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Abstract 
Life science has entered the so-called 'big data era' where biologists, 
clinicians and bioinformaticians are overwhelmed with high-
throughput sequencing data. While they offer new insights to 
decipher the genome structure they also raise major challenges to 
use them for daily clinical practice care and diagnosis purposes as 
they are bigger and bigger. Therefore, we implemented a software to 
reduce the time to delivery for the alignment and the sorting of high-
throughput sequencing data.  Our solution is implemented using 
Message Passing Interface and is intended for high-performance 
computing architecture. The software scales linearly with respect to 
the size of the data and ensures a total reproducibility with the 
traditional tools. For example, a 300X whole genome can be aligned 
and sorted within less than 9 hours with 128 cores. The software 
offers significant speed-up using multi-cores and multi-nodes 
parallelization.
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Introduction
Since the first next generation sequencing technology was released in 2005 (Kchouk et al., 2017), considerable  
progress has been made in terms of sequencing quality, diversity of protocols and throughput of the machines. As 
of today, the most recent generation of sequencers can easily produce terabytes of data each day and we expect 
this exponential growth of the sequencing to continue. This data tsunami raises many challenges, from data  
management to data analysis, requiring an efficient high-performance computing architecture (Lightbody et al., 
2019). Indeed, the throughput capacity of the sequencers tends to overwhelm the capacity of common computer  
architectures and the data analysis workflow to handle such amount of data in a reasonable time. As we have entered 
the era of genomic medicine, delivering the results to the clinicians within a short delay to guide the therapeu-
tic  decision is a challenge of the utmost importance in daily clinical practice. Several national initiatives world-
wide such as France, USA, UK or Australia (Stark et al., 2019) promote the use of genomics into healthcare. 
There is no doubt that exascale informatic architecture and software are required to tackle the challenges raised  
by the genomic medicine.

A typical bioinformatics workflow to analyze high-throughput sequencing (HTS) data consists of a set of  
systematic steps of pre-processing to i) align (or map) the sequencing reads on a reference genome and ii) to sort 
the alignments according to their coordinates on the genome. Those steps are fundamental for the efficiency and  
relevance of the downstream analysis to decipher genomic alterations such as mutations or structural variations.  
Traditional tools for aligning the reads are BWA-MEM (Li & Durbin, 2010) and SOAP2 (Li et al., 2009a), and the 
sorting is usually performed with Samtools (Li et al., 2009b), Sambamba (Tarasov et al., 2015), Picard tools and  
GATK (McKenna et al., 2010). Most of the time, these steps are very time consuming (up to several days for  
whole genome analysis) as they suffer from bottlenecks at the CPU, IO and memory levels. Therefore, removing  
these bottlenecks would make it possible to reduce the time-to-delivery of the results such that they could be  
available within a reasonable delay when very large data are produced by the sequencers.

In order to tackle the aforementioned challenges to align and sort the sequencing data, we have developed software  
based on the Message Passing Interface (MPI) communication protocol (Gropp et al., 1996) that makes it possi-
ble to fully benefit of parallel architecture of supercomputers (Jarlier et al., 2020a; Jarlier et al., 2020b). MPI can  
therefore reduce the different bottlenecks by capitalizing on the low-latency network fabrics generally available on 
modern supercomputers. This allows an efficient distribution of the workload over the available resources of the  
supercomputers thus providing the expected scalability.

Methods
Alignment
For the alignment, the software consists of a MPI wrapper to the BWA-MEM software such that the original  
code remains unchanged. The wrapper uses parallel IO and shared memory (Figure 1). It first parses the input FASTQ 
files in order to define chunks of equal size. The different chunks are actually represented as two offsets (start and  
end) from the original FASTQ file thus reducing the amount of information to store. The reference genome 
of your choice is loaded into the shared memory on each computer node. Then, each chunk is processed in 
parallel threads by the original BWA-MEM algorithm. The results are finally written thanks to a shared file pointer 
in a unique SAM file. The pseudo-code is available in (Figure 2). For a human genome, the size of the reference 
genome file in the shared memory takes around 5 GB and the total memory used by a BWA-MEM thread is around 
300 MB. The original BWA-MEM processes a chunk of reads at a time that contains the same number of 
nucleotides which is also the case with our parallel implementation in order to allow the reproducibility with 
the original algorithm. We name our code alignment mpiBWA (Jarlier et al., 2020a).

Sorting
For the sorting, the software implements a parallel version of the bitonic sort proposed by Batcher (1968) for  
sorting any sequence of elements of size n = 2k being of power of 2. Its complexity is O (n log2n) that is higher 

            Amendments from Version 2
This version improves upon the main comments raised by the reviewer2. We have added pseudo-codes for both 
mpiBWA and mpiSORT algorithms in two new Figures. As suggested, we added in the mpiSORT github repository 
additional scripts that help the user to set the computer resources that are required to sort the data depending on the 
characteristics of the computing cluster and the size of the file.

The reponses to the reviewer has not been added at the end of the document
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Figure 1. Alignment with mpiBWA using two computing nodes and four cores per node. Each core is in charge 
of aligning a chunk of the FASTQ file. The reference genome is stored in shared memory of each node of the computing 
cluster. Once aligned, the results are written into a SAM file. To ensure scalability, the read and write operations require 
a parallel filesystem.

Figure 2. Pseudo-code of the mpiBWA which launches the function mpiBWAjob in parallel over p processors.

than O (n log n) from the popular merge sort algorithm. However, the bitonic sort is very suitable for parallel  
implementation since it always compares elements in predefined sorting network that is independent of the input  
data. To understand how the algorithm works, we first defined in what follows some concepts (see Grama et al.  
(2003) for details).

The algorithm relies on a bitonic sequence that is a sequence of values 〈a
0
, a

1
,…, a

n−1
〉 with the property that 

1) there is an index i, 0 ≤ i ≤ n−1 such that 〈a
0
, a

1
,…, a

i
〉 is monotonically increasing and 〈a

i+1
,…, a

n−1
〉 is  

monotonically decreasing, or 2) there exists a cyclic shift of indices so that the condition 1) is satisfied. From  
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Figure 3. Sorting network for the bitonic sort. Each horizontal line represents an input and each arrow represents 
a two-input/two-output comparator  which performs compare-exchange operation. Depending on its direction, 
the outputs are sorted in increasing (decreasing) order with a downwards (upwards) arrow. First, the comparator 
network transforms an input sequence of 16 unordered numbers into a bitonic sequence alternating 

2 2
,BM / BM

⊕ 

4 4
BM / BM

⊕   and 
8 8

BM / BM
⊕   bitonic merges. Then, the obtained bitonic sequence is sorted with 

a recursive bitonic merge procedure 
16

BM
⊕  (adapted from Grama et al. (2003)).

any bitonic sequence s = 〈a
0
, a

1
,…, a

n−1
〉, the bitonic split operation consists in transforming the input sequence s  

into these two subsequences:

 
1 0 / 2 1 / 2 1 / 2 1 1

2 0 / 2 1 / 2 1 / 2 1 1

min( , ), min( , ), ..., min( , )

max( , ), max( , ), ..., max( , )

n n n n

n n n n

s a a a a a a

s a a a a a a

+ − −

+ − −

=

=

Batcher (1968) proved that both s
1
 and s

2
 are bitonic sequences and the elements of s

1
 are smaller than the  

elements of s
2
. Thus, a recursive bitonic split from a bitonic sequence of size n = 2k, until the sequence obtained 

are of size one allows the sorting of the input bitonic sequence in k splits as shown in Figure 3. The procedure of  
sorting a bitonic sequence from bitonic split operation is called bitonic merge. For each split of a bitonic merge, 
n / 2 comparisons are performed during which the two numbers are exchanged if not in the right order using a  
compare-exchange operation. A bitonic merge procedure of a sequence of size n is noted BM

⊕

n
 if the comparisons sort 

the number in monotonically increasing order or BMn


 for monotonically decreasing order.

Sorting any sequence of unordered number thus requires to convert the input sequence into a bitonic sequence. 
This is obtained using a bitonic sorting network (see Figure 3) that sorts n = 2k numbers using k − 1 bitonic sorting 
stages, where the i-th stage is composed of n/2i alternating increasing 

2
BM i

⊕  and decreasing 
2

BM i
  bitonic merges.  

The final stage being BM
⊕

n
 to obtain the sorted sequence.

It is straightforward to generalize the bitonic sort algorithm on parallel architecture as shown in Figure 4. Each  
processor is in charge of an even number m = n/p elements (where p is the number of processors that is a power 
of 2) that are first sorted using a merge sort algorithm. Then, each comparison over the bitonic sorting network is  
replaced by a pair of processors which performs a compare-split operation. During the compare-split operation, 
the two sorted sequences from each processor are merged into one monotonic sorted list, then bisected into two  
(lower and higher) sequences. After the compare-split, one processor will keep the lower m elements from 
sequence and the other processor will keep the higher m elements according to the direction of the arrow in the step  
(see Kim et al. (2001) & Grama et al. (2003) for details). This parallelization allows the sorting of n elements in  
O (log2n) time using a bitonic sorting network.

The workflow for the sorting is described in Figure 5 and  the pseudo-code is available in Figure 6. The SAM 
file is read and split into p blocks that are dispatched across the p processors. Each block is parsed such that for 
each line of the SAM file, we extract the genomic coordinates of each read, its sequence (and all other information 
contained in the SAM file) and the line is indexed according to its offset in the SAM memory buffer of a 
processor. Then, the genomic coordinates are sorted with the bitonic sort as shown in Figure 4. During the sort-
ing, a vector with five values follows the bitonic sorting network including the genomic coordinate c, the rank r

i
 of 
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Figure 5. All-to-all communications with the Bruck algorithms for the sorting of 16 reads on four processors. 
The SAM file is read and split over the 4 processors P0 to P3 that sort the data with the bitonic sort. Then, a first Bruck 
phase sent the rd and od values back to processor from where the data originated. The data from the SAM file are sent 
by a second Bruck phase to the processor that has been assigned to write the contiguous blocks (during this step, 
the original data is copied into the memory buffer and then exchanged). Finally, the data can be written on a parallel 
filesystem. c: genomic coordinate. ri: rank of the processor that parsed the block of the input SAM file. oi: offset of the 
line from the input SAM file. rd: rank of the processor that will write the block of the sorted data in the destination SAM 
file. od: offset of the line in the sorted destination SAM file.

Figure 4. Parallel bitonic sort of 16 elements with four processors. (a) Each horizontal line represents an input of 
elements attached to a processor. Each processor first locally sorts its list of 4 elements, then, the parallel sort performs 
three steps of compare-split operations over the bitonic sorting network. (b) During the compare-split operation, each 
pair of processors first exchanges their information: each processor sends its block to the other process, then it 
merges the two sorted blocks into one list and stores only the appropriate half of the merged block to be used in the 
next step (adapted from Kim et al. (2001) & Grama et al. (2003)).

the processor that parsed the block of the input SAM file, the offset o
i
 of the line from the input SAM file, the 

rank r
d
 of the processor that will write the block of the sorted data in the destination SAM file and the offset o

d
 of 

the line in the sorted destination SAM file. Obviously, the values r
d
 and o

d
 are known when the bitonic sort is 

completed. It is important to highlight that the parallel computation is performed by different processors that are 
located on different compute nodes. This means that a block of data that has been read by a given processor is 
not accessible by another processor. Moreover, to optimize the writing of the sorted destination SAM file, it is 
essential to write the data in contiguous block. Thus, it is necessary that a processor in charge of the writing owns 
locally the data from a block of contiguous offsets o

d
 in the sorted destination file. This implies that all the data 

have to be shuffled across all the processors that have to exchange data in an all-to-all communication step. To 
optimize the communication between the processors during the shuffle, we have implemented a Bruck algorithm 
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Figure  6.  Pseudo-code  of  the  mpiSORT  which  launches  the  function  mpiSORTjob  in  parallel  over  p 
processors.

(Bruck et al., 1997) of time complexity (log2 p). The Bruck algorithm is performed twice as shown in Figure 5 
and can be seen as a joint procedure between two tables (the elements of the table being located on different 
processors). During the first Bruck phase, the r

d
 and o

d
 are sent back to the corresponding processor from where 

the data originated, and then, during the second Bruck phase, all the data (i.e. the appropriate lines of the SAM 
file) are sent to the processor that has been assigned to write the data. During the second phase the original 
data is copied into the memory buffer and then exchanged.

Note that when the SAM file contains several chromosomes, each chromosome is sorted successively. Therefore, 
the upper memory bound depends on the size of the whole SAM file plus internal structures plus the size of the 
biggest chromosome. In this case, the total amount of memory used is around 1.5 the size of the original SAM file 
if the file contains reads on all the chromosomes of the human genome. If the SAM file contains only one chromo-
some, then the total amount of memory required is 2.5 the size of the original SAM file. To be efficient, the sorting 
requires a number of cores being a power of 2. We name our code for sorting mpiSORT (Jarlier et al., 2020b).
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Benchmark
We benchmarked mpiBWA and mpiSORT on the HG001 NA12878 sample from GIAB (Zook et al., 2014). This 
sample is a whole genome with 300X depth of coverage composed of 2.13 billions 2x250 pair-ended reads. The 
BAM file has been downloaded from:

url: ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/NA12878/

folder: NIST_NA12878_HG001_HiSeq_300x/NHGRI_Illumina300X_novoalign_bams/

The BAM file has been converted into FASTQ files using bedtools bamtofastq. In order to test the scal-
ability of our software with respect to the size of the data, we downsampled the original 300X sample to obtain 
FASTQ files corresponding to depths of coverage ranging from 28X to 300X with a geometric progression 
with a common ratio of 1.6. The sequences have been aligned on the human genome GRCh38. 

We ran the benchmark on a computing cluster equipped with Intel Xeon® Gold 6148 CPU @ 2.40GHz (Skylake 
architecture). The nodes are interconnected with Intel® Omni Path Architecture (OPA) of 100 Gbps speed. The  
parallel file system is BeegFS with two servers. We compile the programs with GCC 8.3 and use Open MPI 3.1.4. Jobs 
have been submitted using slurm scheduler.

Implementation
The code has been written in C programming language using MPI directives. mpiBWA encapsulates the  
original BWA-MEM version 7.15. Two implementations for mpiBWA exist: the first outputs one SAM file with 
all the chromosomes, the second (named mpiBWAByChr) outputs one SAM file per chromosome. Moreover,  
mpiBWA comes along with mpiBWAIdx, which is responsible for creating a binary image of the reference  
genome. This image is subsequently loaded in the shared memory by mpiBWA. Then, every mpiBWA process on 
the same computing node will share the same genome reference in order to save memory usage. mpiBWAIdx  
does not need MPI to run.

Operation
As our software rely on the MPI standard, mpirun must be available to run the program. Several MPI implementa-
tions exist such as mpich, open-mpi or Intel® MPI Library.

Use cases
The Figure 7 shows the scalability of both mpiBWA (with the mpiBWAByChr implementation) and mpiSORT 
with varying sample sizes (from 28X to 300X) using computation distributed over 128 cores. The output files  
from mpiBWAByChr have been used as input by mpiSORT. Both algorithms efficiently scale as the input data 
are bigger, the walltime to process the data being proportional to their input size. We assessed how much time was  
spent on pure computation versus IO (i.e. reading the input files and writing the output files): mpiBWA spent 
more than 95% of its walltime in computation while mpiSORT spent between 50% to 60% in IO. The walltime to  
analyze the biggest sample of 300X is less than 8h hours for the alignment and less than one hour for the sorting.

The Figure 8 compares the performance of both mpiBWA (with the mpiBWAByChr implementation) and  
mpiSORT with varying number of cores and nodes with respect to the classical tools BWA-MEM version 7.15 and 
samtools version 1.10. On a single node, the walltimes are very similar between BWA-MEM and mpiBWA what-
ever 8 or 16 threads are used with BWA-MEM to process the 28X sample. With mpiBWA, increasing the number  
of cores, either on the same node or over multiple nodes (from 2 to 8) allowing the distribution of the computa-
tion up to 128 cores, shows a linear scalability (the walltime is divided by 2 when the number of cores is doubled)  
that follows the expected theoretical walltimes. For the sorting, mpiSORT is very efficient since it offers a speed-
up of 6.4 over samtools using 8 threads (or cores) on a single node to process the SAM file of the chr16 from the  
300X sample. Doubling the number of threads did not change the walltime with samtools. With mpiSORT,  
increasing the number of cores, either on the same node or over multiple nodes, shows a linear scalability.

mpiBWA
The first step consists in building the binary image of the reference genome that will be used in the shared 
memory by mpiBWA:

 mpiBWAIdx hg19.small.fa

This creates the file myReferenceGenome.fa.map.
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Figure  7.  Walltimes  for  the  alignment  and  sorting  varying  the  sample  sizes. The FASTQ files are first 
aligned with mpiBWAByChr, SAM files are generated as outputs and then sorted with mpiSORT and -u option. 
128 cores have been used over 16 and four nodes with mpiBWA and mpiSORT, respectively. The black dots represent 
the theoretical values of the walltime with respect to the 300X depth of coverage being set as the reference.
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Figure 8. Walltimes for the alignment of the 28X depth of coverage sample and sorting of the chr16 from 
the 300X depth of coverage sample varying the number of cores. The number in brackets indicates how many 
threads (T) on how many nodes (N) have been launched, the number of cores used being the product of the two 
values. The black dots represent the theoretical values of the walltime with respect to the 8 cores value of the MPI 
implementation being set as the reference.
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Importantly, mpiBWAIdx requires the following files that are generated by BWA index:

•   myReferenceGenome.fa.sa

•   myReferenceGenome.fa.bwt

•   myReferenceGenome.fa.ann

•   myReferenceGenome.fa.pac

•   myReferenceGenome.fa.amb

The .map file only needs to be generated once. Then, mpiBWA is executed with the mpirun program,
for example:

 mpirun -n 2 mpiBWA mem -t 8 -o ./HCC1187C.sam hg19.small.fa \
     HCC1187C_R1_10K.fastq \
     HCC1187C_R2_10K.fastq

This command launches two MPI processes with eight BWA threads each (16 cores will be used). If you want to split 
the results of the alignment by chromosome, use mpiBWAByChr, for example:

 mpirun -n 2 mpiBWAByChr mem -t 8 -o ./HCC1187C.sam hg19.small.fa \
     HCC1187C_R1_10K.fastq \
     HCC1187C_R2_10K.fastq

The total memory used during the alignment if approximately the size of the .map file plus the size of 
the SAM chunks loaded by each BWA tasks. A BWA thread takes around 300 MB of memory.

mpiSORT
From the results obtained with mpiBWAByChr, each SAM files can be sorted as follows:

 mpirun -n 4 mpiSORT -u chr1.sam ${HOME}/mpiSORTExample

This command launches four MPI processes.

As mpiSORT requires a the entire input SAM file to be loaded into the memory, the program is memory bounded.  
Therefore, a lot of attention has to be paid to define how many cores are needed to process the data. For  
example, let’s assume that the computing cluster consists of nodes with 190 GB of RAM memory with 40 cores 
each (thus 4.75 GB per core is available but this value can be rounded to the lower limit of 4.5 GB to leave some  
free memory on the node). To choose the number of cores, the following rule has to be applied: the total memory for 
sorting a SAM file that contains only one chromosome is around 2.5 times the size of the SAM file. For instance,  
sorting a chr1.sam file of size 209 GB with 4.5 GB per core requires 128 cores, for a of size 110 GB it requires  
64 cores. We remind that the bitonic sort algorithm requires a number of cores that is a power of 2, this is the reason 
why the number of cores has to be set to the upper bound to the closest power of 2.

Conclusion
In this paper, we described parallel algorithms (Jarlier et al., 2020a; Jarlier et al., 2020b) to process sequencing 
data that fully benefit from high-performance architecture with a total reproducibility and linear speed-ups. Our 
implementation is based on bitonic sorting network, Bruck algorithm and IO optimizations with MPI directives. 
MPI efficiently removes POSIX barriers like the one-file per process or thread concurrent access. Indeed, this dif-
fers from other implementations using embarrassingly parallel approaches (Decap et al., 2015; Kawalia et al., 2015; 
Puckelwartz et al., 2014) that rely on the MapReduce paradigm: in this case, input files are first split into small 
chunks, each one  being analyzed by a process, and the different output files are then merged into a single output. 
With MPI, splitting the input file is not necessary since it can efficiently handle concurrent access on a single file.

The scalability of the software strongly relies on the underlying hardware architecture, such as the low latency inter-
connection and parallel filesystem. This implies that the hospitals or institutions need a powerful state-of-the-art  
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informatic architecture that is either available locally or provided with mutualized resources through national infra-
structures that are certified to process healthcare data. Interestingly, our implementation allows the generation of 
aligned read files for each chromosome that can be further sorted in parallel thus reducing the time of downstream  
analysis whenever an analysis per chromosome is possible. The performance we obtained showed that MPI  
is very relevant for the field of genomics. The tools we developed pave the way towards the use of whole genome 
sequencing in daily clinics in order to meet the deadline and deliver results to the clinician in real-time for  
precision medicine as the time to delivery can be reduced to several minutes if the processing is distributed over  
several hundreds of cores.
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Jarlier and co-authors developed an efficient method of short reads mapping and sorting through 
utilizing Message Passing Interface(MPI) . Specifically, they implement an MPI wrapper to the well-
known mapper BWA-MEM existing method, named mpiBWA. They then implement a parallel 
version of the sorting method called mpiSORT through the implementation of bitonic sort. The 
authors have shown mathematically that their sorting method is �� (log2n) time. They have also 
done benchmark experiments to compare their software to BWA and samtools. They 
demonstrated that their tools could archive linear scalability by adding computing cores to the 
system. The authors did a great job of explaining the process through figures. They have also 
provided sample command lines to use the software in action. I do wish the authors would could 
also provide pseudo-code of their implementation, which will help readers to understand the 
process better. Another minor point is that given the software's performance strongly relies on 
the underlying hardware architecture, and it would also be helpful for the authors to provide 
helper script(s) that help to calculate the number of cores to use on particular data input and 
computing infrastructure. 
 
In conclusion, the authors demonstrate that using bitonic sorting network, Bruck algorithm and 
IO optimizations with MPI directives can improve the performance of sequencing data handling.
 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
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replication of the software development and its use by others?
Partly

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: bioinformatics and medical informatics

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 02 Oct 2020
Philippe Hupé, Institut Curie, Paris, France 

First, we would like to thank the second reviewer. We are very grateful for 
her time and very valuable comments that significantly helped to 
improve the article and the documentation of the tools. 
 
You will find below a detailed answer to the different points that we have 
addressed in the revised manuscript. 
 
Best regards, 
 
Frédéric Jarlier and Philippe Hupé 
 
Detailed response to the reviewer2's comments 
 
> I do wish the authors would could also provide pseudo-code of their implementation, 
which will help readers to understand the process better. 
 
Indeed to facilitate the reading and understanding of both mpiBWA and mpiSORT 
algorithms, we added 2 figures with the pseudo-code. 
 
 
> Another minor point is that given the software's performance strongly relies on the 
underlying hardware architecture, and it would also be helpful for the authors to provide 
helper script(s) that help to calculate the number of cores to use on particular data input 
and computing infrastructure 
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In order to help the user when writing submission scripts to a computing 
cluster, we added two scripts in the example folder of the github repository 
of mpiSORT. 
These scripts allow the users to explore the different partitions of the 
computing cluster (getSlurmNodesInfo.sh) and give advices in term of resources needed to 
run the MPI program (informaticResources.py). 
We also updated the benchmarking section of the documentation with examples.  
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Thanks to the authors for addressing point-by-point each comment. We have no further 
comments to make.
 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
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Version 1
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Jarlier and colleagues introduce their work on parallelizing popular bioinformatics programs, 
which have become the bottleneck for the current scenario of massive NGS data generation even 
in clinical settings. 
 
Authors describe two MPI implementations for the alignment and sorting steps used as part of 
the NGS data preprocessing in order to better take advantage of parallel architectures. Algorithms 
are well described and the documentation is good, making really easy the reproducibility of their 
results 1. In addition, authors provide software containers (singularity), which can be used in 
controlled environments including HPC installations. 
 
Despite the existing benchmarking efforts carried by authors, a scalability study is missing. Ideally, 
benchmarking should include varying resources allocation so readers can benefit from such 
comparison. We would like to suggest, as you have done with varying deep coverage sizes, you 
make the scalability study through a varying number of processors e.g. 4, 8, 16, 32, 64, 128. It 
would be also interesting to use as a baseline the normal execution of those programs to illustrate 
the improvement of the MPI implementation regarding the standard approaches. This way, it 
would be possible to answer the following questions:

Is the MPI version faster when using a single node? 
 

○
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Otherwise, from which point is better to use the MPI version than the most common 
software. I.e. in case the MPI is 2 times slower but scales linearly, the execution time would 
be shorter when giving the MPI implementation at least 2 nodes.

○

This way, the potential users would know better the scenarios in which using this implementation 
becomes more interesting. 
 
You have mentioned there are similar approximations to this problem. However, you just mention 
them in the conclusions. Wouldn’t it make sense to discuss similarities and differences with other 
implementations in the text? 
 
Apart from the benchmarking component, it would be interesting to further discuss the scenarios 
where implementations like this one will be used. It is not clear that clinical settings will have 
internally very powerful computational facilities for their daily use. 
 
Finally, we would like to mention some minor points related to the text itself. 
 
Abstract: Moving from the general problem to the specific solution without mentioning that the 
NGS data preprocessing (alignment and sorting) represent major bottlenecks to timely results 
deliver for diagnostic use. 
 
Methods:

Alignment.  reference genome file > indicate a version. 
 

○

Sorting section. Apparently there is a miswriting of the theoretical computational cost of 
the algorithm > O (n log2 n) that is higher than O (n log n).

○

Minor:
Introduction: data each days > data each day. 
 

○

Introduction:  align and sort the sequencing data, we developed software >  align and sort 
sequencing data, we have developed software. 
 

○

Sorting section: by a pair of processors with performs a compare-split operation > by a pair 
of processors which performs a compare-split operation.

○
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Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Yes
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Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Partly

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: bioinformatics

We confirm that we have read this submission and believe that we have an appropriate level 
of expertise to confirm that it is of an acceptable scientific standard, however we have 
significant reservations, as outlined above.

Author Response 12 Jun 2020
Philippe Hupé, Institut Curie, Paris, France 

First, we would like to thank the reviewers. We are very grateful for their time, contribution 
and very valuable comments that significantly helped to improve the article and the 
documentations of the tools. 
 
You will find below a detailed answer to the different issues that we have addressed in the 
revised manuscript. 
 
Best regards, 
 
Frédéric Jarlier and Philippe Hupé 
 
Detailed response to the reviewer1's comments 
 
>  Despite the existing benchmarking efforts carried by authors, a scalability study is 
missing. Ideally, benchmarking should include varying resources allocation so readers can 
benefit from such comparison. We would like to suggest, as you have done with varying 
deep coverage sizes, you make the scalability study through a varying number of 
processors e.g. 4, 8, 16, 32, 64, 128. 
 
Indeed, this benchmark varying the number of cores was clearly missing. Therefore, a 
scalability study has been added for both mpiBWA and mpiSORT using 8, 16, 32, 64, 128 
cores. The results of this benchmark are described in the section "Use cases" and in Figure 
6. We took this opportunity of this new benchmark to use the last version (1.1) of our MPI 
implementations (Figure 5have been therefore updated). 
 
 
> It would be also interesting to use as a baseline the normal execution of those programs 
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to illustrate the improvement of the MPI implementation regarding the standard 
approaches. 
 
As suggested, we also compared our MPI implementations with respect to a reference 
baseline using the traditional tools (bwa and samtools). The walltimes of the reference 
baseline are presented in the section "Use cases" and in Figure 6. 
 
> This way, it would be possible to answer the following questions: 
>   
>      Is the MPI version faster when using a single node? 
>        
 
The results show that the walltimes are similar between mpiBWA and bwa. mpiSORT is 
much faster than samtools offering a speed-up over 6. 
 
>      Otherwise, from which point is better to use the MPI version than the most common 
software. I.e. in case the MPI is 2 times slower but scales linearly, the execution time would 
be shorter when giving the MPI implementation at least 2 nodes. 
>   
 
The results of the scalability benchmark and the comparison with respect to the traditional 
tools demonstrate that both mpiBWA and mpiSORT perform efficiently on a single node and 
on multiple nodes. 
 
>  This way, the potential users would know better the scenarios in which using this 
implementation becomes more interesting. 
>   
 
The results of the scalability benchmark show that the MPI implementation can be very 
versatile. 
 
Our MPI implementations can easily address the two typical scenarii:

when time-to-delivery matters, the scalability allows the processing of the data very 
quickly using multiple cores and nodes.

○

when the throughput matters (i.e. number of samples that can be analyzed at the 
same time), you can process a sample on a single node.

○

 
We also added a benchmark section in the documentation of the github repository such 
that the user can reproduce the benchmark to figure out what is the best scenario 
according to the computing infrastructure that is used. The documentations on the github 
repository describe how to assess the memory and cpu usage for the traditional tools and 
the MPI implementations as we did for the scalabitity study. The documentation is available 
here:

https://github.com/bioinfo-pf-
curie/mpiSORT/blob/master/docs/README.md#benchmark

○

https://github.com/bioinfo-pf-
curie/mpiBWA/blob/master/docs/README.md#benchmark

○
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>  You have mentioned there are similar approximations to this problem. However, you just 
mention them in the conclusions. Wouldn’t it make sense to discuss similarities and 
differences with other implementations in the text? 
 
We added in the conclusion that: 
 
Indeed, this differs from other implementations using embarrassingly parallel approaches 
(Puckelwartz et al., 2014; Decap et al., 2015; Kawalia et al.,2015} that rely on the MapReduce 
paradigm: in this case, input files are first split into small chunks, each one being analyzed by a 
process, and the different output files are then merged into a single output. With MPI, splitting 
the input file is not necessary. 
 
>  Apart from the benchmarking component, it would be interesting to further discuss the 
scenarios where implementations like this one will be used. It is not clear that clinical 
settings will have internally very powerful computational facilities for their daily use. 
> 
 
 We agree that the access to a powerful and up-to-date computing infrastructure may be a 
bottleneck. We added in the conclusion of manuscript: 
 
This implies that the hospitals or institutions need a powerful state-of-the-art informatic 
architecture that is either available locally or provided  with mutualized resources through 
national infrastructures that are certified to process healthcare data. 
  
>  Finally, we would like to mention some minor points related to the text itself. 
>   
>  Abstract: Moving from the general problem to the specific solution without mentioning 
that the NGS data preprocessing (alignment and sorting) represent major bottlenecks to 
timely results deliver for diagnostic use. 
 
We agree that the Abstract needed to be improved. It has been substantially modified in the 
revised version. 
 
>  Methods: 
>   
>      Alignment.  reference genome file > indicate a version. 
>       
 
We added in the text "The reference genome of your choice" as the user can use any genome. 
  
>      Sorting section. Apparently there is a miswriting of the theoretical computational cost 
of the algorithm > O (n log2 n) that is higher than O (n log n). 
 
The complexity are correct. Its is O (n log2 n) for the bitonic sort, it is higher that other sort 
algorithms but it can be easily parallelized. 
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>   
>  Minor: 
>   
>      Introduction: data each days > data each day. 
>        
>      Introduction:  align and sort the sequencing data, we developed software >  align and 
sort sequencing data, we have developed software. 
>        
>      Sorting section: by a pair of processors with performs a compare-split operation > by a 
pair of processors which performs a compare-split operation. 
> 
 
The typos have been corrected.  
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