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ABSTRACT

Exon skipping using antisense oligonucleotides
(ASOs) has recently proven to be a powerful tool for
mRNA splicing modulation. Several exon-skipping
ASOs have been approved to treat genetic dis-
eases worldwide. However, a significant challenge
is the difficulty in selecting an optimal sequence
for exon skipping. The efficacy of ASOs is often
unpredictable, because of the numerous factors in-
volved in exon skipping. To address this gap, we have
developed a computational method using machine-
learning algorithms that factors in many parameters
as well as experimental data to design highly effec-
tive ASOs for exon skipping. eSkip-Finder (https:
//eskip-finder.org) is the first web-based resource
for helping researchers identify effective exon skip-
ping ASOs. eSkip-Finder features two sections: (i)
a predictor of the exon skipping efficacy of novel
ASOs and (ii) a database of exon skipping ASOs.
The predictor facilitates rapid analysis of a given set
of exon/intron sequences and ASO lengths to iden-
tify effective ASOs for exon skipping based on a ma-
chine learning model trained by experimental data.
We confirmed that predictions correlated well with

in vitro skipping efficacy of sequences that were not
included in the training data. The database enables
users to search for ASOs using queries such as gene
name, species, and exon number.

GRAPHICAL ABSTRACT

INTRODUCTION

Exon skipping is a strategy that uses antisense oligonu-
cleotides (ASOs) to exclude specific exons from the ma-
ture mRNA transcript of a given gene. ASOs are short nu-
cleic acid analogs of diverse chemistry that recognize tar-
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Figure 1. Overview of eSkip-Finder.

get mRNA sequences by base pairing. Once hybridized to
their targets, ASOs act as steric blockers that prevent splic-
ing factors and other critical proteins from accessing these
sequences (1). It is through this mechanism that ASOs could
be designed to modulate splicing, for example, by target-
ing exonic splice enhancer sequences. Given its simplic-
ity and versatility, exon skipping has evolved to become a
promising treatment for various genetic disorders, particu-
larly muscular dystrophies (2,3).

Exon skipping is showing promise as a therapy to treat
Duchenne muscular dystrophy (DMD) and other genetic
diseases (1). Most cases of DMD are caused by large, out-
of-frame deletions in the DMD gene, leading to an absence
of the sarcolemma-stabilizing dystrophin protein in mus-
cle cells (4–6). Exon skipping was adapted to make out-of-
frame DMD mutations in-frame by removing incompatible
exons from the final transcript. In this manner, exon skip-
ping facilitates the production of shorter but partially func-
tional dystrophin protein in muscle, ameliorating DMD
pathology. Recent years have seen the approval of four exon-
skipping ASOs for DMD therapy by the U.S. Food and
Drug Administration (FDA): eteplirsen (2016, Sarepta),
golodirsen (2019, Sarepta), viltolarsen (2020, NS and NS
Pharma), and casimersen (2021, Sarepta) (7–9). In addition,
the FDA approved the first n-of-1 clinical trial with an exon-
skipping ASO named milasen to treat a single patient with
Batten’s disease in 2018 (10).

While these support the outlook of exon skipping as
a viable therapeutic strategy for genetic diseases, there is
much to improve especially regarding efficacy. For instance,
eteplirsen could only restore up to about 1% dystrophin of
healthy levels after 180 weeks of treatment in DMD pa-
tients (7). Previous studies from our group demonstrate the
utility of in silico methods to design more effective ASOs
(11–14). In one study, we developed an ASO with 12-fold
higher in vitro exon skipping efficacy than eteplirsen using
an in silico predictive tool based on statistical modelling
(12). Such work and others have since uncovered numer-

ous factors that could influence the exon skipping efficacy
of an ASO including length, proximity to splice sites, target
mRNA secondary structure, chemistry, and binding energy,
among others (13,15–19)––all of which would be useful con-
siderations in ASO design. However, previously developed
online tools lack the capacity to simultaneously integrate
many parameters critical to ASO design.

To address this gap, we previously developed a compu-
tational method using a mathematical model based on 60
descriptor candidates as well as experimental data to design
highly effective ASOs for exon skipping (13). Here, we im-
proved this framework further using machine-learning al-
gorithms and have developed eSkip-Finder, a web server
to aid the design of effective ASOs for exon skipping. The
overview of the webserver is presented in Figure 1. One
part of eSkip-Finder is a first-of-its-kind comprehensive
database of exon skipping ASOs for DMD and other genes.
This database was populated using published scientific lit-
erature and patents as sources, and contains information
such as ASO chemistry, ASO sequence, and experimen-
tally obtained skipping efficacies. The second part is a first-
of-its-kind machine learning-based application to predict
highly effective ASO sequences for exon skipping, based on
a training set of 566 skipping values from 209 unique ASOs
extracted from the database above. Here, we describe the
features of eSkip-Finder in-depth and outline the ways by
which it can be used for the design of exon skipping ASOs.

RESULTS

Construction of database

A database of exon-skipping ASOs and their skipping effi-
cacy was built by manually collecting and curating research
papers and patents written in English. The database com-
piles data on exon-skipping ASOs for various genes, in-
cluding their sequence, target exon, chemistry, literature in-
formation, and experimental information such as the ASO
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Table 1. Selected features

Selected features for PMO Selected features for 2OMe

Name Description FIa Name Description FIa

ASO concentrationb Concentration of
oligomer used in the
experiment

0.64±0.14 ASO concentrationb Concentration of
oligomer used in the
experiment

0.11±0.05

Exon v intron %GC after
blocking by oligo

%GC in exon when
blocked by oligo / %GC 5′
intron 200 bases upstream

0.68±0.15 GCs (number of) Total GCs in ASO
sequence

0.67±0.20

dG (50BaseFlanksAround-
Target)

Predicted binding energy
(21) of ASO to the target
sequence plus 50-base
flanks (13)

0.66±0.16 ACP Distance in bases from the
splice acceptor site to the
center of the target site
(17)

0.49±0.21

ACC LAST15 Predicted accessibility
scores (22) of the 3′ end of
the target (last 15 bases)

0.32±0.09 %GC of exon when
blocked by oligo

Total remaining %GCs of
target exon sequence when
blocked by ASOs

0.46±0.11

niscore per base Cumulative NI score (24)
divided by the number of
exon bases.

0.18±0.09

ACC LAST8 Predicted accessibility
scores of the 3′ end of the
target (last 8 bases)

0.12±0.07

aThe feature importance (FI) was calculated by the permutation importance method (23).
bThe ASO concentration used in the experiment is always included as one of the features of the predictive model.

Figure 2. Predictive performance of SVR models for PMO and 2OMe. Symbols represent oligomer concentration (c) given in �M used in the experiment.
The coefficient of determination, R2, was calculated by linear regression (black lines).

concentration, the cell type used for testing, and the tar-
get species. The database statistics as of 15 April 2021, are
shown in Supplementary Table S1. The complete dataset ex-
tracted for each ASO in the database is provided in the web
server.

Predictive model of exon-skipping efficacy

We extracted skipping data that met the following crite-
ria from the database to prepare our training and test
datasets: (i) an absolute skipping efficacy was given by a
numerical value; (ii) ASO concentration used in the exper-
iment was given; (iii) rhabdomyosarcoma (RD) cells were

used in the experiment to normalize experimental condi-
tions; (iv) the skipping efficacy was not given as an EC50
value; (v) an ASO sequence that was sequential (not dual-
targeting) in the pre-mRNA of dystrophin was used. Af-
ter filtering the database, 426 skipping values from 109
unique ASO sequences and 228 skipping values from 124
unique ASO sequences were obtained for ASOs with phos-
phorodiamidate morpholino oligomers (PMO) and 2′-O-
methyl oligonucleotides (2OMe), respectively. Predictive
models were built for the PMO and 2OMe separately. We
split the filtered data into a training set (90%) and a test
set (10%), as shown in Supplementary Table S2, under
two conditions, that is, training and test sets reproduced
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Figure 3. Case study on predicting skipping ASOs for exon 44 of the dystrophin pre-mRNA. (A) Input image of the predictive model. A user specifies the
length of ASO and its chemistry (PMO or 2OMe). The upstream (200 bases) and downstream (200 bases) intron sequences of the target exon are required
in addition to the target exon sequence, which are used to calculate features. (B) Output image. The relative exon-skipping efficacy is predicted by scanning
the target exon sequence with a window size of the length specified by the user. Moving averages with 15 bases are plotted with a dashed line. (C) Efficacy
of dystrophin exon 44 skipping observed under identical experimental conditions (cell type used = healthy primary human myotubes, ASO chemistry =
PMO, ASO length = 30, ASO concentration = 0.5 �M) as previously reported (15), which is not included in the training dataset. The correlation between
predicted and experimental skipping efficacies R2 was 0.7 as shown in Supplementary Figure S3.

a similar distribution of skipping efficacy, and they did
not share identical sequences, as shown in Supplementary
Figure S1.

We built a predictive model for the relative skipping effi-
cacy of a target exon of dystrophin mRNA using the sup-
port vector regressor (SVR) implemented in scikit-learn
version 0.23.2 (20). First, 32 features, tabulated in Table 1
and Supplementary Table S3, were prepared by feature en-
gineering of ASO and/or its target exon sequences such
as predicted binding score between the ASO and its tar-
get exon (21), predicted local RNA structure at the target
site (22), and GC contents of the ASO and target exon. We
also included the ASO concentration used in experimental
studies as a feature. More details on the features used are
provided elsewhere (13). Each feature was standardized be-
fore fitting the model. To select fewer important features, we
built all possible combinations of the SVR model that used
fewer than seven features, where the experimental ASO con-
centration was always included as a selected feature. The
upper limit number of features, six, was chosen according
to the available computational resources. For each model,
the hyper-parameter optimization by a grid search for C,
gamma, and epsilon was conducted with 100-time repeated
splitting of the training data into 80% used to build a model
and 20% used to validate the built model under the condi-
tion that they did not share identical sequences. Finally, we
selected the SVR model that yielded the highest average R2

of the validation sets as shown in Supplementary Figure S2,
the features of which are given in Table 1. The selected mod-
els for PMO and 2OMe were applied to the test set, yielding
R2 values of 0.6 and 0.7, as shown in Figure 2. The correla-

tion between experimental and predicted skipping efficacy
was confirmed for various concentrations. The contribu-
tions of each feature to predictive performance (feature im-
portance) were estimated by permutation importance (23).
The importance of each feature was defined by decrease of
the R2 value when the feature in the test set was permu-
tated randomly. The feature importance calculation was re-
peated 100 times and the averaged values are shown in Ta-
ble 1. The current model is focused on the prediction of the
relative skipping efficacy of ASOs. However, other param-
eters should be also considered when designing ASOs, one
of which is the off-target effect. Other bioinformatics tools
such as SKIP-E (https://skip-e.geneticsandbioinformatics.
eu/) could complement it.

Implementation

The selected predictive models (Figure 2 and Table 1) are
implemented on the web server with scikit-learn (20). Fea-
tures of local accessibility scores of target exon sequences
and binding scores between ASOs and their target exons
were calculated with the ViennaRNA Package (22) and
RNAstructure (21). The dictionary of NI scores was re-
trieved from Ref. (24). The concentrations of ASOs were
set to typical values, that is, 3 �M for PMO and 0.1 �M for
2OMe. The database was built using PostgreSQL.

Case study

Database search. The web server provides an intuitive
search interface of relevant information on exon skipping

https://skip-e.geneticsandbioinformatics.eu/
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efficacy with search queries, such as gene name, species, and
exon number.

Prediction of the efficacy of exon-skipping ASOs. The web
server provides a prediction of the relative exon-skipping ef-
ficacy of a target exon specified by a user as shown in Figure
3 under the following conditions: 3 �M of PMO or 0.1 �M
of 2OMe introduced into cultured cells.

In this case study, we targeted exon 44 of the dystrophin
pre-mRNA using a single ASO, the chemistry and length
of which were PMO and 30-mer, respectively. A user needs
to input 200 bp of upstream and 200 bp of downstream in-
tron sequences in addition to the target exon sequence, as
this sequence information is required to calculate the fea-
tures. The prediction took 79 s. We obtained the promising
regions for exon 44 skipping, that is, the regions between
10–20 and 50–80. We found that these regions were indeed
included in experimentally observed effective ASOs (15).

As a validation of predicting exon skipping efficiency be-
yond DMD, we present a test case of PMO-mediated exon
73 skipping of collagen type VII alpha 1 chain (COL7A1)
(Supplementary Table S4). (25). Although the experimen-
tal conditions (e.g. ASO concentration) were different, we
found that predicted and experimental values correlated
well with each other, and the model correctly ranked the
efficacy of the three PMOs, indicating a potential predic-
tive ability of the current model for other genes. Currently,
the amount of available experimental data of exon skipping
for other genes is limited. To examine the applicability of
our model to other genes, we plan to further validate with
various genes when sufficient data become available. We ex-
pect that adding various genes and oligo chemistries to the
database will help expand the applicability of the predictive
model further.
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