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Hair follicle development and growth are regulated by Wnt signalling and depend on interactions

between epidermal cells and a population of fibroblasts at the base of the follicle, known as the dermal

papilla (DP). DP cells have a distinct gene expression signature from non-DP dermal fibroblasts.

However, their origins are largely unknown. By generating chimeric mice and performing skin

reconstitution assays we show that, irrespective of whether DP form during development, are induced

by epidermal Wnt activation in adult skin or assemble from disaggregated cells, they are polyclonal in

origin. While fibroblast proliferation is necessary for hair follicle formation in skin reconstitution

assays, mitotically inhibited cells readily contribute to DP. Although new hair follicles do not usually

develop in adult skin, adult dermal fibroblasts are competent to contribute to DP during hair follicle

neogenesis, irrespective of whether they originate from skin in the resting or growth phase of the hair

cycle or skin with b-catenin-induced ectopic follicles. We propose that during skin reconstitution

fibroblasts may be induced to become DP cells by interactions with hair follicle epidermal cells, rather

than being derived from a distinct subpopulation of cells.

& 2012 Elsevier Inc. Open access under CC BY license. 
Introduction

Mammalian skin consists of a multi-layered interfollicular
epidermis with associated hair follicles and sebaceous glands,
and an underlying dermis, a collagenous mesenchymal tissue
containing fibroblasts and a variety of other cell types, including
nerves, blood vessels and immune cells (Millar, 2002; Fuchs,
2008). The dermal papilla (DP) is a cluster of specialized fibro-
blasts at the base of each follicle, and has a critical inductive role
in hair follicle development (Yang and Cotsarelis, 2010; Millar,
2002). DP cells have a number of potential therapeutic applica-
tions, both for treatment of hair loss (Jahoda et al., 1984) and as a
source of skin-derived progenitors (SKPs) that have the capacity
to differentiate into a variety of cell types, including neurons, glia,
smooth muscle cells and adipocytes (Toma et al., 2001; Fernandes
et al., 2004; Biernaskie et al., 2009).
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The mechanisms by which the different dermal subcompart-
ments are constructed remain poorly understood. Hair follicle
morphogenesis occurs in successive waves starting from around
E14.5 and ending shortly after birth (Millar, 2002; Fuchs, 2008).
Fibroblasts are recruited to developing epidermal placodes, where
they aggregate to form dermal condensates, and subsequently
mature DP, in a process regulated by epidermis-derived Sonic
Hedgehog, Platelet-derived growth factor a (PDGFa) and Laminin
511 (Karlsson et al., 1999, St-Jacques et al., 1998; Gao et al., 2008;
Millar, 2002). The dermis has multiple embryonic origins, with
head and facial fibroblasts being derived from neural crest, and
dorsal and ventral trunk fibroblasts originating from somitic and
lateral plate dermomyotome, respectively (Driskell et al., 2011).
Myf5þ/Pax7þ cells in the somitic dermomyotome not only give
rise to dorsal dermal fibroblasts but also to skeletal muscle and
brown fat (Olivera-Martinez et al., 2004; Lepper and Fan, 2010;
Jinno et al., 2010; Driskell et al., 2011). It is unknown whether the
unique properties of DP cells reflect a distinct cellular lineage, or
are acquired through extrinsic signals from developing hair
placodes.

In adult skin, DP can be formed de novo in association with
ectopic hair follicles induced by transgenic epidermal activation
of b-catenin (Lo Celso et al., 2004; Silva-Vargas et al., 2005) or
severe wounding (Ito et al., 2007a). It is unknown whether
isolated adult fibroblasts have true hair-initiating capacity
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outside of these contexts, although Sox2-positive cells in the adult
DP and adjacent dermal sheath can support new hair follicle
formation and are responsible for dermal maintenance and
wound healing (Biernaskie et al., 2009; Driskell et al., 2012). DP
cells are normally non-dividing and lineage tracing of adult DP
cells suggests that the DP is maintained by cells outside the DP, in
the dermal sheath (Chi et al., 2010).

Whether DP are formed and maintained by a specific subset of
cells, or via an alternative mechanism, remains unknown. We
have explored this question by tracing the origin of DP in chimeric
mice and hair follicle reconstitution assays.
Material and methods

Mouse strains and chimeras

Experiments were performed in accordance with the UK
Government Animals (Scientific Procedures) Act 1986. PdgfraEGFP
(PdgfraH2B-eGFP) mice (Hamilton et al., 2003) were obtained
from Jackson Laboratories and maintained on a C57 Bl6/ CBA
mixed background. The D2 line of K14DNb-cateninER mice was
used (Lo Celso et al., 2004). PdgfraEGFP:CAGdsRed, PdgfraEGFP:-
wild type and PdgfraEGFP:K14DNb-cateninER chimeric mice were
generated by aggregation of E2.5 (8 cell) embryos. PdgfraEGFP/
K14DNb-cateninER mice and PdgfraEGFP:K14DNb-cateninER chi-
meras were used at age 6–8 weeks, corresponding to the telogen
(resting) phase of the hair cycle.

Cell isolation

Dissected back skin was scraped free of muscle and fat and
incubated overnight at 4 1C in 0.25% Trypsin. The epidermis was
then discarded, leaving the majority of DP embedded in the
dermis. Neonatal dermis was minced and enzymatically disso-
ciated using Collagenase Type 1 (Sigma) (0.4 mg/mL) for 30 min at
37 1C, with DNase I (20 U/mL) added for the final 5 min. Adult
dermis was minced and dissociated for 20 min at 37 1C using a
mixture of Collagenase Type I (Invitrogen) (1.25 mg/mL), Collage-
nase Type II (Worthington) (0.5 mg/mL), Collagenase Type IV
(Sigma) (0.5 mg/mL), Hyaluronidase IVS (Sigma) (0.1 mg/mL) and
DNase I (50 U/mL). In some experiments, fibroblast proliferation
was inhibited by exposing cell suspensions to 50 Gy g-irradiation
in an IBL637 irradiator (CIS Bio International).

Flow cytometry

Analysis was performed with a CyAn ADP Analyser (Beckman
Coulter). Sorting was performed using a MoFlo (DakoCytomation).
Cell viability was assessed with a LIVE/DEADs Viability/Cytotoxi-
city kit (Invitrogen). In some experiments cells were stained with
an APC BrdU Flow Kit (BD Pharmingen) and DAPI staining was
used to exclude dead cells. Non-labelled cells and cells labelled
with secondary antibody only were used as controls to set gates.
Re-analysis of sorted cells in each experiment showed that
PdgfraEGFP-positive populations were of 97–100% purity.

Skin reconstitution

Grafting was performed essentially as described by Lichti et al.
(2008) and Jensen et al. (2010). 6 mm diameter chambers
(Renner) were inserted into 5 mm diameter punch biopsy wounds
on the back skin of 5–8 week old Balb/c nude female mice.
Suspensions of keratinocytes and/or dermal cells were injected
into the chamber.
Image acquisition and processing

A Leica SP5 confocal microscope utilising 405, 488 and 561
lasers and Leica Application Suite version 8.2.2 was used. Images
were obtained using a 20� HCX PL APO CS dry objective with an L1
405/UV correction optic and a 63� HCX PL APO water-immersion
objective with L8 405 and L10 UV correction optics. Images were
optimised globally for brightness and contrast using Photoshop CS4
and assembled into figures with Adobe Illustrator CS4.
Results

Polyclonal origin of DP in neonatal skin

For non-biased lineage analysis of the DP, we generated
chimeric mice by in vitro aggregation of E2.5 blastocysts derived
from two different fluorescent mouse strains. CAGdsRed trans-
genic mice express dsRed in all tissues via the chicken actin
promoter. PdgfraEGFP mice (PdgfraH2BeGFP, Hamilton et al.,
2003) express a stable, nuclear form of GFP from the endogenous
Pdgfra promoter. In PdgfraEGFP skin, GFP is expressed by all
dermal fibroblasts but is absent from other cell populations,
including keratinocytes, melanocytes, blood and endothelial cells,
as judged by flow cytometry and Q-PCR for markers of each cell
type (Collins et al., 2011). PdgfraEGFP:CAGdsRed aggregate
embryos were implanted into pseudo-pregnant females and the
resultant viable neonates were viewed under a fluorescence
dissection microscope. Seven neonates exhibiting patchy contri-
bution of GFP and dsRed were analysed (Fig. 1).

Wholemounts of neonatal back skin were imaged from the
dermal side. We examined obvious regions of microchimerism that
contained similar contributions of the two colours (Fig. 1A and B).
In these regions, 100% of DP in skin (450 DP analysed per mouse)
of 7/7 mice contained a mixture of PdgfraEGFP-positive and
CAGdsRed-positive cells. The dermal cup (fibroblasts at the lower-
most base of the hair follicle, beneath the dermal papilla) and
dermal sheath (DS) (fibroblasts surrounding the hair follicle) were
also typically composed of a mixture of GFP-positive and dsRed-
positive cells, indicating that they too are polyclonal (Fig. 1A, C–E).

Polyclonal origin of ectopic DP induced in adult skin

New hair follicles normally form only during late embryonic
and early neonatal development. However, in K14DNb-cateninER
mice, new hair follicles can be generated in adult skin in response
to 4-hydroxytamoxifen (4-OHT)-induced epidermal activation of
b-catenin. Ectopic follicles encapsulate a DP-like structure that
expresses alkaline phosphatase and other DP markers (Lo Celso
et al., 2004; Silva-Vargas et al., 2005) but is Sox2-negative
(Driskell et al., 2012). The DP gene signatures of fibroblasts from
telogen, anagen and neonatal skin and adult skin with ectopic
follicles are all distinct (Collins et al., 2011). As expected (Collins
et al., 2011), when K14DNb-cateninER and PdgfraEGFP mice were
crossed to generate double heterozygous animals, all DP cells and
all other dermal fibroblasts were positive for PdgfraEGFP (Fig. 2A).
In control chimeras of PdgfraEGFP and wild type mice, many DP
contained both GFP-positive and -negative cells (Fig. 2B), indicat-
ing that DP remain polyclonal in adulthood.

To determine whether the DP of b-catenin-induced ectopic
follicles were polyclonal, we generated K14DNb-cateninER:Pdg-
fraEGFP chimeras, in which GFP-negative fibroblasts are contrib-
uted by the K14DNb-cateninER genotype. 4-OHT treatment of
back skin resulted in patchy hair re-growth in 4/8 chimeras,
consistent with the existence of regions of b-catenin activation
(derived from the K14DNb-cateninER embryo) and non-activation



Fig. 1. DP formation in chimeric mice. (A, C, D) Wholemounts of PdgfraEGFP:CAGdsRed chimeric P2 neonatal back skin. Images of endogenous GFP (green) and dsRed (red)

fluorescence overlaid onto brightfield images of the same field. C is an enlarged region of A. (B) Composite image of PdgfraEGFP:CAGdsRed chimeric P4 neonate.

(E) Schematic depiction of the composition of different dermal subcompartments. DP: dermal papilla; DS: dermal sheath; DC: dermal cup. Scale bars: 200 mm. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Polyclonal origin of DP associated with b-catenin induced adult ectopic

hair follicles. (A–D) Paraffin sections of adult 4OHT-treated back skin from

(A) PdgfraEGFP/K14DNb-cateninER heterozygous mouse; (B) PdgfraEGFP:wild

type chimeric mouse; (C, D) PdgfraEGFP:K14DNb-cateninER chimeric mice. Anti-

GFP: green; DAPI: blue. Arrows in (D) point to GFP-positive cells emanating from

the hair follicle junctional zone. Scale bars¼100 mm. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version

of this article.)
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(derived from the PdgfraEGFP embryo) (not shown). The DP of the
original adult hair follicles (both telogen and anagen) contained
both GFP-positive and GFP-negative cells (data not shown). Where
regions of K14b-cateninER-positive epidermis were juxtaposed to
regions of PdgfraEGFP-positive dermis, we also examined the DP
of ectopic follicles (n¼5–10 per mouse). They were frequently
formed from mixtures of GFP-positive and GFP-negative cells,
indicating that they too were polyclonal (Fig. 2C).

Examination of areas of K1414DNb-cateninER:PdgfraEGFP chi-
meric back dermis with a low contribution of PdgfraEGFP-positive
cells (estimated 5–20%) revealed an absence of GFP-positive
patches containing more than two or three cells, implying limited
proliferation or rapid dispersal of progeny following cell division.
However, larger groups of GFP-positive cells (possibly clones)
were sometimes seen adjacent to the hair follicles (Fig. 2D). It is
possible that these cells are associated with the hair follicle
junctional zone, the location of Lrig1-positive epidermal stem
cells, since fibroblasts adjacent to the junctional zone proliferate
and accumulate in response to epidermal activation of b-catenin
(Collins et al., 2011).

Our results demonstrate a polyclonal origin of the DP during
skin development, in adulthood and when ectopic follicles are
induced in adult skin by epidermal b-catenin activation.

Hair follicle neogenesis requires fibroblast proliferation

Cells within DP rarely divide (Tobin et al., 2003) and the
polyclonal origin of DP suggests DP formation may not be
dependent on proliferation. To test this, we used skin reconstitu-
tion assays. An inert protective chamber was implanted into a full
thickness wound on the back of a nude mouse and disaggregated
neonatal fibroblasts and epidermal cells (predominantly kerati-
nocytes with some melanocytes also present) were injected into
the chamber, resulting in formation of hair-bearing skin within
3–5 weeks (Lichti et al., 2008; Jensen et al., 2010; Fig. 3A). To inhibit
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proliferation, we exposed freshly-isolated fibroblasts to 50 Gy
g-irradiation. When cells were subsequently placed in culture and
monitored for 5 day after plating, there was no effect of irradiation
on cell viability, but cell division was inhibited (Fig. 3B).
Fig. 3. Irradiated neonatal fibroblasts give rise to DP but not DS. (A) Experimental set-up

cells after 5 day in culture. (C) Purification of viable GFP-positive cells from non-irradiate

Hair growth at graft sites. (H–O) Grafts viewed from the dermal side. Endogenous GFP

fields. L–O are enlargements of selected regions of H–K, respectively. Arrows in M point

Note GFP-positive DS in each case. Scale bars: 200 mm. (P) Mean number of hairs7SEM

or more GFP-positive cells (n¼3 grafts/group; 43–118 follicles scored/ graft). (P, Q) Aste

(R) Schematic representation of the results. (For interpretation of the references to col
To assess the relative hair-initiating capacity of irradiated and
non-irradiated fibroblasts, we used mixtures of dermal cells
expressing different fluorescent markers. Each graft (n¼3/group)
consisted of 3�106 wild type neonatal epidermal cells, 5�106
. (B) GFP labelling and BrdU incorporation in non-irradiated and irradiated dermal

d and irradiated PdgfraEGFP dermis. Cells were examined 1 h after isolation. (D–G)

(green) and dsRed (red) fluorescence overlaid onto brightfield images of the same

to graft-derived DP that are either entirely GFP-positive or entirely dsRed-positive.

formed per graft. (Q) Mean percentage (7 SEM) of graft-derived DP containing one

risks denote a significant difference from the ‘All DF irrad.’ group (T test, po0.05).

our in this figure legend, the reader is referred to the web version of this article.)



Table 1
% contribution of neonatal PdgfraEGFP-positive cells to individual graft-derived

dermal papillae. Graft sites were viewed as wholemounts from the dermal side to

visualise graft-derived DP. In three 20� fields per graft, each DP was examined in

several focal planes. If all the cells observed were GFPþ the DP was scored as 100%

GFPþ and if all the cells were dsRedþ the DP was scored as 0% GFPþ . In the case

of DP containing both GFPþ and dsRedþ cells, the contribution of GFPþ cells was

estimated as greater or less than 50%. DF: dermal fibroblasts.

Group Graft Total
hairs

100%
GFP

450%
GFP

o50%
GFP

0%
GFP

DP
scored

All DF irradiated 1 21 0 0 8 35 43

2 71 0 0 8 41 49

3 58 0 0 11 55 66

CAGdsRed (97%)
irradiated

1 408 5 15 23 21 64

2 265 4 9 14 22 49

3 217 3 6 11 29 49

PdgfraEGFP (3%)
irradiated

1 54 0 0 2 45 47

2 537 0 0 0 40 40

3 507 0 0 3 48 51

No irradiation 1 376 0 0 22 96 118

2 567 0 0 11 39 50

3 794 0 0 7 43 50
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CAGdsRed non-fractionated neonatal dermal cells (97% of total
dermal cells) and 1.5�105 sorted PdgfraEGFP-positive neonatal
dermal fibroblasts (3% of total dermal cells) (Fig. 3A). Non-
fractionated dermal cells contain between 45% and 70% fibro-
blasts (PdgfraEGFP-positive) (Fig. 3C). Each graft contained the
same number and proportion of fibroblasts, with the only experi-
mental variable being whether or not fibroblasts had been
irradiated. We used four experimental groups (n¼3 grafts/group),
in which: (1) both dermal components were irradiated
(Fig. 3D,H,L); (2) only the CAGdsRed cells (97% of dermal cells)
were irradiated (Fig. 3E,I,M); (3) only the PdgfraEGFP fibroblasts
(3% of dermal cells) were irradiated (Fig. 3F,J,N); or (4) neither
fraction was irradiated (Fig. 3G, K, O).

After four weeks, grafts in which neither dermal fraction was
irradiated generated 5797148 hairs. Grafts in which both
dermal fractions were irradiated gave rise to 11 fold fewer hairs
(average 50718; T test po0.05), demonstrating that hair
follicle neogenesis required fibroblast proliferation. Neverthe-
less, grafts in which only the CAGdsRed fraction (97%) was
irradiated formed an average of 297770 hairs, a 6-fold increase
over grafts in which 100% of dermal cells were irradiated
(po0.05). Therefore the 3% PdgfraEGFP-positive fraction of
proliferation-competent cells was remarkably efficient at restor-
ing hair-initiation ability to irradiation-depleted dermis
(Fig. 3D–G, P; Table 1).
DP can form from mitotically inhibited cells

To estimate the contribution of GFP-positive cells to DP
formation we used confocal microscopy to examine grafts as
wholemount preparations from the dermal surface (Fig. 3H–O).
The dsRed signal was well preserved in the wholemounts and so
individual cells could be scored unambiguously as GFPþ or
dsRedþ . We scanned several confocal planes of each DP and then
scored whether all the cells observed were GFPþ (100%) or none
(0%). In the case of DP containing both GFPþ and dsRedþ cells
the GFPþ contribution was estimated as being greater or less
than 50% (Table 1).

The percentages of DP containing at least one GFP-positive cell
are shown in Fig. 3Q. Grafts in which neither dermal fraction was
irradiated, or in which both dermal fractions were irradiated,
contained similar percentages of DP with one or more GFP-
positive cell (18.270.9% and 17.272.8%, respectively), consistent
in both cases with neither the CAGdsRed nor the PdgfraEGFP-
positive cells having a selective advantage. In grafts where only
the PdgfraEGFP positive fraction (3%) was irradiated, only
3.472.2% of DP contained one or more GFP-positive cell. How-
ever, in grafts where only the CAGdsRed fraction (97%) was
irradiated, 54.479.4% of DP contained one or more GFP-positive
cell, indicating a substantial expansion of the GFP-positive popu-
lation (Fig. 3H–O,Q).

In grafts in which only the CAGdsRed fraction (97%) was
irradiated, approximately 44% of DP (72/162) were composed
entirely of CAGdsRed-positive irradiated cells, showing that
mitotically inhibited fibroblasts remained capable of forming DP
(Fig. 3I–M,Q Table 1). Nevertheless, the dermal sheaths of follicles
in these grafts were almost entirely derived from the 3% of
proliferation-competent GFP-positive cells, and not from the
irradiated CAGdsRed cells (Fig. 3I,M).

We conclude that fibroblast proliferation is a necessary step in
hair follicle morphogenesis, most likely because it is required for
formation of the dermal sheath (Chi et al., 2010). However, DP can
form from mitotically inhibited cells (Fig. 3R).
Adult dermal fibroblasts retain the ability to initiate hair follicle

neogenesis

Hair follicle neogenesis normally occurs only during the late
embryonic and early neonatal phases of development (Millar,
2002; Fuchs, 2008). However, adult epidermal keratinocytes
reveal an excellent ability to generate new hair follicles when
combined with neonatal fibroblasts in graft assays (Lichti et al.,
2008; Yang and Cotsarelis, 2010). Since the number of DP cells
and their gene expression profiles differ between different hair
cycle stages (Tobin et al., 2003; Chi et al., 2010; Greco et al., 2008;
Collins et al., 2011), the absence of hair follicle neogenesis in adult
skin could be due to intrinsic differences in the inductive proper-
ties of adult and neonatal fibroblasts. Alternatively it could reflect
the decline in fibroblast density that occurs postnatally (Collins
et al., 2011). To distinguish between these possibilities, we
designed a skin reconstitution experiment to compare the hair-
initiating capacity of equal numbers of PdgfraEGFP-positive
fibroblasts isolated from skin in different developmental states:
adult telogen, adult anagen (K14DNb-cateninER mice treated
once with 4OHT to induce anagen), adult with anagen and ectopic
follicles (K14DNb-cateninER that received repeated applications
of 4OHT), and neonatal.

Only small numbers of fibroblasts can be purified from adult
skin. However, our previous experiment showed that the hair-
initiating ability of irradiated neonatal dermis could be restored
by the addition of a small number of proliferation-competent
fibroblasts (Fig. 3E, I–M,P). For each graft, we therefore used
5�106 irradiated, non-fractionated CAGdsRed neonatal dermal
cells spiked with 3�105 purified PdgfraEGFP-positive fibroblasts
(6% of total dermal cells), combined with 4�106 adult wild type
keratinocytes (Fig. 4).

Grafts of epidermal cells alone (n¼2) or irradiated fibroblasts
alone (n¼2) did not result in hair growth (Fig. 4A and B,M;
Table 2). Grafts of keratinocytes combined with irradiated
CAGdsRed fibroblasts only (n¼3; non-spiked control) generated
an average of 4678 hairs (Fig. 4C,M; Table 2). However, addition
of a spike of 6% PdgfraEGFP-positive cells (n¼3 or 4 grafts per
group) resulted in a 2 to 4-fold increase in the number of hairs
generated, irrespective of whether the cells originated from adult
telogen, adult anagen, adult ectopic follicle-forming or neonatal
dermis (Fig. 4D–F, M; Table 2). The increases in hair number were
statistically significant for the telogen and ectopic follicles groups
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when compared to the non-spiked control (T test po0.05 in each
case; Fig. 4M).

Our results show that, as with neonatal fibroblasts, a small
number of adult fibroblasts can restore hair-initiating capacity to
irradiated dermis. We conclude that adult fibroblasts retain the
capacity to contribute to DP formation.
Discussion

Our studies have revealed that mouse back skin DP are poly-
clonal, regardless of whether they are present in neonatal or adult
Fig. 4. Adult dermal fibroblasts initiate hair follicle formation in skin reconstitution a

Endogenous GFP (green) and dsRed (red) fluorescence is overlaid onto brightfield imag

order. (M) Average number of hairs (7 SEM) formed per graft. (N) Mean % (7 SEM)

follicles scored/graft). Asterisks denote a significant difference from the ‘Kerats.þ irra

references to colour in this figure legend, the reader is referred to the web version of
skin or are formed in association with b-catenin-induced adult
ectopic follicles. Although fibroblast proliferation is necessary for
hair follicle formation in skin reconstitution assays, the cells that
form the DP can be mitotically inactive. This, together with the
inverse relationship between DP cell expansion in hydrogel culture
and hair inducing ability in grafts (Driskell et al., 2012), suggests
that the hair growth induction efficiency of DP cells is due to their
morphogenetic, rather than proliferative, capacity. We also found
that fibroblasts from neonatal, telogen, anagen and anagen with
ectopic follicles skin are all competent to contribute to DP forma-
tion. The extent to which our findings are applicable to human hair
follicles remains to be determined.
ssays. (A–F) Hair growth at graft sites. (G–L) Grafts viewed from the dermal side.

es of the same fields. (J–L) Enlargements of selected regions of (G–I), in respective

graft-derived DP with one or more GFP-positive cell (n¼3–4 grafts/group; 15–31

d. dermis’ group (T test, po0.05). Scale bars: 200 mm. (For interpretation of the

this article.)



Table 2
% contribution of PdgfraEGFP-positive cells to individual graft-derived dermal

papillae. Graft sites were viewed and scored as for Table 1. DF: dermal fibroblasts.

Group Graft Total
hairs

100%
GFP

450%
GFP

o50%
GFP

0%
GFP

Total
counted

Kerats. only 1 0 – – – – –

2 0 – – – – –

Irrad. dsRed DF
only

1 0 – – – – –

2 0 – – – – –

Kerats. þ Irrad.
dsRed DF only

1 37 – – – – –

2 42 – – – – –

3 59 – – – – –

6% Telogen
PdgfraEGFP

1 82 3 2 15 6 26

2 293 0 1 8 6 15

3 181 0 2 12 11 25

6% Anagen
PdgfraEGFP

1 61 0 0 7 7 14

2 151 0 0 8 10 18

3 32 0 0 6 10 16

6% Ectopic follicle
PdgfraEGFP

1 107 1 2 10 9 22

2 113 0 1 10 12 23

3 125 0 3 12 16 31

4 145 0 2 7 12 21

6% Neonatal
PdgfraEGFP

1 457 6 19 17 9 51

2 91 1 3 7 3 14

3 40 2 4 9 6 21
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The finding that DP cell proliferation is not required for hair
follicle formation is consistent with earlier evidence that the
dermal sheath is the source of DP cells (Tobin et al., 2003;
McElwee et al., 2003; Chi et al., 2010; Horne and Jahoda, 1992;
Yamao et al., 2010). Although DP cells do have unique properties,
such as spontaneous aggregation in culture (Jahoda and Oliver,
1984) and hair initiation capacity (Ito et al., 2007b), those proper-
ties can be conferred on DS cells through exposure to signals from
epidermal cells in the hair follicle matrix (Reynolds and Jahoda,
1996).

Since b-catenin induced ectopic follicles have associated DP
(Silva-Vargas et al., 2005), we had anticipated that sustained
epidermal b-catenin activation would increase the competence of
the underlying dermis to support ectopic follicle formation;
however, that was not the case. We found that adult telogen
and anagen fibroblasts could contribute to the DP of new hair
follicles, even though the competence of DP cells to induce
follicles has been reported to vary during the hair growth cycle
(Iida et al., 2007) and follicle neogenesis is normally restricted to
embryonic and neonatal skin. Since the absence of hair follicle
neogenesis in normal adult skin does not reflect loss of intrinsic
developmental potential, it must be due to other factors, such as
low fibroblast density or mitotic quiescence (Collins et al., 2011).

Our studies do not, however, rule out the existence of different
fibroblast subpopulations. For example, we have observed that
fibroblasts associated with the hair follicle junctional zone are
particularly sensitive to the proliferative stimulus associated with
b-catenin-induced ectopic follicle formation (Collins et al., 2011).
Although lineage tracing has shown that postnatal Corin-positive
DP cells do not contribute to other dermal compartments
(Enshell-Seijffers et al., 2010), it has been reported that Sox2-
positive cells of the DP and dermal sheath are responsible for
dermal regeneration following wounding of adult skin (Biernaskie
et al., 2009). We have also found intrinsic differences in the
proliferative potential and dermal contribution of Sox2-positive
and –negative DP cells following expansion in culture (Driskell
et al., 2012). Nevertheless, Sox2þ cells are unlikely to make a
significant contribution to the DP in the present experiments.
Sox2 is not expressed in the DP of zigzag hair follicles, which are
the major hair type in postnatal back skin (Driskell et al., 2009), or
the DP of b-catenin-induced ectopic follicles (Driskell et al., 2012).
In skin reconstitution assays, as few as 3% proliferation-
competent fibroblasts could restore the hair-initiation potential
of an irradiated dermal niche, which is reminiscent of the
behaviour of stem cells in blood (Kondo et al., 2003) and skeletal
muscle (Zammit, 2008). Therefore, it is of considerable interest to
pursue the issue of dermal cell heterogeneity further.
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