6.2)

CB[7]-B2 uncharged loose 91.1 −93.4 0.0 −2.3
tight 91.1 −93.4 0.0 −2.3

charged loose 91.2 −87.8 −212.6(−98.6) −209.2(−95.2)
tight 91.2 −87.8 −212.6(−98.6) −209.2(−95.2)

aThe values in parentheses denote the energies obtained without shifting the solute-solvent surface.

Figure 11. VISM equilibrium surfaces of the host−guest system
CB[7]-B2. Left: No charges. Middle: With charges and the
electrostatics is described by the CFA. Right: With charges and the
electrostatics is described by the PB theory.

Table 4. Individual Contributions to the Host−Guest
Binding Affinitya

contributions loose initial tight initial M2 calculations83 expt.83

ΔGgeom[Γ] −29.6 −40.1
ΔGvdW[Γ] 12.1 21.4
ΔGnp[Γ] −17.5 −18.7 −4.4
ΔGelec[Γ] 12.6 24.2 24.5
ΔGelec

R −12.2 −12.2 −13.8
ΔGelec

pmf 0.4 12.0 10.6
ΔGvdW

R −38.7 −38.7 −57.9
entropic penalty (29.4) (29.4) 29.4
valence energy (2.0) (2.0) 2.0
binding affinity −24.4 −14.0 −20.3 −22.6

a“Δ” means energy difference (in kBT) between the bound and
unbounded states. Unavailable data are blank cells. The numbers in
parentheses are taken from ref 83. The last column presents the
experimental data reported in ref 83. The energy difference of the
nonpolar solvation energy is ΔGnp[Γ] = ΔGvdW[Γ] + ΔGgeom[Γ].
ΔGelec

R and ΔGvdW
R are the energy differences of the Coulombic

interaction and vdW interaction between the host and guest in the
reference state, respectively. The energy difference of the electrostatic
part of the PMF ΔGelec

pmf = ΔGelec[Γ] + ΔGelec
R .
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the work83 are also presented. Those results are obtained with a
second-generation Mining Minima (M2) Algorithm,79,84 in
which free energies are estimated by the sum of the potential
energies and implicit solvation energies at local energy wells.
For the geometric contribution, both the loose and tight initials
predict favorable binding energies because the water-accessible
area is reduced after the host and guest are bound together.
The tight initial, corresponding to a wet state of the host cavity,
has a larger energy difference than the loose case, since more
water-accessible area is lost upon binding. The vdW interaction
between water and solutes disfavors binding, with an energy
penalty of 12.1 kBT for the loose initial and 21.4 kBT for the
tight initial. The reason for this energy penalty is that the
favorable solute-water vdW interaction (cf. GvdW[Γ] in Table 3)
is reduced upon binding, especially for the tight case. The
nonpolar part of the solvation favors the host−guest binding by
−17.5 kBT for the loose initial and −18.7 kBT for the tight
initial. This qualitatively agrees with the prediction of −4.4 kBT
in the work.83

For the electrostatic part of the solvation (ΔGelec[Γ]), both
the loose initial and tight initial predict unfavorable energy
differences. Remarkably, the tight initial, which corresponds to
the wet state, predicts a 4.2 kBT energy penalty, agreeing very
well with 24.5 kBT reported in ref 83. As a component of the
electrostatic part of the PMF, the Coulombic interaction
between the host and guest in the reference state has a
favorable contribution −12.2 kBT to the binding affinity. Such a
contribution is independent of the solute−solvent interface.
The electrostatic part of the PMF (i.e., ΔGelec

pmf = ΔGelec[Γ] +
ΔGelec

R ) shows an unfavorable energy difference: 1.4 kBT energy
penalty for the loose case and 12.0 kBT for the tight case,
compared to 10.6 kBT presented in the work.83 These data
indicate that the attractive Coulombic interaction in the
reference state partially cancels the binding penalty from the
electrostatic part of the solvation, leading to a relatively weak
penalty of electrostatics to the binding.76,77,83

The host−guest vdW interaction in the reference state
strongly drives the binding with an attraction of −38.7 kBT. In
contrast, it is about −57.9 kBT as reported in ref 83. The
discrepancy can be attributed to the difference in the positional
coordinates of the host and guest in the bound state. Since the
two binding partners are treated as rigid bodies with a fixed
relative orientation, we are unable to compute the entropy
penalty and the valence energy changes upon binding. Here, we
take these data, which are shown in parentheses in Table 4,
from ref 83 to complete the computation of the binding affinity.
In the last row of Table 4, we show the total binding affinity of
the system given by loose initials and tight initials. We can see
that both of them predict a favorable binding affinity, with
−24.4 kBT for the loose initial and −14.0 kBT for the tight
initial. They are in line with the calculation of −20.3 kBT by the
M2 algorithm and −22.6 kBT of the experimental data.83

Overall, VISM captures individual contributions to the binding
affinity and predicts reasonably well binding free-energy values.

V. CONCLUSIONS
In this work, we introduce the Poisson−Boltzmann (PB)
description of the electrostatics in the variational implicit-
solvent model (VISM), and implement a level-set method to
minimize the resulting VISM free-energy functional. Different
types of initial surfaces in the free-energy minimization lead to
different final stable equilibrium surfaces that describe multiple
hydration states. One of our major efforts has been to design

and implement a high-order Compact Coupling Interface
Method (CCIM) for solving the PB equation to obtain the
electrostatic potential and to compute the PB dielectric
boundary force (DBF). We apply our theory and methods to
a few charged systems that include single ions, two charged
particles, two parallel plates, and a host−guest system.
Our extensive computational results with comparison with

experiment and molecular dynamics (MD) simulations have
demonstrated that VISM is able to capture multiple hydration
states that lead to the hysteresis in the potential of mean force
(PMF) and provide fairly accurate estimates of solvation free
energies. It is clear that different components of the free energy
all contribute to the relaxation of the system. In particular, the
nonpolar parts (i.e., the geometrical and vdW parts) of
interaction depends sensitively on the electrostatics via the
solute−solvent interface. In fact, the analytical expression of the
DBF and our numerical computations show clearly that the
effective electrostatic force always pushes the solute−solvent
interface into the solute region. The magnitude of such force
predicted by the PB theory is larger than that by the Coulomb-
field approximation, indicating that mobile ions enhance the
charge effect. Even for the host−guest system CB[7]-B[2], our
level-set VISM calculations reveal different hydration states that
have been predicted by the MD simulations.
We now discuss several issues of our approach. First, our

computational results show that the boundary shift of an
optimal VISM surface works well for the final evaluation of
electrostatic free energy. However, such a shift is inconsistent
with the principle of free-energy minimization. One possible
improvement of VISM is then to use two boundaries: one
corresponding to a solute−solvent interface and the other to a
dielectric boundary. With two boundaries in the VISM free-
energy functional, we can relax them alternatively in numerical
implementation. The difficulty is more analytical. At this point,
we do not have a simple formulation of the VISM functional
with these two bounaries and yet that is relatively simple to
implement and efficient in computation. Another possible way
is to redefine the LJ parameters in the solute−solvent
interaction in the VISM description, so that the two boundaries
can be unifined into one. We are now looking into these
possible improvements. Second, solving the nonlinear PB
equation in each step of level-set optimization is very costly. As
typically the ionic concentrations are low in an aqueous solvent,
it is reasonable to just use the linearized PB equation.
Moreover, we can speed up our computations by use the
CFA for electrostatics in the beginning of level-set iteration.
Third, we have used mainly two types of initial surfaces, loose
or tight initial surfaces, to relax our VISM functional. In some
cases, the two corresponding relaxed VISM interfaces are
different. They represent two local minima of the functional
that are stable equilibrium conformations of an underlying
molecular system. For a simple system, such as the two parallel
plates, these are expected to be the only meaningful local
minima. However, in general, we may not be able to capture all
different kinds of local minima of the VISM functional by using
only the loose and tight initial surfaces. There are two possible
approaches to resolving this issue. A relatively simple one is to
design different kinds of initial surfaces based on the solute
atomic positions. A complicated one is to introduce fluctuations
in the model to allow the system to jump from a local
minimum to another. We will study these approaches in our
future work. Finally, our current theory and methods do not
provide a systematic way of computing the entropy of an
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underlying molecular system. Accurate predictions of enthalpy
and entropy are, however, particularly important in under-
standing protein−ligand binding.2 It is therefore our goal to
develop a VISM compatible theory for such predictions.
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