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Dissociable neural mechanisms track evidence
accumulation for selection of attention versus
action
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Decision-making is typically studied as a sequential process from the selection of what to

attend (e.g., between possible tasks, stimuli, or stimulus attributes) to which actions to take

based on the attended information. However, people often process information across these

various levels in parallel. Here we scan participants while they simultaneously weigh how

much to attend to two dynamic stimulus attributes and what response to give. Regions of the

prefrontal cortex track information about the stimulus attributes in dissociable ways, related

to either the predicted reward (ventromedial prefrontal cortex) or the degree to which that

attribute is being attended (dorsal anterior cingulate cortex, dACC). Within the dACC,

adjacent regions track correlates of uncertainty at different levels of the decision, regarding

what to attend versus how to respond. These findings bridge research on perceptual and

value-based decision-making, demonstrating that people dynamically integrate information in

parallel across different levels of decision-making.
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Naturalistic decisions allow an individual to weigh their
options within a particular task (e.g., how best to word the
introduction to a paper) while also weighing how much to

attend to other tasks (e.g., responding to e-mails). These different
types of decision-making have a hierarchical but reciprocal rela-
tionship: decisions at higher levels inform the focus of attention at
lower levels (e.g., whether to select between citations or email
addresses), while, at the same time, information at lower levels
(e.g., the salience of an incoming email) informs decisions
regarding which task to attend. Critically, recent studies suggest
that decisions across these levels may occur in parallel, con-
tinuously informed by information that is integrated from the
environment and from one’s internal milieu1,2.

Research on cognitive control and perceptual decision-making
has examined how responses are selected when attentional targets
are clearly defined (e.g., based on instruction to attend a stimulus
dimension), including cases in which responding requires accu-
mulating information regarding a noisy percept (e.g., evidence
favoring a left or right response)3–7. Separate research on value-
based decision-making has examined how individuals select
which stimulus dimension(s) to attend in order to maximize their
expected rewards8–11. However, it remains unclear how the
accumulation of evidence to select high-level goals and/or
attentional targets interacts with the simultaneous accumulation
of evidence to select responses according to those goals (e.g.,
based on the perceptual properties of the stimuli). Recent work
has highlighted the importance of such interactions to under-
standing task selection12–15, multi-attribute decision-making16,17,
foraging behavior18–20, cognitive effort21,22, and self-control23–25.

While these interactions remain poorly understood, previous
research has identified candidate neural mechanisms associated
with multi-attribute value-based decision-making8,11,26 and with
selecting a response based on noisy information from an
instructed attentional target3–5. These research areas have
implicated the ventromedial prefrontal cortex (vmPFC) in
tracking the value of potential targets of attention (e.g., stimulus
attributes)8,11 and the dorsal anterior cingulate cortex (dACC) in
tracking an individual’s uncertainty regarding which response to
select27–29. For instance, the amount of information available to
make a perceptual discrimination negatively modulates dACC
activity when making one’s choice3,27,30 and when receiving
feedback31, in both cases reflecting the uncertainty of one’s

decision. It has been further proposed that dACC may differ-
entiate between uncertainty29,32 (or error likelihood33) at each of
these parallel levels of decision-making (e.g., at the level of task
goals or strategies versus specific motor actions), and that these
may be separately encoded at different locations along the
dACC’s rostrocaudal axis. However, neural activity within and
across these prefrontal regions has not yet been examined in a
setting in which information is weighed at both levels within and
across trials.

Here we use a value-based perceptual decision-making task to
examine how people integrate different dynamic sources of
information to decide (a) which perceptual attribute to attend and
(b) how to respond based on the evidence for that attribute.
Participants performed a task in which they regularly faced a
conflict between attending the stimulus attribute that offered the
greater reward or the attribute that offered stronger perceptual
evidence (akin to persevering in writing one’s paper when an
enticing email awaits). We demonstrate that dACC and vmPFC
track evidence for the two attributes in dissociable ways. Across
these regions, vmPFC weighs attribute evidence by the reward it
predicts and dACC weighs it by its attentional priority (i.e., the
degree to which that attribute drives choice). Within dACC,
adjacent regions differentiated (in opposite directions) between
the coherence of the more rewarding attribute versus the less
rewarding attribute, potentially consistent with an account by
which these regions track uncertainty at the two levels of the
decision, regarding what to attend (rostral dACC) versus how to
respond (caudal dACC).

Results
Task overview. Participants were shown random dot kinemato-
grams that varied along two dimensions, direction of dot motion
(up or down) and the dominant dot color (blue or red) (Fig. 1)3,4.
They gave a single response on each trial (left or right), which
could be correct for neither, one, or both attributes (Fig. 1a).
Participants were allowed to freely choose how much to rely on
each attribute in selecting their response, and were rewarded for
each attribute they responded to correctly. We independently
varied the level of perceptual noise (i.e., the discriminability) of
the two attributes across trials, such that motion or color infor-
mation could be stronger on a given trial (Fig. 1b). Participants
were instructed that correct responses for the two attributes were
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Fig. 1 Behavioral paradigm. a Participants viewed random dot motion patterns and could indicate whether the dots were primarily moving up or down and/
or whether they were majority red or blue. They responded with either a left or right button press. Responses were bivalent, denoting both a color and a
motion direction, and participants were rewarded for each stimulus attribute they correctly discriminated on a given trial. b The coherence and correct
response for motion and color dimensions were varied orthogonally across trials. Four participant-specific coherence levels were used for each attribute.
c Participants performed three epochs (192 trials each) that varied in motion/color reward associations, rewarding both either equally (Epoch 1) or
differently (Epochs 2 and 3). Reward contingencies were explicitly indicated to the participants at the start of each epoch. *Response mappings and Epochs
2 and 3 reward associations were counter-balanced across participants
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either rewarded equally (Epoch 1) or that one attribute was
rewarded twice as much as the other (Epochs 2 and 3) (Fig. 1c),
which resulted in a bias toward attending the more rewarded
attribute on a given block of trials.

Effect of attribute evidence on decision-making. To examine
the influence of each stimulus attribute on choice, we entered the
signed coherence of the two attributes (i.e., reflecting support for
the left or right response) into a mixed-effects logistic regression,
predicting the choice on a given trial. Focusing first on the initial
task epoch—during which the two attributes were rewarded
equally—we found that, as expected, subjects’ choices were sig-
nificantly influenced by the evidence related to both motion (b=
1.5, SE= 0.11, z= 13.7) and color (b= 0.9, SE= 0.09, z= 10.1,
ps < 0.0001). Response times (RTs) were also faster the more
evidence supported the chosen response (motion: b=−0.23, SE
= 0.03, t=−7.9; color: b=−0.12, SE= 0.02, t=−6.1, ps <
0.001). Thus, the greater the evidence provided by either attribute
in favor of a given response, the more likely and the faster that
response is. Overall, choices (M= 0.52, t= 3.9, p < 0.001) and
RTs (M=−0.09, t=−2.5, p= 0.016) were also more influenced
by motion than by color evidence in this initial (baseline) epoch.

In Epochs 2 and 3 of the session, correct responses for one
attribute were more highly rewarded than the other (either
motion or color, counter-balanced across segments and partici-
pants). During these epochs, we found that subjects weighed their
decisions much more heavily toward the more rewarding
attribute (b= 1.9, SE= 0.13, t= 14.3), but the low-reward
attribute continued to exert a significant influence (b= 0.45, SE
= 0.06, t= 7.8, ps < 0.0001; Fig. 2a, b). RTs were also faster the
more evidence supported the chosen response (high reward: b=
−0.34, SE= 0.03 t=−11.9; low reward: b=−0.05, SE= 0.01,
t=−5.6, ps < 0.001; Fig. 2c). Effects of both high- and low-
reward attributes on choices and RTs held irrespective of whether
motion or color was more highly rewarded (Supplementary
Fig. 1; high-reward motion: bchoice= 2.29, SEchoice= 0.17, tchoice
= 13.9, bRT=−0.44, SERT= 0.04, tRT=−9.9; low-reward
motion: bchoice= 0.62, SEchoice= 0.11, tchoice= 6.1, bRT=−0.07,
SERT= 0.02, tRT=−3.6; high-reward color: bchoice= 1.71,
SEchoice= 0.13, tchoice= 12.7, bRT=−0.31, SERT= 0.03, tRT=
−9.7; low-reward color: bchoice= 0.27, SEchoice= 0.07, tchoice=
4.1, bRT=−0.05, SERT= 0.01, tRT=−4.1, ps < 0.002).

Our behavioral findings suggest that participants placed
substantially more weight on the high-reward attribute when
making their decisions in Epochs 2 and 3 than what was
intuitively predicted based on the 2:1 ratio of rewards being
offered between the two attributes. In order to examine the degree

to which this behavior reflected a normative strategy, we
simulated a performance on this task under the assumption that
participants can attend the two attributes differentially, and that
these attentional weights will directly influence the rate of
evidence accumulation for those attributes. We then calculated
the overall expected value of each control policy28,34,35 (atten-
tional allocation between the attributes) based on the con-
sequences of that policy for the overall reward rate (a
combination of reward, error rate, and RT) and an assumed cost
of increased control (attention) allocation. These simulations
suggest that weighing the high-reward attribute to a dispropor-
tionate degree can be normative for our task, given the effort costs
of attending both the attributes. Hence, our participant’s behavior
is well approximated by this model (Supplementary Fig. 2).
Nevertheless, the fact that participants’ revealed attentional
weights on these two attributes diverge from the relative reward
levels associated with those attributes enables us to identify
regions that better track one or the other.

dACC and vmPFC track attribute evidence differently. Given
their previous involvement in evidence integration for perceptual
and/or value-based decisions, we tested the degree to which a
priori regions of dACC and vmPFC (Fig. 3a) tracked the per-
ceptual evidence supporting the chosen response (e.g., if the left
response was made on a given trial, this is the signed motion and
color coherence level in support of the left response). Consistent
with previous findings3,11,16,36,37, we found that vmPFC tracked
how much total evidence was available for the chosen option
(b= 0.05, SE= 0.01, tvmPFC= 3.7, p < 0.001), while dACC tracked
how little evidence was available for that option (b=−0.07, SE=
0.01, tdACC=−6.8, p < 0.001). However, further analyses revealed
that the patterns of responses in dACC and vmPFC were not
simply mirror images of one another.

Consistent with previous studies of value-based integration of
stimulus attributes11,16,38,39, we found that vmPFC encoded the
evidence favoring the chosen option from both the higher-reward
attribute (b= 0.055, SE= 0.015, t= 3.7, p < 0.001) and the lower-
reward attribute (b= 0.03, SE= 0.01, t= 2.3, p < 0.03). The
vmPFC's relative encoding of evidence for these two attributes
was in fact almost identical to the relative reward provided for a
correct response along these attributes (group-level vmPFC ratio:
1.99:1; actual ratio: 2:1; cross-subject t-test of vmPFC ratio against
predicted mean of 2: t=−0.59, p= 0.56) (Fig. 3b). This is
particularly notable given that participants were not given
trialwise feedback about their performance. By contrast, dACC
was primarily sensitive to the (inverse) evidence for the high-
reward attribute (b=−0.11, SE= 0.02, t=−7.3, p < 0.001) and
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Fig. 2 Behavioral sensitivity to attribute evidence and rewards. During Epochs 2 and 3, responses were highly sensitive to both the amount of evidence and
the relative reward for the two attributes. a A psychometric curve shows that participants were much more likely to select a response the more evidence it
provided for the high-reward attribute. b Regression coefficients for the influence of high- and low-reward coherence on choice. While high-reward
attribute coherence exerted the strongest influence on responses, participants were still sensitive to the evidence supporting the low-reward attribute. c
Consistent with psychometric patterns in a and b, RTs were also more sensitive to the (unsigned) coherence of the high-reward attribute relative to the
low-reward attribute. See also Supplementary Fig. 1. Error bars reflect s.e.m
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exhibited a weaker and non-significant trend for evidence of the
low-reward attribute (b=−0.01, SE= 0.01, t=−1.6, p= 0.13)
(Fig. 3c). The ratio between dACC’s sensitivity to these attributes
was significantly greater than the ratio of their associated rewards
(t= 3.56, p= 0.001) and significantly greater than the vmPFC’s
relative sensitivity to these two attributes (paired t= 3.78,
p < 0.001).

Moreover, individual participant's neural and behavioral
sensitivities to the high- versus low-reward attributes were linked
in dACC, but not in vmPFC. We entered both regions’ high-
reward attribute sensitivity into regressions predicting each
participant’s behavioral sensitivity to that attribute (separately
for choice sensitivity and RT sensitivity). We found that
behavioral sensitivity to the high-reward attribute significantly
correlated with neural sensitivity in dACC (choice: b=−0.53, SE
= 0.15, t=−3.5, p < 0.002; RT: b= 0.59, SE= 0.14, t= 4.2,
p < 0.001) but not in vmPFC (|ts| < 1.1, ps > 0.28). Given the
weak dACC sensitivity to the low-reward attribute, equivalent
analyses for the low-reward attribute demonstrated a weaker
correlation between dACC sensitivity and RT sensitivity
(b= 0.41, SE= 0.17, t= 2.4, p= 0.023; vmPFC: t= 0.3,
p= 0.74) and no relationship between neural and choice
sensitivity to the low-reward attribute within either region
(|ts| < 0.7, ps > 0.50).

Consistent with these findings during the unequal reward
epochs, when we performed analogous comparisons of dACC and
vmPFC sensitivity to the motion and color attributes when the
two attributes were rewarded equally (Epoch 1), we found that
the relative sensitivity of dACC to motion versus color predicted
the relative sensitivity of choices (b=−0.53, SE= 0.15, t=−3.5,
p < 0.002) and RTs (b= 0.51, SE= 0.14, t= 3.6, p < 0.002) to
those attributes. vmPFC did not exhibit significant associations
with either (choice: b= 0.15, SE= 0.15, t= 0.97, p= 0.34; RT: b
=−0.28, SE= 0.14, t=−2.0, p= 0.056).

As explored further below, these findings tentatively suggest
that vmPFC signals of attribute evidence scale with the expected
reward for that attribute (compare Fig. 3b inset) whereas
equivalent signals of attribute evidence in dACC scale with the
influence that the attribute has on the ultimate decision (and
therefore how much attention was likely paid to that attribute
prior to making a decision) (compare Fig. 3c inset). Accordingly,
vmPFC activity was greater on trials where motion and color

information supported the same response (b= 0.05, SE= 0.02,
t= 2.5, p < 0.02) while dACC, with its primary emphasis on the
high-reward attribute, did not encode whether the alternate
attribute provided congruent information (t=−0.39, p > 0.70).
This region of dACC was therefore sensitive to uncertainty at the
level of which response to give (i.e., how conflicted the participant
was between choosing left or right) but only as it pertained to the
more rewarding attribute.

These findings demonstrate the degree to which these two
regions track evidence for the chosen response on a given trial. As
such, they point to the potential roles these regions may play
during decision-making about which action to select. In order to
examine the role these regions may play in higher-level decisions
about which attribute to attend, we can instead examine the
degree to which these regions track the absolute coherence of
each attribute (i.e., how much evidence was available for a given
attribute, irrespective of the response it supported; also referred to
as its unsigned coherence). In particular, given that participants
heavily prioritized the high-reward attribute when selecting their
ultimate response (Fig. 2), increased coherence of that attribute
might serve to increase their confidence in the decision to focus
their attention on it. Conversely, as the coherence of the low-
reward attribute increases, the participant may experience greater
uncertainty about whether to continue focusing on the high-
reward attribute or whether to instead focus more on the low-
reward attribute.

We found a significant difference in the degree to which these
two regions tracked the coherence of the high- versus low-reward
attributes: dACC negatively tracked the coherence of the high-
reward attribute and positively tracked the coherence of the low-
reward attribute, while vmPFC showed the reverse pattern
(Supplementary Fig. 3; dACC versus vmPFC: bhigh=−0.07,
SEhigh= 0.01, thigh=−6.5, p < 0.001, blow= 0.02, SElow= 0.01,
tlow= 2.4, p < 0.02).

Attribute coherence encoding along dACC’s rostrocaudal axis.
The previous analyses demonstrated that dACC and vmPFC
tracked the coherence of the low-reward attribute with opposite
signs. While they provide preliminary evidence that the coher-
ence of the low-reward attribute may be tracked negatively in
vmPFC and positively in dACC, these effects of low-reward
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Fig. 3 vmPFC and dACC differentially encode the relative evidence for the high- and low-reward attributes. a vmPFC (yellow) and dACC (red) ROIs were
defined a priori based on the relevant findings from research on integration of information from multi-attribute stimuli displayed on a normalized Montreal
Neurological Institute (MNI) template3,11. b vmPFC positively tracked the evidence each attribute provided for the chosen response (signed coherence), but
it did not weigh the evidence for both attributes equally. Rather, responses to the two attributes were weighed in proportion to the reward expected for
responding correctly to that attribute. For reference, the inset shows the reward amounts (in dollars) expected for each attribute. c dACC tracked how little
evidence was available for these two attributes, weighing the evidence for the two attributes in proportion to the influence that attribute will have on the
ultimate choice (inset from Fig. 2b), potentially reflecting the amount of attention placed on that attribute while forming a decision. Regression coefficients
are plotted with their corresponding s.e.m
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attribute coherence were individually non-significant. However,
given that our a priori dACC ROI was based on the dACC’s
response in a previous study3 to the attribute an individual was
instructed to attend—which may correspond to the high-reward
attribute in the current study—we considered the possibility that
this may not have been the optimal choice of ROI for capturing a
reliable effect of the low-reward attribute. Therefore, we per-
formed a whole-brain analysis to examine whether responses to
attribute coherence varied outside of this region of dACC. When
doing so, we found a striking distinction: whereas a more caudal
region of dACC was sensitive to the absence of evidence for the
high-reward attribute, a more rostral region was sensitive to the
availability of evidence for the low-reward attribute (Fig. 4a).

While not initially expected, this anatomical distinction
appeared to be consistent with previous proposals that signals
of cognitive demand may be topographically organized along a
rostro-caudal axis within dACC32,40 (Fig. 4b). This work has
shown that increasingly rostral regions of dACC track cognitive
demands related to increasingly abstract or complex control
targets—ranging from uncertainty/conflict between potential
motor actions (caudal-most) to potential decision options
(central) to potential strategies (rostral-most)—paralleling similar
patterns of representational abstraction on the lateral surface41–
43. We therefore sought to test whether the anatomical distinction
we observed reflected a functional dissociation along this
proposed rostrocaudal axis, between uncertainty at the level of
responses (left versus right) and uncertainty at the level of
attentional targets (motion versus color attribute). Whereas
response uncertainty increases the closer a participant is to
indifference between the responses (50% probability of choosing
left or right), attentional uncertainty increases the closer a
participant is to splitting their attention equally between the two
attributes (50% likelihood of attending either motion or color).
Since participants demonstrated a strong bias to attend the high-
reward attribute (Fig. 2), we would expect them to become
increasingly uncertain about their attentional allocation as the
coherence of the low-reward attribute increased. Depending on
the strength of their attentional bias towards the high-reward
attribute, their attentional uncertainty may also increase as the
coherence of the high-reward attribute decreases.

Analyses along this rostrocaudal axis confirmed the presence of
such a dissociation (Fig. 4c): high-reward coherence is negatively
tracked in more caudal ROIs and low-reward coherence is
positively tracked in more rostral ROIs. To test this dissociation
more explicitly, we compared coherence encoding in the two most
rostral and the two most caudal ROIs. This analysis revealed a
significant interaction between ROI location and type of coherence
encoding, with the rostral ROIs tracking the coherence of the low-
reward attribute more positively than the caudal ROIs (b= 0.03,
SE= 0.01, t= 3.1, p < 0.005) and the caudal ROIs tracking the
coherence of the high-reward attribute more negatively than the
rostral ROIs (b= 0.03, SE= 0.01, t= 2.4, p < 0.03).

The effect of low-reward attribute coherence in the rostral-
most ROIs remained even when restricting our analysis to trials
on which motion and color evidence supported the same
response (congruent trials; b= 0.05, SE= 0.01, t= 3.5, p <
0.001), suggesting that these regions were not simply tracking
whether the low-reward attribute was strongly supporting a
different response than the high-reward attribute44. The rostral
ROIs were also not sensitive to which attribute was more
rewarding (motion versus color; t= 0.58, p= 0.56) nor did their
correlation with low-reward coherence vary by attribute type
(attribute × coherence interaction: t= 0.63, p= 0.53). Moreover,
whereas caudal dACC did not show any effect of low-reward
coherence (t= 0.79, p= 0.43), rostral dACC did still demonstrate
a significant negative correlation with high-reward coherence (b
=−0.025, SE= 0.01, t=−2.5, p < 0.02), albeit much reduced
from the effect in more caudal regions. This is consistent with
either a spatially extended response uncertainty signal (centered
on the caudal regions) or an attentional uncertainty signal (as
participants potentially increased their propensity to attend the
low-reward attribute).

Since regions of dACC have been previously implicated in
encoding other signals of cognitive demand, including various
forms of errors44–47, we further tested the extent to which each of
these regions also signaled errors in the current task. In addition
to tracking the coherence of these attributes, these regions of
dACC also encoded whether the participant committed a high-
reward error on a given trial (caudal: b= 0.16, SE= 0.03, t= 5.6;
rostral: b= 0.17, SE= 0.03, t= 4.9, ps < 0.001). While we
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high and low attribute coherence, performed separately for each ROI. b Is republished with permission of the Society for Neuroscience, from Taren et al.32.
*p < 0.05, ***p < 0.005
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excluded missed trials from all other analyses, when specifically
including this as a regressor we also find, as expected, that both
regions of dACC also exhibit increased activity when participants
fail to respond by the deadline (caudal: b= 0.81, SE= 0.08, t=
9.7; rostral: b= 0.45, SE= 0.07, t= 6.3, p < 0.001), independent of
the coherence of the attributes. Caudal ROIs responded more
strongly than rostral ROIs to having missed a response (b= 0.38,
SE= 0.09, t= 4.4, p < 0.001).

Rostral dACC and attention to low-reward attribute coherence.
We found that rostral dACC positively encoded the salience of the
low-reward attribute, which competes with the high-reward attri-
bute for attention and influence over the ultimate decision. We
therefore performed logistic regressions to test whether activity in
this region affected how much influence the low-reward attribute
exerted on choice. We found that the likelihood of providing the
correct response for the low-reward attribute was predicted by an
interaction between rostral dACC activity and the coherence of
that attribute (b= 0.05, SE= 0.02, z= 2.6, p < 0.02). In other
words, increased activity in this region was associated with an
increased likelihood that the participant responded according to a
high-coherence low-reward attribute. This was not true for the
interaction of rostral dACC with high-reward attribute coherence
(z= 0.36, p= 0.72), nor was it true for the interaction of caudal
dACC with low-reward attribute coherence (z= 1.3, p= 0.18).

Trial history effects in vmPFC. We performed an exploratory
analysis to examine whether the activity in vmPFC and/or dACC
reflected evidence accumulated not only in the current trial (as
reported above), but also in the previous trials (cf. refs.48,49). We
found this to be the case in vmPFC—controlling for the signed
coherence of the two attributes on the current trial activity in
vmPFC was greater when more high-reward attribute informa-
tion had been available to support the response chosen in the last
trial (i.e., the more likely they were to have been correct on the
previous trial; b= 0.03, SE= 0.01, t= 2.5, p < 0.02). There was no
significant effect of the previous signed coherence of the low-
reward attribute (t=−0.31, p= 0.76), nor did either region of
dACC track the previous signed coherence of either of the
attributes (|ts| < 1.0, ps > 0.30).

This trial history effect could be interpreted as a signal of recent
reward received48 (monitored internally since we did not provide
feedback) or of confidence in one’s recent performance50,51 (cf.
refs.31,52), and either account would be consistent with our
observation that performance also improved on trials following
those with high evidence that the correct high-reward action was
chosen (increased accuracy: b= 0.18, SE= 0.03, t= 5.2, p < 0.001,
faster correct responses: b=−0.05, SE= 0.01, t=−3.4, p <
0.002). It is also consistent with the possibility that vmPFC was
tracking one’s global attentional state (i.e., how attentive the
participant was to the task at that time)53,54, which would
contribute to correlated performance improvements or decre-
ments across a sequence of trials. However, such a global
attention account would not explain our findings of attribute-
specific encoding in this region.

Effect of attribute evidence in MT+ and V4. We also tested
whether regions that were independently identified as being most
sensitive to motion and color (MT+ and V4; see Supplementary
Methods) differentially tracked the evidence associated with their
preferred attribute, particularly when that attribute was more
rewarding. We instead found that both regions negatively tracked
evidence for the high-reward attribute (e.g., when motion was
more rewarding, both MT+ and V4 negatively tracked signed
motion coherence). This was true both when motion (tMT+ =

−4.0, tV4=−4.2, p < 0.001) and color (tMT+ =−2.8, tV4=−2.1,
p < 0.05) were the high-reward dimensions; in both cases, these
regions did not significantly track the coherence of the low-
reward attribute (|ts| < 1.6, ps > 0.10). When both attributes were
rewarded equally, these regions negatively tracked the coherence
of both attributes (motion: tMT+ =−2.3, tV4=−3.7, p < 0.05;
color: tMT+ =−2.2, tV4=−2.1, p < 0.05).

While these findings may at first seem to be in tension with
other work demonstrating positive correlations between other
sensory regions and evidence for the stimulus category to which
they are selective27,38,39 (e.g., faces versus scenes), they are
consistent with previous studies that explicitly instruct partici-
pants to attend color or motion. This work finds that MT+ and
V4 demonstrate weak attribute selectivity and instead both
negatively track evidence for the attended dimension3 (see also
refs. 30,55). These findings were accounted for in two ways. First,
by noting that in the case of V4 the color evidence being varied
(i.e., proportion of red versus blue) is not ideally suited to capture
the tuning properties of the underlying neural population
(relative to a task that varies the overall amount of color versus
grayscale, as in the localizer used in their study and the current
one). More importantly, in MT+, activity was found to scale
positively or negatively with motion coherence depending on
whether motion is attended or ignored, which could be explained
by a model of MT+ that increases activity with greater motion
evidence (which scales positively with coherence) and with
increased attention (which scales negatively with coherence).
Consistent with this model and associated findings, we find that
MT+ negatively tracked motion coherence when motion was the
high-reward attribute (i.e., when it was more likely to be attended;
b=−0.03, SE= 0.01, t=−2.4, p= 0.02), and positively tracked
motion coherence when motion was the low-reward attribute (b
= 0.03, SE= 0.01, t= 2.2, p= 0.03). We find a qualitatively
similar pattern in V4 with respect to color coherence when color
is the high-reward (b=−0.02, SE= 0.01, t=−1.8, p= 0.08)
versus low-reward (b= 0.02, SE= 0.01, t= 1.5, p= 0.13) attri-
bute. Both regions demonstrate the predicted interaction between
reward level and attribute coherence (MT+: b=−0.06, SE=
0.02, t=−3.1, p= 0.003; V4: b= 0.04, SE= 0.02, t= 2.5, p=
0.014).

We performed additional exploratory tests of task-related
functional connectivity between these sensory regions and our
prefrontal regions of interest within dACC and vmPFC. Among
these prefrontal regions, task-related responses in MT+ and V4
were most strongly correlated with caudal dACC (MT+: b= 0.36,
SE= 0.03, t= 10.5; V4: b= 0.26, SE= 0.04, t= 6.9, ps < 0.001)
and most weakly correlated with vmPFC (MT+: b= 0.07, SE=
0.03, t= 2.4; V4: b= 0.09, SE= 0.04, t= 2.5, ps < 0.05), with
rostral dACC intermediate (MT+: b= 0.19, SE= 0.03, t= 6.3;
V4: b= 0.26, SE= 0.03, t= 7.7, ps < 0.001). Caudal dACC also
uniquely reflected a significant interaction between responses in
MT+ and V4 (b= 0.04, SE= 0.01, t= 3.7, p < 0.002), which was
absent in the other regions (rostral dACC: b= 0.02, SE= 0.01, t
= 1.4; vmPFC: b= 0.00, SE= 0.02, t=−0.1, ps > 0.15). More-
over, in separate analyses we further found that the strength of
caudal dACC’s correlation with each of these two regions
increased with decreasing evidence for the high-reward attribute
(MT+: b=−0.03, SE= 0.01, t=−2.8; V4: b=−0.04, SE= 0.01,
t=−3.3, ps < 0.01). These coherence-related changes in con-
nectivity did not vary depending on the attribute that was more
rewarded (motion versus color; |ts| < 1.2, ps > 0.23), suggesting
that activity in these regions covaried more as participants
increased their attention to whichever attribute was more
rewarding. Similar but weaker changes in connectivity were
observed with rostral dACC (MT+: b=−0.03, SE= 0.01, t=
−2.4; V4: b=−0.03, SE= 0.01, t=−2.6, ps < 0.05) and vmPFC
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(MT+: b=−0.02, SE= 0.01, t=−1.6; V4: b=−0.01, SE= 0.01,
t=−0.9, ps > 0.10).

Discussion
Most everyday tasks invoke a natural tension between focusing on
the current task and switching to an alternative. Instead of
committing to a given task and then performing it, individuals
typically face a recurring decision regarding which task to attend
and how much21,22,28. In the current study, we asked participants
to make perceptual decisions involving two parallel streams of
visual evidence (motion direction and color proportion), enabling
them to select how much to allow each stream to guide their
choice. As a result, their decisions were twofold: (1) how much to
attend each stream and (2) which motor response to select.
Whereas the latter decision was influenced by the overall evidence
in favor of each response (i.e., upward versus downward motion,
concentration of blue versus red), the former was influenced by
the available reward and the absolute coherence of a given
attribute. We found that correlates of uncertainty associated with
each of these two decisions were encoded in adjacent, but distinct
regions of dorsal ACC: a more caudal region tracked the uncer-
tainty in discriminating evidence for a left versus right response
(replicating previous findings3,27,30), while a more rostral region
appeared to track the uncertainty in selecting which attribute to
attend. Specifically, rostral dACC activity increased with the rela-
tive ease of attending the less preferred attribute on a given block.

Our findings within dACC are consistent with previous pro-
posals that this region signals demands for cognitive control (e.g.,
conflict, error likelihood34,56,57) and that these demands may be
differentially encoded across different populations within
dACC44,45. Most notably, our findings are broadly consistent with
the recent proposal that dACC signals such demands in a hier-
archical manner29,32,40 (cf. refs.14,58). Specifically, it has been
suggested that dACC contains a topographic representation of
potential control demands, with more caudal regions reflecting
demands at the level of individual motor responses and more
rostral regions reflecting demands at increasing levels of
abstraction (e.g., at the level of effector-agnostic response
options). According to this framework, it is reasonable to assume
that this rostrocaudal axis might encode uncertainty regarding
which attribute to attend more rostrally than uncertainty
regarding which response to select. Under the added assumption
that our participants were heavily biased toward attending the
high-reward attribute and became increasingly likely to attend the
low-reward attribute as its coherence increased (cf. Figure 2)—
potentially narrowing their relative likelihood of attending either
stimulus and thereby increasing uncertainty over which attribute
to attend—our findings could be interpreted as further evidence
for such an axis of uncertainty. However, such an interpretation
remains speculative in the absence of additional measures of
attentional allocation (e.g., eyetracking within a task that uses
spatially segregated attributes). Our findings may also be consistent
with a more recent proposal that a similar axis within dACC tracks
the likelihood of responses and outcomes (e.g., error likelihood) at
similarly increasing levels of abstraction33. Collectively these
accounts of the current findings are consistent with our theory that
regions of dACC integrate information regarding the costs and
benefits of control allocation (including traditional signals of con-
trol demand) in order to adaptively adjust control allocation28,34.

The dACC signals we observed are also consistent with eva-
luation processes unrelated to control per se, indicating for
instance the costs of maintaining the current course of action in
caudal dACC and the value of pursuing an alternate course of
action (cf. foraging) in rostral dACC18,19. The connection
between rostral dACC activity and choices to follow evidence for

the low-reward attribute can be seen as further support for such
an account (though this could similarly reflect adjustments of
attentional allocation). Our current study is limited in adjudi-
cating between these two accounts because increasing evidence in
support of an alternative attentional target in our task (i.e.,
increased coherence of the low-reward attribute) necessarily leads
to greater uncertainty regarding whether to continue to focus on
the high-reward attribute. However, given that evidence for
foraging-specific value signals in dACC remains incon-
sistent34,37,59, an interpretation of our findings that appeals to
cognitive costs or demands may be more parsimonious. That said,
future studies are required to substantiate the current inter-
pretation by demonstrating that the rostral dACC’s response to
the would-be tempting alternative (the high-coherence low-
reward attribute) decreases when the relative coherence and
reward of the alternate attribute are such that the decision to
switch one’s target of attention is easy (cf. ref.31).

In contrast to dACC, where activity tracked how little evidence
was available to support the chosen response (i.e., to discriminate
between the correct and incorrect response), vmPFC instead
tracked the evidence in favor of the chosen response, in a manner
proportional to the reward expected for information about each
attribute. This finding is broadly consistent with previous findings
in the value-based decision making literature, where vmPFC is
often associated with the value of the chosen option and/or its
relationship to the value of the unchosen option60,61. The fact
that vmPFC’s weights on these attributes were not proportional to
the weight each attribute was given in the final decision suggests
that vmPFC may have played less of a role in determining how
this information was used to guide a response, than in providing
an overall estimate of expected reward. In addition to any inci-
dental influence it may have on the perceptual decision on a given
trial, this reward estimate could provide a learning signal about
the task context more generally (e.g., overall reward rate24,48,49 or
confidence in one’s performance50,51), consistent with our
observation that this region encodes elements of reward expected
from a previous trial. While our findings are suggestive, the
degree to which vmPFC guides and/or is guided by decisions
regarding what to attend deserves further examination within
studies that measure attention allocation while systematically
varying reward as well as the degree of control one has over one’s
outcomes (versus, for instance, being instructed what to attend).
It will also be worth directly contrasting vmPFC correlates of
attribute evidence when attention is guided by reward (as in the
current study) versus instruction (e.g., ref.3).

Previous research has identified a number of parallels between
behavioral and neural patterns evoked by perceptual and value-
based decisions62–64. Both have been well described by similar
classes of evidence accumulation models8,65,66. This observation
has led researchers to treat value as a form of evidence that is
noisily accumulated in a manner isomorphic to the accumulation
of sensory evidence when perceiving a random dot kinemato-
gram. However, given that the dynamics of value accumulation
are more difficult to measure and manipulate than the dynamics
of perceptual accumulation, questions still remain regarding the
basis of value as a form of evidence and the nature of the noise
associated with its integration66. By manipulating the value
associated with sensory evidence accumulated in a multi-attribute
decision-making task, the current task could provide leverage in
understanding the relationship between these two forms of evi-
dence accumulation. Moreover, the competition our task engen-
ders at the level of both responses and goals (i.e., attentional
targets) also makes it well suited as a potential low-level analog
for more complex goal conflicts that occur in daily life, ranging
from dietary choice to perseverance on a demanding task in the
face of attractive alternatives. While more research is needed to
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bridge our understanding of how we maintain focus on writing a
paper with our understanding of how we select the words that go
on a page, the current findings offer promise that advancing our
understanding of one will bring us nearer to closure on the other.

Methods
Participants. Thirty-four individuals (71% female, Age: M= 21.1, SD= 2.8) par-
ticipated in this study. All participants had normal color vision and no history of
neurological disorders. Three additional participants were excluded prior to ana-
lysis, two due to mechanical errors and one due to an incomplete session. Parti-
cipants provided informed consent in accordance with the policies of the Princeton
University Institutional Review Board. This neuroimaging study has only been
performed once in our laboratory.

Procedure. The main task performed in the scanner required participants to view a
random dot kinematogram consisting of red and blue colored dots3,4 (Fig. 1). On a
given trial, the majority of the dots was either blue or red, and a proportion of the
dots (independent of their color) moved in either an upward or downward
direction. For consistency with previous studies, we use the term color coherence to
refer to the relative proportion of red versus blue dots and motion coherence to
refer to the proportion of dots moving consistently in one of the two directions.
Four coherence levels were used for each attribute, determining varying degrees of
discriminability for that attribute on a given trial. For each attribute, these
coherence levels were defined as multiples of a single individually calibrated
coherence level that asymptotically produced ~80% accuracy on that attribute (see
below). For motion, these four levels were 50%, 95%, 140%, and 185% of the
calibrated motion coherence level (e.g., if the staircase procedure below settled on a
calibrated motion coherence of 10% for a given participant, then the most difficult
motion coherence level for this participant would be 5% motion coherence and the
easiest level would be 18.5% motion coherence). Initial pilot testing suggested that
slightly different scaling values needed to be used for the color attribute in order to
more closely match choice preferences across these two attributes, so the equivalent
scaling values for the four color levels were 50%, 105%, 160%, and 215% of the
calibrated color coherence level. Unless otherwise specified, details of the dot
presentation (e.g., color and speed) were identical to Kayser et al.3, including
subjectively isoluminant values of blue and red for the dot colors.

Each color and motion direction was associated with one of two responses (e.g.,
left button to indicate that the dots are majority blue and/or moving upward; right
button to indicate that the dots are majority red and/or moving downward) (Fig. 1a).
These response contingencies were counter-balanced across subjects. Participants
could only provide one response on each trial (left or right), and this response could
be correct for neither, one, or both dimensions. The coherence of each dimension and
the congruency across dimensions (i.e., whether or not the same response was correct
for both dimensions) was varied independently across trials (Fig. 1b).

Participants were given 3 s to respond and the random dot display remained on
the screen for that entire duration, including after the response was made. After
each trial, participants viewed a fixation cross for 1.2–7.2 s (uniformly distributed
across trials), which concluded with an additional 0.5 s during which the color of
the fixation cross changed (from black to yellow) to prepare the participant for the
onset of the next trial.

Subjects were rewarded based on the number of attributes their (single)
response correctly discriminated on a given trial (0, 1, or 2). The rewards for
answering each attribute correctly changed over the course of the session, across
three epochs of equal length (Fig. 1c): in the first epoch, these two dimensions were
rewarded equally ($0.15 each); in the second epoch, one dimension was rewarded
$0.20 (e.g., motion) and the other $0.10 (e.g., color); and in the final epoch, these
reward contingencies were reversed (i.e., the attribute that was previously rewarded
$0.20 for a correct response was now rewarded $0.10 and vice versa). Participants
were given written and verbal instructions regarding the specific reward
contingencies at the start of each epoch. Each epoch consisted of 192 trials, split
across four blocks of 48 trials each.

Before starting the main task, participants performed 16 practice trials outside
the scanner and 16 practice trials inside the scanner (during which no fMRI
volumes were collected). Each practice trial was followed by feedback regarding the
reward they could have earned for that trial. During the main task (while being
scanned), this trialwise feedback was omitted and participants were only given
feedback about average performance at the end of each task block. At the end of the
session, 20 trials were selected at random and participants received the total
payment acquired across those trials.

Psychometric calibration. Before performing the main task in the scanner, par-
ticipants performed a task intended to calibrate and match the overall performance
across the two stimulus attributes. In separate blocks, participants were asked to
respond based on one of the two attributes, and the coherence of that target
attribute was systematically varied across trials based on a 3–1 psychometric
staircase procedure (while the coherence of the alternate attribute was held con-
stant at 0% over that block). Color calibration blocks started at 33% coherence and
motion calibration blocks started at 40% coherence. For both block types, coher-
ence was decreased by steps of 1.5% after every three consecutive correct trials and

increased by the same amount after every error. The participant’s threshold
coherence for each attribute was determined based on an average of coherence
levels over the last 12 trials of the calibration block.

In order to ensure a stable estimate of the participant’s asymptotic
discrimination abilities, the psychometric staircase for each attribute was
terminated once the following criteria were met: (1) at least 300 trials had passed,
(2) the current estimate of threshold coherence (average of coherence levels over
the previous 12 trials) was less than 30%, (3) the current estimate of threshold
coherence was no greater than 6% (four steps on the psychometric staircase) above
the lowest threshold the participant reached over the previous 400 trials (or as
many trials had been completed up to that point, whichever was fewer), and (4)
there was no significant linear trend in the coherence values over the past 15 trials
(i.e., a non-parametric correlation yielded a p-value greater than 0.10).

Due to a coding error, the fourth calibration criterion mentioned above was not
properly implemented for the first seven participants, resulting in coherence
thresholds that may have differed slightly from what they would have been
assigned with the intended procedure. However, we were unable to find any
differences between the behavioral performance of these participants and the
remaining participants, in terms of overall accuracy for the high-reward dimension
(z= 0.1, p= 0.89), overall RT (t= 1.0, p= 0.34), or in the influence of coherence
on either choices or RTs (ps > 0.48). We therefore include these participants in all
of our analyses, but note that all of our findings are robust to their exclusion.

MRI sequence. Scanning was performed on a Siemens Skyra 3 T MR system. We
used the following sequence parameters for the main task and localizer: field of
view (FOV)= 196 mm × 196 mm, matrix size= 66 × 66, slice thickness= 3.0 mm,
slice gap= 0.0 mm, repetition time (TR)= 2.4, echo time (TE)= 30 ms, and flip
angle (FA)= 87°, 46 slices, with slice orientation tilted 15° relative to the AC/PC
plane. We collected 160 volumes for the decision-making task and 169 volumes for
the functional localizers. At the start of the imaging session, we collected a high-
resolution structural volume MPRAGE with the following sequence parameters:
FOV= 200 mm × 200mm, matrix size= 256 × 256, slice thickness= 0.9 mm, slice
gap= 0.45 mm, TR= 1.9 s, TE= 2.13 ms, and FA= 9°, 192 slices.

Behavioral analysis. All behavioral data were analyzed using mixed-effects
regressions in R 3.3.1 (lmer and glmer functions), modeling all possible subject-
wise intercepts and slopes. Response times were log-transformed before the ana-
lysis to reduce skewness. All p-values were determined based on two-tailed tests of
a given hypothesis.

Simulations of control allocation. In order to simulate normative performance on
our task, we generated performance outcomes for a simulated agent that performed
a rewarded multi-attribute perceptual decision task, approximating our own. This
agent encountered the same distribution of trials as used in our experiment,
including the same array of signed coherence levels. To generate the agent’s
expected choice probability and average response time (RT) for a given trial, we
used a drift diffusion model (DDM67,68) with two attributes (motion and color)
(cf. refs.8,11,38). We assume that the rate of accumulation toward one of the two
response boundaries (left versus right) was governed by a weighted combination of
bottom-up stimulus coherence (manipulated experimentally for motion [Cm] and
color [Cc]), and top-down attention (Am, Ac) such that the overall drift rate d on a
given trial t was calculated as:

dt ¼ Amt � Cmt þ Act � Cct ð1Þ

This enabled us to simulate an agent’s performance across all trials for a given
allocation of attention, and then use this to estimate the overall value of that choice
of allocation. Specifically, we estimated the expected value of control (EVC28,35) for
a given choice of Am and Ac, treating these as two control signals that could be
independently manipulated, with each control signal incurring a cost that scaled
exponentially with its intensity. The overall EVC for a given configuration of Am
and Ac was determined by the expected reward rate over that set of trials,
discounted by the overall cost of the control that was applied:

EVCt ¼
EVt

RTt
� Cost Amtð Þ þ Cost Actð Þ½ � ð2Þ

where

EVt ¼ Pr Mcorrectð Þ � Reward Mcorrectð Þ½ �
þ Pr Ccorrectð Þ � Reward Ccorrectð Þ½ � ð3Þ

and

Cost signalð Þ ¼ ek ´ signalintensity ð4Þ

While holding the trial structure constant, we systematically varied the values of
Am and Ac between 0.0 and 2.0 (step-size= 0.01) to identify the values that
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maximized EVC across the session. Across these simulations, we used the same
simulated coherence values for Cm and Cc (0.3, 0.53, 0.77, and 1.0) and all other
DDM parameters were held constant: starting point= 0.0, noise coefficient= 0.5,
non-decision time= 0.2 s, and threshold= 0.45. Reward values were set to 7.5 and
7.5 for Epoch 1 and 5.0 (low) and 10.0 (high) for Epoch 2 and 3, and the control
cost parameter (k) was set to 2.0.

In order to simulate attentional allocation policies in the absence of control
costs (Supplementary Fig. 2C), we set the cost parameter k to 0.0. To simulate
variability in performance across motion and color attributes due to different
intrinsic rewards associated with each during Epoch 1 (Supplementary Fig. 2F), we
set the reward for the two attributes to 8.5 and 6.5.

fMRI analysis. Imaging data were analyzed in SPM8 (Wellcome Department of
Imaging Neuroscience, Institute of Neurology, London, UK). Functional volumes
were motion corrected, normalized to a standardized (MNI) template (including
resampling to 2 mm isotropic voxels), and spatially smoothed with a Gaussian
kernel (6 mm FWHM).

Our primary analyses focused on a priori regions of interest (ROIs) within
vmPFC, dACC and areas MT+ and V4 (identified in previous studies and
localizers; see below). For these analyses, we generated first-level general linear
models (GLMs) that included a separate regressor for each trial and extracted the
associated trialwise beta estimates for each ROI. These beta estimates
were hyperbolic arcsine-transformed (to reduce kurtosis) and then included in
mixed-effects regressions across participants, modeling participant-wise random
intercepts and slopes.

In order to test for regions sensitive to attribute coherence outside these ROIs, we
also performed exploratory whole-brain GLMs. These GLMs modeled event
regressors at the onset of each trial (separately for each epoch), with non-
orthogonalized parametric regressors for the coherence of each attribute. We then
performed second-level analyses consisting of one-sample t-tests over contrasts
estimated from the first-level GLM. To provide a conservative estimate of significant
clusters of activation, these second-level analyses were performed using the Statistical
NonParametric Mapping toolbox (SnPM 13; http://warwick.ac.uk/snpm)69,
performing 5000 permutations over each distribution of contrast estimates.
Activations were displayed using a voxelwise p-value of 0.001 and the cluster extent
was thresholded to achieve a whole-brain cluster-wise family-wise error-corrected
p < 0.05.

All first-level GLMs included additional regressors modeling intercepts and
linear trends for each task block. Moreover, to minimize the influence of outlier
time points (e.g., due to head motion or signal artifact), these GLMs were estimated
using a reweighted least-squares approach (RobustWLS Toolbox)70. CARET
software (http://brainmap.wustl.edu) was used to map the group-level statistical
maps onto the cortical surface rendering, using the Probablistic Average Landmark
and Surface-Based (PALS) atlas.

Rather than using the absolute coherence values used for a given participant
(e.g., 12%, etc.), fMRI and behavioral regressions coded coherence based on their
ordinal levels (1–4). Signed coherence, which reflected the amount of evidence an
attribute provided for the response made on that trial, varied from −4 to +4.
Positively-signed coherence values represented coherence levels that were
increasingly consistent with the participant’s response, whereas negatively-signed
coherence values represented coherence levels that were increasingly inconsistent
with that response. Unsigned coherence, which reflected the overall amount of
evidence provided by an attribute irrespective of the response it supports, varied
from 1 to 4.

Regions of interest. We defined ROIs for dACC and vmPFC based on the
locations of relevant past findings in research on perceptual or value-based inte-
gration of multi-attribute stimuli. Our dACC ROI combined two dACC peaks
reported by Kayser et al.3, which negatively correlated with the evidence for the
attended dimension in a cued-attention version of the current task (MNI coordi-
nates [x, y, z]= 6, 16, 49 and 8, 23, 40; spheres with 6 mm radii). Our vmPFC ROI
was centered on the peak vmPFC activation from Hare et al.11, which positively
correlated with the evidence related to two attributes of a value-based stimulus (the
taste and health of a food) (3, 36, −12; radius= 5 mm). Further analyses within
dACC focused on five rostrocaudally arranged 6 mm ROIs along the dorsomedial
surface, drawn from Taren et al.32 (see also ref.40). This axis ranged from the
caudal-most region associated with response conflict (center: −4, 10, 50) to the
central region associated with decision conflict (6, 23, 39), to the rostral-most
region associated with strategy conflict (−6, 35, 34). Intermediate ROIs fell between
the first two ROIs (−4, 16, and 45) and the second two ROIs (−4, 30, and 37).

Code availability. Data were analyzed in R, MATLAB, and SPM using analysis
scripts that are available from the authors upon reasonable request.

Data availability. All the data that support the reported findings are available from
the authors upon reasonable request.
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