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ABSTRACT Pseudomonas sp. strain MWU13-2860 was isolated from the rhizosphere
of wild cranberry plants and is not closely related to Pseudomonas spp. frequently
isolated from soil. Its genome is 7.2 Mbp, with 61.24% G�C content, and contains
homologs that may encode the carbohydrate-degrading enzymes xylanase, laccase,
cellulase, alginate lyase, amylase, and chitinase.

Pseudomonas is a large and diverse genus whose members produce secondary
metabolites (1) that influence the microbes and macrobiota, as well as the biogeo-

chemical processes of soil (2–8). However, little information is available about which
members of the genus are present or about the functional roles of Pseudomonas spp.
in wetland bog soils. A number of previously uncharacterized Pseudomonas spp. were
isolated from wild cranberry bogs at the Cape Cod National Seashore in Massachusetts
as part of a culture-dependent survey of bog soil bacteria. Here, we report the draft
genome sequence of Pseudomonas sp. strain MWU13-2860, an isolate that by 16S RNA
phylogeny (9, 10) is apparently not closely related to other Pseudomonas spp. com-
monly isolated from soil or plant tissues (Fig. 1).

Wild cranberry bog soil and roots were seeded onto King’s medium B (KMB) agar
supplemented with 50 �g ml-1 cycloheximide and ampicillin and grown at 26°C. Isolate
MWU13-2860 was single-colony purified 3 times on KMB agar and grown overnight in
KMB broth cultures for genomic DNA (gDNA) extraction (DNeasy blood and tissue kit;
Qiagen). The genomic DNA of MWU13-2860 was sheared to approximately 600 bp by
ultrasonication (Covaris M220), and libraries were generated on an Apollo 384 liquid
handler (Wafergen) for Illumina sequencing using a library preparation kit (catalog
number KK8201; Kapa Biosystems). DNA fragments were end repaired and A tailed
before ligation with combination indexes/adapters (catalog number 520999; Bioo).
Adapter-ligated DNA fragments were prepared for amplification with Kapa HiFi enzyme
with AMPure beads (catalog number A63883; Agencourt Bioscience/Beckman Coulter,
Inc.). The resultant libraries were assessed on an Agilent Bioanalyzer and by quantitative
PCR (catalog number KK4835, library quantification kit; Kapa). Samples were then
pooled and sequenced in 2 � 300- and 2 � 150-bp paired-end flow cells on the MiSeq
platform. The 2 � 300- and 2 � 150-bp read files were combined, partially assembled,
and annotated on the PATRIC Bacterial Bioinformatics Resource Center website (http://
patricbrc.org) using the Comprehensive Genome Analysis Pipeline, with default param-
eters (11). The autoassembly function of PATRIC runs BayesHammer, followed by Velvet,
IDBA, and SPAdes (12–15). The genomic sequence had a coverage of 126� and
consisted of 7,205,080 bp on 51 contigs (61.24% G�C content). The N50 value is
307,730 bp, and the largest contig is 752,227 bp.
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Annotation in the PATRIC pipeline uses RASTtk (16). Pseudomonas MWU13-2860
contained 8,978 protein-coding genes. The genome also contains 61 tRNA and 6 rRNA
operons. Most strikingly, MWU13-2860 contains homologs for multiple putative
polysaccharide-degrading genes, including those for xylanases, laccases, and chitinases,
as well as the hydrolytic exoenzymes cellulase, alginate lyases, and amylases. These
putative genes suggest that this microorganism plays a role in the turnover of complex
carbohydrates in the rhizosphere and soil of wetland bogs. The genome of this
bacterium also possesses a number of potential virulence factor genes, including those
for several proteinase inhibitors, type II and III secretion systems, and type VI secretion
system lipoprotein.

FIG 1 An evolutionary history (16S rRNA phylogeny) for Pseudomonas spp. commonly associated with
soil and plant tissues, including isolate MWU13-2860, was inferred in MEGA7. Sequences were aligned by
MUSCLE, and a maximum likelihood tree was constructed, with complete deletion of gaps and missing
data, based on the Kimura 2-parameter model. The tree with the highest log likelihood (-4,713.97) is
shown, with bootstrap values based on 500 iterations next to the branches. An initial tree was obtained
by applying neighbor-joining and BioNJ algorithms to pairwise distances using the maximum composite
likelihood (MCL) approach, followed by selecting the topology with a superior log-likelihood value. A
discrete gamma distribution to model evolutionary rate differences among sites (�G, parameter �
0.1370) and a rate variation model that allowed for some sites to be evolutionarily invariable ([�I],
60.10% of the sites) were used. Except for the Escherichia coli outgroup, the tree is drawn to scale, with
branch lengths measured in the number of substitutions per site. A total of 1,320 positions were used
in the final data set.
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Data availability. This whole-genome shotgun project has been deposited at

DDBJ/EMBL/GenBank under the accession number PPYB00000000 for Pseudomonas
MWU13-2860. The version described in this paper is PPYB02000000. The Sequence
Read Archive (SRA) accession number is SRX4454450.
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