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Physiological and morphological 
effects of a marine heatwave 
on the seagrass Cymodocea nodosa
Alizé Deguette1, Isabel Barrote1,2,3 & João Silva1,3*

Marine heatwaves (MHWs) are increasing in frequency and intensity as part of climate change, 
yet their impact on seagrass is poorly known. The present work evaluated the physiological and 
morphological responses of Cymodocea nodosa to a MHW. C. nodosa shoots were transplanted into 
a mesocosm facility. To simulate a MHW, water temperature was raised from 20 to 28 °C, kept 7 days 
at 28 °C, cooled down back to 20 °C and then maintained at 20 °C during an 8-day recovery period. 
The potentially stressful effects of the simulated heatwave on the photosynthetic performance, 
antioxidative-stress level and area vs dry weight ratio of leaves were investigated. The maximum 
quantum yield of photosystem II (ΦPSII) increased during the heatwave, allowing the plants to 
maintain their photosynthetic activity at control level. Negative effects on the photosynthetic 
performance and leaf biomass of C. nodosa were observed during the recovery period. No significant 
oxidative stress was observed throughout the experiment. Overall, although C. nodosa showed a 
relative tolerance to MHWs compared to other species, its population in Ria Formosa is likely to be 
negatively affected by the forecasted climate change scenarios.

Heatwaves are often pointed out as yet another negative consequence of climate change and global warming. 
Only recently, and pressured by the urgency of the climatic threat, the scientific community started qualifying 
and understanding the marine heatwave (MHW) phenomenon. The Intergovernmental Panel on Climate Change 
(IPCC) defined MHW as “an event at a particular place and time of the year that is rare and predominately, but 
not exclusively, defined by a relative threshold; that is, an event rarer than 90th or 99th percentile of a probability 
density function”, in the Special Report on the Ocean and Cryosphere (SROC)1. MHW occur at any time of the 
year, everywhere in the world, for a period ranging from a few days to several weeks at varying intensities. Their 
frequency and intensity have severely increased in the past century2, causing massive extinctions events (e.g. 
“The Blob”, a large mass of high-temperature water in the Pacific Ocean that killed nearly a million seabirds in 
Alaska and California in 2015–2016)3, range shifts4 and coral bleaching (mass coral mortality occurred in the 
Great Barrier Reef in 2016, with losses exceeding 50%)5–8.

Seagrasses are angiosperms (flowering plants) adapted to marine life, accounting for about 60 species 
worldwide9. These clonal plants, which shoots grow from the expansion of rhizomes10 and are found worldwide 
along tropical, temperate, and boreal latitudes, except in the Antarctic region, colonising intertidal areas and 
shallow waters in subtidal zones11. Seagrass meadows are among the most ecologically valuable estuarine and 
coastal ecosystems, providing a large range of essential ecosystem services. They offer valuable feeding, spawning 
and nursery grounds for numerous species of flora and fauna12 and enhance the production and biodiversity of 
adjacent ecosystems13. Seagrass beds slow down the currents, trap suspended particles and, in this way, increase 
light penetration14. They have been increasingly studied because of their nitrogen fixation capacity15, their role 
as carbon sinks16–19, and their major importance in “blue carbon” sequestration and export20. Although they 
represent less than 0.1% of the ocean surface, seagrasses are responsible for 20% of oceanic carbon sequestra-
tion globally21,22. Regrettably, seagrass meadows are declining globally at a dramatic rate (110 km2 year−1 since 
1980 i.e., 5% year−1 globally or at least 1/3 since World-War II)23,24 because of the environmental changes they 
face. Notably, MHWs have been proved to be one of the major drivers of seagrass decline (36% of Shark Bay’s—
Western Australia—seagrass meadows were negatively affected by a MHW in 2010/11)25. In fact, a temperature 
increase above the optimum temperature of seagrasses reduces the photosynthetic rate and leave’s productivity 
and increases respiration, photosynthetic stress responses and biomass losses26,27. In addition, these effects are 
even more considerable as the number of thermal stress days increases, with species-specific responses27,28. 
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Previous studies showed that heat stress negatively impacts the metabolism of Zostera noltii29 and Zostera 
marina30,31, lowering the flowering and reproductive intensity of this species32 and leading to important shifts 
in physiological stress indicators (inhibition of photosynthetic efficiency (-23.9%), increased respiration (+ 58.3%) 
and decreased carbohydrate decomposition products)33. A study showed that the species Cymodocea nodosa and 
Posidonia oceanica were able to recover from a simulated MHW, with shifts in carbon allocation strategies that 
differ between shoots coming from different thermal environments (thermal adaptation)34. C. nodosa showed the 
ability to change its metabolism to handle short thermal stress (shifts in photosynthetic pigments concentration, 
increased antioxidant activity and CO2 assimilation)35.

In Europe, 35 684 ha of seagrass meadows disappeared between 1869 and 2016, i.e., 29% of the documented 
area36. The same study showed that the highest proportions of declines were reported for the species Z. marina 
and C. nodosa (net losses of 57% and 46% of the documented area, respectively). Despite the general decline of 
seagrasses in Europe between 1869 and 2016, gain was reported in the 2000s, for the first time since the 1950s 
(20% net gain in area per decade in the 2000s)36, showing a significant trend reversal as a result of conservation 
and restoration actions. Thus, seagrass decline is neither irreversible nor to be generalised: hope remains to 
maintain or even improve the services they provide.

C. nodosa (Ucria) is the most abundant subtidal seagrass species in Ria Formosa coastal lagoon, Southern 
Portugal, where it covered an area of 0.913 km2 in 200737. It is a temperate-warm adapted species, resistant to 
relatively high-water temperatures (25–32 °C)38,39. Its distribution ranges from its northern limit on the southern 
Portuguese coast to its southern limit in Senegal40. As a tropical-originated species, C. nodosa has a high opti-
mum temperature range (24.5 and 31.0 ± 0.5 °C for growth and photosynthesis, respectively) when compared to 
temperate species in the Mediterranean, such as Z. marina (15.3 ± 1.6 and 23.3 ± 1.8 °C, respectively)41. While 
the effects of MHWs and heat shocks have been studied mainly on Z. marina31,33,42,43, they have been poorly 
studied for C. nodosa. Based on the existing literature, we hypothesize that negative effects of MHWs are also to 
be expected on this species (e.g., lower productivity/photosynthetic activity, increased oxidative damage), despite 
its potential ability to thrive in warm waters.

The objective of this work was to investigate the morphological changes and physiological capacity of C. 
nodosa to cope with MHWs in Ria Formosa, in the framework of evaluating and forecasting the species tolerance 
under climate change scenarios that include more frequent and intense MHWs. Specifically, we investigated the 
plant’s physiological and morphological response throughout the peak of a MHW and the existence of putative 
sequels, evaluated during a recovery period. The absolute temperature value used for the MHW simulation 
was based on in situ temperature records and the definition and classification of MHWs. The photosynthetic 
performance of different tissue ages, the antioxidant activity, the potential oxidative damage and changes in leaf 
biomass were assessed.

Results
Photosynthetic activity.  Photosynthesis‑Irradiance (P‑I) curves.  C. nodosa leaves’ photosynthetic activ-
ity responded to light stimulation by a typical Photosynthesis-Irradiance (P-I) hyperbolic-shaped response with 
increasing light intensity (Fig. 1).

The photosynthetic parameters α, Pm and Ik were significantly lower in leaves from plants recovering from 
the heatwave than control (p < 0.001, p < 0.001 and p = 0.008, respectively; Table 1).

While α was ca. twofold lower than control, Pm was ca. fourfold times lower and therefore, Ik decreased sig-
nificantly. Conversely, no significant difference was observed in leaves sampled during the heatwave.

Chlorophyll fluorescence imaging (CFI).  The Chlorophyll Fluorescence Imaging (CFI) pictures allow to meas-
ure, visualize and pinpoint potential differences in the effective quantum yield of electron transport through 
photosystem II (ΦPSII), along the leaves’ surface and between different tissue ages (Fig. 2).

During the heatwave, ΦPSII was significantly higher in heatwave (HW) leaves than control (C) (p = 0.008) and 
old leaf tissues displayed a lower ΦPSII than mature ones in both HW and C leaves (p = 0.035; Fig. 3). No signifi-
cant differences were found between HW and C leaves nor between tissue ages during the heatwave recovery.

Oxidative stress.  There was no significant variability in the concentration of oxidative stress indicators in C. 
nodosa’s leaf tissues between treatments HW and C (Table 2).

Although non-significant, total phenols and MDA concentration were slightly higher in HW leaves than C 
leaves during the heatwave, whereas TEAC and ORAC concentrations were slightly lower in HW leaves than 
control. On the other hand, total phenols, TEAC, ORAC, and MDA concentrations were slightly higher in HW 
leaves than control during the heatwave recovery.

Leaf area vs dry weight ratio.  C. nodosa’s leaf area vs DW ratio was significantly higher in HW than C 
leaf tissues during the heatwave recovery (Fig. 4). Hence, for the same leaf area, C. nodosa’s leaves that went 
through a heatwave simulation had less biomass than those grown in control conditions.

Discussion
Our results show that MHWs (in this case, a seven-day spring heatwave peaking at 28 °C) have a negative impact 
on C. nodosa’s physiology, but the effects may only become evident in the aftermath of the heatwave peak. Reduc-
tion of the photosynthetic capacity and light-saturating irradiance was observed 7 days after the end of the heat 
stress, along with a decrease in leaf biomass. Coupled to the reduced photosynthetic rates and efficiency, this leaf 
biomass loss implies an additional reduction of the global productivity of the plants, with direct consequences 
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on growth. On the other hand, the heatwave did not imply significant oxidative damage or changes in the leaves’ 
antioxidant system of C. nodosa.

While the heatwave peak only affected ΦPSII significantly, the measured photosynthetic parameters showed 
a strong decrease after 7 days of recovery at lower temperature: the maximal photosynthetic rate (Pm), the 
amount of O2 released per unit of incident light (α) and the minimum-light intensity needed to reach Pm (Ik) 

Figure 1.   P-I curves of C. nodosa’s leaves. Leaves were sampled during the heatwave peak (heatwave, HW, and 
control, C) and after a 7-day recovery (HW/R and C/R). Data were fitted with the Jassby & Platt (1976) model 
equation.

Table 1.   C. nodosa’s photosynthetic parameters obtained after fitting the data with the Jassby & Platt (1976) 
P-I model. Mean photosynthetic quantum efficiency (α; μmol O2 gDW−1 h−1/μmol photons m−2 s−1), maximal 
photosynthetic rate (Pm; μmol O2 gDW−1 h−1), and half-saturation irradiance (Ik; μmol photons m−2 s−1) are 
expressed as values ± SE, for each treatment, with corresponding R2 and number of observations (n). The 
significance level is the degree of significant difference between treatments HW and C (n.s.: non-significant; *: 
significant, p < 0.05; ***: highly significant, p < 0.001), both during the heatwave and after heatwave recovery.

Treatment

Parameters

α ± SE Pm ± SE Ik ± SE R2 n

Heatwave

HW 2.805 ± 0.352 635.02 ± 37.05 226.4 ± 31, 3 0.809 55

C 2.921 ± 0.305 644.9 ± 27.5 220.8 ± 24.9 0.856 44

Significance level n.s n.s n.s

Heatwave recovery

HW 1.429 ± 0.229 177.4 ± 8.1 124.2 ± 20.7 0.661 54

C 3.539 ± 0.372 709.8 ± 27.6 200.6 ± 22.5 0.841 55

Significance level *** *** *
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dropped significantly during the recovery period. Conversely, no changes in these photosynthetic parameters 
were observed during the heatwave, showing that the effects only became apparent several days after the allevia-
tion of the heat stress. ΦPSII increased significantly during the heatwave, accounting for a higher electron transport 
rate in the electron transport chain of photosynthesis44 under the heat stress provoked by the MHW. Maintaining 
a high electron flow in the electron transport chain is advantageous to compensate the negative effects of heat 
stress and keep photosynthetic and growth rates at a constant level. ΦPSII was higher in mature parts of the leaves 

Figure 2.   Examples of CFI pictures of C. nodosa’s ΦPSII, after a saturating light pulse. CFI was done on mature 
leaves sampled from shoots cultivated in heatwave (HW) and control (C) conditions, both during the heatwave 
and after heatwave recovery. o, m and y indicate different leaf parts (old, mature and young, respectively). 
Colour bar on the bottom indicates ΦPSII values ranging from 0.0 (black) to 1.0. (pink). Pictures are 24 × 32 mm 
(6 × magnification).

Figure 3.   Effective quantume yield of PSII (ΦPSII) of C. nodosa’s leaf tissues. Old (o), mature (m) and young 
(y) leaf tissues were sampled from shoots cultivated in heatwave (HW) and control (C) conditions, both during 
the heatwave and after heatwave recovery. Values are mean ± SE (n = 5). Different letters indicate significant 
differences between tissue ages (p < 0.05), and ** indicates significant differences between treatments HW and C 
(p < 0.01).
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than in old tissues, which has been shown to be a common feature related to the reduction of leaf thickness and 
cell layers towards the tip45. Nonetheless, in our work, this feature was not noticeable during heatwave recovery, 
which may be related to the increased area vs DW ratio in heatwave recovering leaves, as discussed below. When 
ΦPSII returned to control level several days after heatwave relief, the photosynthetic performance of the plant 
dropped, suggesting that C. nodosa is only able to temporarily maintain its gross photosynthetic activity at a 
normal rate under thermal stress as a “compensation” response, by increasing the electron transport rate through 
PSII during a few days. However, it is likely to be unable to sustain this metabolic compensation response in the 
long term, resulting in the drop of photosynthetic performance several days after the heat stress, while ΦPSII drops 
back to control level. Costa et al. also suggested that ΦPSII increases with heat stress in C. nodosa leaves (after a 
4-day heat shock at 40 °C)35. This study confirms that a short-term response to heat stress involves an increase 
in ΦPSII, probably to support photosynthesis during thermal stress. The fact that ΦPSII returns to control levels 
after the heatwave suggests that C. nodosa’s PSII has a certain ability to recover from the heat-stress damage39. 
However, nothing suggests that it would be able to recover from a more intense and long-lasting MHW, as those 
forecasted in future climate-change scenarios. Costa et al. also suggested that Pm was lower in C. nodosa shoots 
that had suffered from intense thermal stress (4 days at 40 °C) than in plants kept at 20 °C35. While both a 4-day 
heat shock at 40 °C and our 7-day heatwave at 28 °C had negative consequences on the photosynthetic activity 
of C. nodosa in Ria Formosa, the responses seem to appear at different time scales (right after the heat shock and 
after a 7-day recovery, respectively). We suggest that a prolonged, but less intense temperature rise (namely the 
MHW), may have delayed consequences on the plant’s photosynthetic activity, whereas a short, although more 
intense heat stress, involves an immediate decrease of Pm, and with it, the immediate drop of photosynthetic 
efficiency. Yet, the resilience of C. nodosa to MHWs must be investigated on a longer time scale (e.g., after a 
more extended recovery period) to know whether this species can entirely recover from the heatwave or if such 
consequences are irreversible.

The unchanged photosynthetic parameters, together with the increase in ΦPSII in leaves during the heatwave, 
may be related with the increase of O2-independent electron flow, such as the cyclic electron flow within PSII, 
or the water-water cycle (PSI) that does not imply net O2 uptake while regenerating the ascorbate needed for 

Table 2.   Total phenols (mg gDW−1), TEAC (μmol Trolox eq gDW−1), ORAC (μmol Trolox eq gDW−1) and 
MDA (nmol gDW−1) concentrations in mature C. nodosa’s leaves from heatwave (HW) and control (C) tanks, 
during the heatwave and after recovery. Values are means ± SE and n is the number of replicates.

Treatment

Heatwave Heatwave recovery

HW C HW C

Total phenols (mg gDW−1)
11.81 ± 1.72 10.93 ± 0.23 10.79 ± 0.92 10.17 ± 1.41

n = 5 n = 4 n = 5 n = 5

TEAC (μmol Trolox eq gDW−1)
9.47 ± 3.48 9.95 ± 3.09 12.22 ± 1.36 7.96 ± 1.83

n = 5 n = 5 n = 5 n = 5

ORAC (μmol Trolox eq gDW−1)
139.24 ± 34.32 206.01 ± 62.66 132.27 ± 51.08 126.98 ± 13.46

n = 5 n = 5 n = 5 n = 5

MDA (nmol gDW−1)
88.71 ± 20.81 83.49 ± 20.62 186.58 ± 2.14 100.85 ± 34.09

n = 4 n = 4 n = 3 n = 5

Figure 4.   Area vs dry weight (DW) ratio of C. nodosa’s leaf tissues. Leaf tissues from shoots cultivated in 
heatwave (HW) and control (C) conditions were sampled both during the heatwave and during heatwave 
recovery. Values are means ± SD (n = 5). Different letters indicate significant differences (p < 0.01).
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antioxidant protection46 and allowing extra ATP synthesis. The decrease of photosynthetic performance in 
heatwave-recovering leaves suggests that a higher fraction of the oxygen produced by photosynthesis is con-
sumed during the heat stress recovery, indicating the up-regulation of the oxygen-consuming process(es), such 
as respiration and photorespiration47,48. The increment of these oxygen-consuming processes can in turn enhance 
the production of reactive oxygen species (ROS) such as H2O2 and superoxide radicals49,50. Although it has been 
reported that thermal stress induces the production of ROS in submerged macrophytes51, the putative conse-
quences of increased oxidative stress were not observed here, as neither membrane lipid peroxidation (measured 
as MDA) nor the ROS scavenging capacity (TEAC and ORAC) presented significant changes during and after the 
heatwave. Similarly, the unchanged MDA values show that the possible increase in ROS did not provoke oxida-
tive stress, meaning that the existing antioxidant system of C. nodosa was probably sufficient to avoid oxidative 
damage. Yet, we cannot entirely rule out the possibility that stress was not detected due to putative limitations 
of the parameters analysed.

Although non-significantly, total phenols, TEAC, ORAC and MDA concentrations were slightly higher in 
leaves recovering from the MHW than in control ones. While the short-term effects of the heatwave on bio-
chemical oxidative-stress indicators were not clearly shown in this experiment, the consequences appear to be 
more relevant during the recovery. This could be interpreted as a long-term acclimation response of C. nodosa’s 
biochemistry to the potentially low oxidative stress caused by the prolonged heat stress. Costa et al. suggested that 
a short and intense heat stress (40 °C for 4 days) implies a significant increase in C. nodosa’s antioxidant response 
(measured with TEAC)35. The non-significance of our results may be justified by the characteristics of the MHW 
or heat shock, which, in the same study, was more intense and suddenly imposed, whereas in the present work, 
the MHW was progressively imposed and less intense. The absence of oxidative damage (measured with MDA) 
under a short and intense heat shock35 is in line with our results. Indeed, MDA concentration did not increase in 
C. nodosa leaves exposed to thermal stress, suggesting that C. nodosa is resistant to the stress caused by MHWs 
of different lengths and intensities. Nonetheless, foliar MDA is slightly higher after recovery from a prolonged 
heatwave (ca. 190 nmol gDW-1; present study) than right after a short and intense heat shock (ca. 100 nmol 
gDW-135). These results suggest that oxidative damage is likely to be more important in plants recovering from 
heatwave-type stress (more extended heat stress, long-term effect) than immediately after a short heat shock. In 
Ria Formosa, C. nodosa seems to have a sufficient antioxidant capacity to cope with stress induced by a spring 
MHW. Yet, a longer and/or more severe MHW for this time of the year may eventually significantly increase the 
oxidative stress and cell damage in C. nodosa leaves.

This study showed that the simulated MHW also impacted the morphology of C. nodosa’s leaves, by induc-
ing a decrease in leaf biomass, especially several days after the end of the heatwave, as shown by changes in the 
area vs DW ratio. C. nodosa might have responded to the thermal stress by a reduction in its leave’s thickness, 
which could be explained by a lower photosynthetic performance and, therefore, a lower growth rate. Another 
possibility is the increase of the size of the aerenchyma. Aerenchyma lacunae act as either sources or sinks for 
O2

52,53, and an increase in their volume could be related to a higher O2 transfer inside the plant, (from leaves to 
roots and rhizomes) together with enhanced electron transport (as seen before) or stand for more intense gas 
exchange for respiration/photorespiration processes. Cross-section analysis of C. nodosa’s leaves45 would be 
helpful to further investigate the effect of MHWs on the leave’s anatomy and, more precisely, observe changes 
in the size of the aerenchyma54,55.

The present study investigated the effects of a particular spring-like MHW in Ria Formosa on C. nodosa 
shoots. Results must not be extrapolated for all-year-round conditions or for shoots coming from different ther-
mal environments (temperate or tropical/subtropical). In fact, the optimum temperature for seagrass growth and 
photosynthesis does not only varies between species but also between individuals of the same species coming 
from different origins41, and metabolic responses of the plants to MHWs can greatly vary with their historic ther-
mal environment31,34,56,57. Also, seagrasses may have different responses to MHWs, whenever these events occur 
at different times of the year (summer/winter), as the plant’s metabolism follows a seasonal pattern58. In the case 
of reoccurrence of MHW events in a relatively short time, C. nodosa and other seagrass species are likely to be 
more susceptible and more critically affected by heat stress. In fact, Saha et al. showed that cumulative heatwave 
events have a negative impact on the growth and leaf production rate (i.e., biomass) of Z. marina, whereas an 
isolated MHW event did not induce any significant change in the plant’s biology59.

Overall, studies show that C. nodosa seems to present a higher tolerance to anomalous temperature events 
than other seagrass species in the same thermal environment28,38,56,60. Although C. nodosa’s optimal temperatures 
are higher than other seagrass species, a spring-like heatwave such as the one simulated in the present work 
have the potential to negatively impact C. nodosa population in Ria Formosa if occurring during a period when 
seasonal temperatures are lower (e.g., in autumn or early spring). Investigate MHWs’ effects at different times 
of the year is thus needed to test this hypothesis. In the complex nature realm, an array of biotic and abiotic 
parameters interacts with the potential to induce synergistic or antagonistic effects61,62. Hence, analysing the 
effects of one parameter (here, the temperature) does not necessarily allow forecasting one species’ response in 
its natural environment, and conclusions must be withdrawn with caution. Although temperature is the most 
important factor affecting its production, C. nodosa expresses a large variety of responses to different combina-
tions of factors63. Therefore, multifactorial experiments are needed to predict more accurately the responses of 
seagrasses to environmental stressors, like temperature. Finally, comparisons with previous studies must be taken 
carefully because of the lack of homogenization in methodologies and experimental designs.
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Methods
Study site.  The Ria Formosa coastal lagoon, located in the south coast of Portugal (36°58’N, 8°02’W to 
37°03’N, 7°32’W), is an 84 km2 shallow mesotidal lagoon. It has been a Natural Park since 1987 and is a Ramsar 
and Natura 2000 protected area. It is one of the most important wetlands in Europe, spanning over 55 km long 
and a maximum of 6 km width64. The lagoon is 2 m deep on average, and its tidal amplitude varies between 
3.50 m on spring tides and 1.30 m on neap tides65. It is separated from the Atlantic Ocean by five dynamic barrier 
islands and two peninsulas and is linked to it by seven channels, five natural and two artificial, allowing water 
exchange with the ocean. Essentially composed of salt marshes and mudflats in the intertidal and shallow chan-
nels in the subtidal, the highly productive Ria Formosa hosts a rich diversity of fauna and flora. It is an important 
nursery hotspot and feeding ground for many fish and mollusc species66, which gives the lagoon high ecological 
importance. Mean air temperature is 25 °C in summer and 12 °C in winter, which gives Ria Formosa a Mediter-
ranean climate, despite being situated on the Atlantic coast64. In this mesotidal system, May–June seawater tem-
perature commonly ranges between 18 °C and 30 °C (https://​www.​hidro​grafi​co.​pt/​boias). However, in intertidal 
pools and shallow subtidal areas, the thin water column (especially during low spring tides), coupled to high air 
temperature and high irradiance, drives the water temperature to rise dramatically, especially in summer29 when 
it can reach 35 °C (João Silva, personal communication). Such drastic environmental changes can significantly 
affect the physiology and survival of most species found in the Ria Formosa, including seagrasses.

Plant collection.  C. nodosa plants, including rhizomes, roots, apical meristem, and shoots with 3–4 leaves 
each, were carefully collected in Ria Formosa’s Ramalhete channel on May 3rd, 2021 (Supplementary Fig. S1). 
Following collection, shoots were kept in seawater in closed dark tanks until transplantation into a mesocosm 
facility within 24 h of uprooting. The collection and use of seagrasses and other plants for experimental purposes 
in Ria Formosa Natural Park is regulated by ICNF (Institute for Nature Conservation). Therefore, in order to 
comply with national legislation, a permit (Licença nº17/2021/Recolha) was issued for the collection of all the 
plant material used in this study. All methods were carried out in accordance with relevant national and inter-
national guidelines. A voucher specimen was deposited in the Herbarium of Universidade do Algarve (ALGU) 
with accession number 15779.

Experimental setup.  An indoor mesocosm experiment was conducted in the Ramalhete station. Ten 65-L 
plastic tanks (5 replicates per treatment, n = 5) were filled with 15 cm of sand collected from Faro beach and 
supplied with water pumped from Ria Formosa through an open circuit (Supplementary Fig. S2). To reduce 
microalgae development and contamination in the facility, water pumped from Ria Formosa flowed through a 
50-W UV filter before entering the circuit. The water temperature in the circuit was controlled with a tempera-
ture controller (ECLI20MA IKOMFORTRC900 inverter, i-Komfort, Kripsol, Toledo, Spain). It flowed into the 
aquaria at 14 L h-1 and was entirely renewed every 5 h. The aquaria were aerated with a bubbling air pipe, and 
water was kept in motion and homogenised with a water fan. The light above each tank was provided by LED 
lamps (Ledvance Flood LED 50 W/6500 K WT, Augsburg, Germany) hung above each tank in such a way as 
to provide approximately the same light intensity in the spectral range from 400 to 700 nm to each aquarium. 
Light intensity in this spectral range was measured and calibrated before starting the experiment with an LI-
250A Light Meter and an LI-190R sensor (LiCor, USA) and ranged from 101.6 to 130.8 µmol m2 s−1 (113.2 µmol 
m2 s−1 on average) just on top of the water surface. To simulate the natural conditions, the lights were automati-
cally turned on at 6 a.m. and off at 9 p.m. (light: dark photoperiod of 15 h: 9 h). The day following harvesting, 
C. nodosa shoots were carefully cleaned from epiphytes and 25 shoots were placed in each aquarium under 
controlled light and temperature conditions.

Two treatments (control, C and heatwave, HW) were randomly assigned to the aquaria (Fig. 5).
After the transplant, shoots were left 33 days at 20 °C (1 °C above the water temperature during collection) to 

allow the plants to acclimate to their new environment. While the C aquaria were kept at 20 °C during the experi-
ment, the MHW simulation was applied in the HW aquaria. The temperature was daily monitored throughout the 

Figure 5.   Schematic representation of the experimental setup. Tank number, random treatment assignation 
(Control, C and Heatwave, HW) and water flow direction (open circuit).

https://www.hidrografico.pt/boias
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experiment in all tanks, at the warmest time of the day (between 2 p.m. and 4 p.m.), with a manual thermometer. 
The temperature was monitored and controlled during the heatwave simulation in each of the five HW tanks 
with a temperature controller (AquaMedic T controller twin, Bissendorf, Germany).

Heatwave characteristics.  Determination of the maximum temperature (Tmax) of the simulated MHW 
was based on previous in situ temperature records and the definition of MHWs given by Hobday et al.67,68. Tem-
perature data previously recorded in Caulerpa prolifera beds (mean daily temperature data, from 10–06-2017 
to 17–06-2019; de los Santos, personal communication) was used to get a proxy of the yearly temperature in C. 
nodosa beds in Ria Formosa, as both species are found at a similar depth69.

To assess the oceanic SST and the occurrence of oceanic MHWs in Ria Formosa, the NOAA Optimum 
Interpolation Sea Surface Temperature (OISST) dataset (Huang et al.; methodology developed by Reynolds 
et al. and described by Banzon et al.)70–72 was used. The daily temperature dataset, displayed on the Marine Heat-
waves Tracker app73, contains the oceanic sea surface temperature (SST), climatology, threshold67 data and the 
MHW events record from 1982 to the present day. A pixel close to Ria Formosa’s inlet channel (Lon = 7.875°W, 
Lat = 36.875°N) was selected, and a time series was plotted for the oceanic SST from 10–06-2017 to 17–06-2019 
(Supplementary Fig. S3).

To determine the temperature inside Ria Formosa during a heatwave event and the potential difference to 
oceanic MHWs, the correlation between the temperature inside and outside Ria Formosa was established for the 
year 2018 (R2 = 0.885; Supplementary Fig. S4), and the SST climatology inside Ria Formosa was then extrapolated 
(Supplementary Fig. S5). The occurrence of oceanic MHWs close to Ria Formosa for this time of the year was 
prospected in the historical data available at the Marine Heatwaves Tracker website (Supplementary Fig. S6). At 
his location, MHWs happen at any time of the year and have been intensifying in the last decade. MHW events 
in the Ria Formosa area in the past years during the April-June period were of Moderate intensity (category I; 
MHWs classification by Hobday et al.)68. Nonetheless, there is a global trend toward the increasing frequency of 
Strong intensity (category II) MHWs68. Moreover, the temperature in Ria Formosa’s shallow areas can increase 
dramatically (João Silva, personal communication) until locally reaching the temperature corresponding to 
MHWs of Severe and Extreme intensity (category III and IV). An event of Extreme intensity was chosen in this 
experiment to simulate the dramatically high temperatures of shallow waters and observe its impacts on the 
seagrass’ metabolism, as a simulation of what is likely to happen in the future according to the MHWs predic-
tion scenarios74.

Following the heatwave characterisation and classification proposed by Hobday et al.68, an MHW of Extreme 
intensity (category IV) is characterised by a peak temperature reaching at least 4 × the 90th percentile difference 
from the mean regional climatology value. We applied this principle to the extrapolated Ria Formosa’s tempera-
ture dataset (Supplementary Fig. S7). Between April 1st and June 30th, an MHW of Extreme intensity in Ria 
Formosa peaks at least at 25.9 °C. However, as said before, water temperature can increase dramatically above 
this value in some shallow areas of Ria Formosa, such as the smaller channels. Hence, choosing 28 °C as the 
peak temperature is relevant to simulate an Extreme-intensity MHW in Ria Formosa’s shallow water conditions.

According to the definition given by Hobday et al.67 a MHW has a duration of at least 5 days. Hence, the 
MHW simulated in this experiment was designed with a seven-day duration and a peak temperature of 28 °C 
to simulate a spring-like MHW event of Extreme intensity in Ria Formosa’s shallow channels. The experiment’s 
timeline is described in Fig. 6. After the acclimation period, water temperature was increased from 20 °C to 28 °C, 
by 1 °C a day during eight days (“warming ramp”), maintained at 28 °C for seven days (“heatwave”), and then 
decreased back to 20 °C by 1 °C a day (“cooling ramp”). Then, plants were allowed to recover from the heatwave 
for seven days at 20 °C (“heatwave recovery”).

Sampling design.  Samples were collected from each tank (HW, n = 5 and C, n = 5) at the end of the heat-
wave peak (“heatwave”) and at the end of the recovery period (“recovery”; Fig. 6).

Figure 6.   Scheme of the experimental schedule. Water temperature as a function of time. Acclimation, warming 
ramp, heatwave, cooling ramp, recovery, and respective duration on the x-axis (in days). Grey arrows indicate the 
two sampling times.
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Whole mature leaves (the 2nd or 3rd youngest leaf from each shoot) were collected for CFI analysis. The mid-
dle part of mature leaves was collected for P-I curves, biochemical analysis, and to calculate the area vs DW ratio.

Photosynthesis‑Irradiance (P‑I) response curves and Chlorophyll fluorescence imaging 
(CFI).  P-I curves (n = 4) were performed accordingly to Silva et al.75, after the heatwave peak (HW, C) and after 
heatwave recovery (HW/R, C/R). The setup, installed right next to the mesocosm facility, was composed of five 
independent chambers, each with a round plastic PVC chamber filled with water from the aquaria and sealed 
with a petri dish containing an optical O2 sensor (Presens Spot PS; Supplementary Fig. S8).Water temperature 
inside the chambers was kept at 28 °C (HW) and 20 °C (C, HW/R, C/R) by a closed-circuit thermostatic water-
bath temperature controller (Julabo HC, Julabo Labortechnik, Seelbach, Germany). A magnetic stirrer ensured 
water homogenisation inside the chambers. Light energy was provided by five LED lamps, whose irradiance was 
previously measured with a Li-Cor LI-190 cosine quantum sensor (LI-COR, Lincoln, NE, USA). Combinations 
of neutral density filters were used to obtain the different light intensities needed. Leaf samples were cleaned 
from epiphytes; the middle part was cut into 3 segments (≈ 5  cm long) and then placed side by side inside 
the chambers to ensure their even exposure to light. Leaf segments were incubated inside the chambers under 
increasing photosynthetically active radiation (PAR), with ten light levels ranging from 0 to 1372 μmol photons 
m−2 s−1. Light intensities used for measurements were chosen beforehand to draw an accurate P-I curve shape. 
O2 concentration (μmol L−1) was measured in each chamber, firstly after 20–30 min incubation in the dark (dark 
respiration, DR) and then under each light intensity (net photosynthesis, NP) with a Microx 4 PreSens Optode 
(Regensburg, Germany). Photosynthetic rates (DR, NP (1) and GP (2); μmol O2 gDW−1 h−1) were calculated as 
follows:

where [O2]f  = Final O2 concentration (μmol L−1); [O2]i = Initial O2 concentration (μmol L−1); T = Incubation time 
(h); V  = Volume of the chamber (L); DW = Dry weight of the leaf tissue (g)

O2 saturation levels were periodically checked during the measurements, and incubation time was adjusted 
to avoid O2 supersaturation in the chamber, which can inhibit photosynthesis and involve pH changes54,76. GP 
response to PAR was analysed using the Jassby & Platt model77,78 with SigmaPlot for Windows (version 14.0, 
2017 Systat Software, Inc.). Maximum photosynthetic rate (Pm; µmolO2 gDW−1 h−1) and photosynthetic efficiency 
(α; µmolO2 gDW−1 h−1/µmol photons m−2 s−1) were calculated from the Jassby & Platt fit model, and the half-
saturation irradiance (Ik; µmol photons m−2 s−1) was calculated according to the following equation:

CFI was done right after leaves sampling with an IMAG-K2 Imaging-PAM Fluorometer (M-Series Chloro-
phyll Fluorescence System, WALZ, Germany). A 0.8 s saturating light pulse (ca. 5000 µmol photons m−2 s−1) 
was applied to each sample immediately before taking the image. ΦPSII is widely used to assess the level of plant 
stress in seagrasses 54, as is it highly sensitive to stress. ΦPSII in ambient light conditions was computed from each 
image by “point measurements”, according to the following equation79 :

where F ′m : Maximum fluorescence of the light-adapted leaf tissue; Fs : Steady-state fluorescence of the light-
adapted leaf tissue.

For each leaf sampled, three images were taken, one per tissue age (young, mature and old). For each tissue 
age, three replicates of areas of interest (AOI) were selected on the leaf ’s image to calculate mean ΦPSII.

Total phenolic content (TPC), Trolox® equivalent antioxidant activity (TEAC), oxygen radical 
absorbance capacity (ORAC) and malondialdehyde (MDA) quantification.  Foliar antioxidant 
biochemical indicators (Total Phenolic Content, TPC, Trolox® Equivalent Antioxidant Capacity, TEAC, and 
Oxygen Radical Absorbance Capacity, ORAC) and oxidative damage (Malondialdehyde, MDA) were investi-
gated. Following collection, leaf samples were carefully cleaned from epiphytes, rinsed with distilled water, blot-
ted dry, frozen in liquid nitrogen, and stored at – 80 °C until analysis.

TPC, TEAC and ORAC were quantified according to Costa et al.35. 0.15 g of frozen leaf samples were pow-
dered in liquid nitrogen, suspended in 2.5 mL of hydrochloric acid (HCL) 0.1 N, kept overnight in the dark under 
constant shaking at 4 °C, and then centrifuged (4700 xg, 30 min, 4 °C). The supernatant was used to quantify 
TPC and for TEAC and ORAC assays.

TPC was quantified using the Folin-Ciocalteu method80,81. 42 µL of the phenolic extract was added to 0.4 mL 
Folin-Ciocalteu reagent 0.25 N and 0.4 mL of NA2CO3 7.5%. Absorbance was read at 724 nm (Novaspec Plus, 
Healthcare Bio-Sciences AB, Uppsala, Sweden). Chlorogenic acid was used as a standard, and TPC was expressed 
as chlorogenic acid equivalents.

The TEAC assay quantifies the protection capacity against peroxyl radicals (ROO•) through total antioxi-
dant capacity based on a single electron transfer. A cation radical ABTS•+ solution was produced by adding 
7 mM ABTS to potassium persulfate (2.45 mM final concentration), according to Re et al.82. 990 μL of diluted 

(1)DR,NP =

[O2]f−[O2]i
T × V

DW

(2)GP = NP + DR

(3)Ik =
Pm

α

(4)�PSII = (F ′m − Fs)/F
′

m = �F/F ′m
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ABTS•+ solution (absorbance 0.8 ± 0.02 at 734 nm) was added to 10 μL of extract and read at 734 mm (Novaspec 
Plus, Healthcare Bio-Sciences AB, Uppsala, Sweden). Results were expressed as Trolox® (6-Hydroxy-2,5,7,8-
tetramethylchromane-2-carboxylic acid) equivalents.

The ORAC assay quantifies the protection capacity against peroxyl radicals through hydrogen atom transfer 
(HAT). The ORAC analysis was done following Gillespie et al.83 and Huang et al.84, and using ABAP [2,2′-azobis 
(2-methylpropionamidine) dihydrochloride] instead of AAPH [2,2′-azobis(2-amidinopropane) dihydrochloride] 
as a lipophilic peroxyl radical generator. 150 µL of 8.2 × 10–5 mM fluorescein in 75 mM potassium phosphate 
buffer (pH 7.4) was added to 25 µL of extract, heated to 37 °C and read in a Synergy TM 4 multi-detection 
microplate reader (485 nm excitation filter, 20 nm bandpass, and 528 nm excitation filter, 20 nm bandpass). The 
reaction was initiated by adding 25 µL of freshly prepared 153 mM ABAP. The results were expressed as Trolox® 
equivalents.

MDA is a final secondary product of polyunsaturated fatty acids autooxidation (responsible for cell damage) 
and enzymatic degradation. Hence, it is considered a valuable indicator of lipid peroxidation under oxidative 
stress85. MDA extraction and quantification was performed as in Hodges et al.85. 300 mg of frozen leaf tissue 
were ground in liquid nitrogen and suspended in 5 mL ethanol 80%. After homogenization, the extracts were 
centrifuged at 3000xg for 10 min. 1 mL of supernatant was added to 1 mL of 20% trichloroacetic acid (TCA) 
with 065% thiobarbituric acid (TBA) and 0.015% butylated hydroxytoluene (BHT) solution. Two blank solu-
tions were made without TBA or with ethanol 80% instead of sample extract. After mixing well, all samples and 
blanks were incubated at 90 °C for 25 min, cooled down in ice for 15 min, and centrifuged at 3000 xg for 10 min. 
The supernatant absorbances were read at 440, 532 and 600 nm (Novaspec Plus, Healthcare Bio-Sciences AB, 
Uppsala, Sweden), and MDA equivalents were calculated as in Hodges et al.85.

Leaf area vs dry weight ratio.  Leaves’ area vs dry weight (DW) ratio was calculated. Leaf segments were 
photographed for later measurement of their surface area (m2) with the ImageJ software86 and each sample’s DW 
was measured after drying at 60 °C for at least 48 h.

Statistical analyses.  All statistical analyses were performed using R Studio software87. Beforehand, data 
were tested for normality (Shapiro–Wilk’s test) and homogeneity of variances (Levene’s test). Differences between 
treatments (HW vs C) at both sampling times (“heatwave” and “heatwave recovery”) were tested using one-way 
analysis of variance (ANOVA). Whenever the hypothesis of homogeneity of variance was rejected, a Welch 
ANOVA test was performed, followed by a Games-Howell post-hoc test. To investigate the coupled effects of 
tissue age and treatment on ΦPSII, a two-way ANOVA was performed. In case of the absence of significant inter-
action between the two factors, two one-way ANOVAs were performed to search for any significant difference 
in ΦPSII between leaf parts and between treatments, independently. If significance was detected, a Tukey-HSD 
test was performed for pairwise comparison of the factors “leaf part” and “treatment”. For all tests, a significance 
level of α = 0.05 was used. Data points that deviated from the upper and lower quartiles more than 1.5-fold the 
interquartile range were considered outliers and were not included in the analysis88.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due to confidentiality 
reasons, but are available from the corresponding author on reasonable request.
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