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INTRODUCTION

The rodent malaria parasite Plasmodium berghei is similar to 
human malaria parasites, such as P. falciparum, in aspects of 
the structure, genome organization, physiology, and life cycle 
[1-3]. Therefore, P. berghei represents a practical and relevant 
model organism for experimental studies of malaria [4]. To 
improve the utility of models, such as P. berghei in the develop-
ment of drug target and vaccine candidates for malaria, the ge-
nome sequence and actual transcripts are required as primary 
sources of biological information. 

The genome of P. berghei is organized into 14 chromosomes, 
with an estimated genome size of 18 Mb [4]. Partial shotgun 
sequencing of the P. berghei genome and transcription profile 
analysis with genome survey sequences (GSS) is having signifi-
cant contribution to many fields of malaria research [4]. How-

ever, most gene prediction of P. berghei have been based on bio-
informatic analyses using computer software. However, the high 
A/T contents of the Plasmodium genome, excluding P. vivax, 
hamper the prediction of the gene structure, resulting about 
60% of the predicted genes encoding hypothetical proteins [5]. 
Therefore, it is necessary to verify the prediction with comple-
mentary DNA (cDNA), such as expressed sequenced tag (EST), 
a short contiguous subsequence of a transcribed DNA sequen
ce, as a rapid means of gene identification to obtain useful in-
formation from a genome sequence, especially for intron-con-
taining eukaryotes. Currently, large-scale random sequencing 
of ESTs is preceding concurrent with the Plasmodium genome 
project [6-9]. Previous efforts to generate ESTs by random clones 
of a P. berghei cDNA library have accelerated the gene discovery 
processes [7]. The present study constructed a SMARTTM PCR-
amplified cDNA library from mixed blood stages of P. berghei 
parasites to enrich for full-length transcripts for detection of 
rare transcripts and transcript isoforms and determination of 
the relative abundance of transcripts. Here, we report the anal-
ysis of the P. berghei ESTs, including abundance, prevalence of 
protein domains, and functional categorization. 
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Abstract: Rodent malaria parasites, such as Plasmodium berghei, are practical and useful model organisms for human 
malaria research because of their analogies to the human malaria in terms of structure, physiology, and life cycle. Exploit­
ing the available genetic sequence information, we constructed a cDNA library from the erythrocytic stages of P. berghei 
and analyzed the expressed sequence tag (EST). A total of 10,040 ESTs were generated and assembled into 2,462 clus­
ters. These EST clusters were compared against public protein databases and 48 putative new transcripts, most of which 
were hypothetical proteins with unknown function, were identified. Genes encoding ribosomal or membrane proteins and 
purine nucleotide phosphorylases were highly abundant clusters in P. berghei. Protein domain analyses and the Gene On­
tology functional categorization revealed translation/protein folding, metabolism, protein degradation, and multiple family 
of variant antigens to be mainly prevalent. The presently-collected ESTs and its bioinformatic analysis will be useful re­
sources to identify for drug target and vaccine candidates and validate gene predictions of P. berghei.
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MATERIALS AND METHODS

Parasite collection
P. berghei ANKA strain (kindly provided by Dr. Eun-Taek Han, 

Department of Parasitology, Kangwon National University) 
was used to infect 6-week-old CL57B/6 mice. The blood stage 
of the parasite was used for cDNA library construction. Blood 
was collected by heart puncture under anesthesia and leuko-
cytes were obtained using Plasmodipur leukocyte filters (Euro-
Diagnostica, Malmö, Sweden). Parasites were released from 
their host RBCs by 0.15% saponin (0.5 volume of packed RBCs) 
(Sigma-Aldrich, St. Louis, Missouri, USA) in PBS, pH 7.5 (PBS) 
and agitated for 1-2 min until the suspension became a clear 
red color. The suspension was diluted by addition of 15 vol-
umes of PBS, and the released parasites were collected by cen-
trifugation [10].

Construction of P. berghei cDNA library 
For construction of the P. berghei cDNA library, a PCR-based 

cDNA library was used with total RNA purified with TRIzol re-
agent (Gibco BRL, Rockville, Maryland, USA) following the in-
structions for the SMART cDNA library construction kit (BD-
Clontech, Palo Alto, California, USA). cDNA was synthesized 
with a specially designed oligonucleotide (SMART IV) in the 
first-strand synthesis to generate high yields of full-length, dou
ble-stranded cDNA and 3́  primer. Second-strand synthesis was 
performed by a long-distance PCR with Advantage 2 polymer
ase mix (Clontech). PCR products were extracted with phenol:  
choloroform (25:24) to remove the polymerases, digested with 
SfiI, and size-fractionated using a ChromaSpin-400 column 
(Clontech) to exclude cDNAs <500 bp. The cDNA mixture was 
ligated into the λ TriplEx2 vector (Clontech) and packaged us-
ing the GigaPack III Plus packaging extract (Stratagene, La Jol-
la, California, USA) according to the manufacturer’s inst ruc-
tions. 

In vivo excision and random sequencing
The titer and percentage of recombinant phages in the libr

ary was determined to 1×108 plaque forming units with 95% 
as recombinant clones. Escherichia coli strain BM25.8 cells were 
transduced with recombinant phage, from which the massive 
excision of the pTriplEx2 phagemid library was accomplished 
according to the manufacturer’s instruction (Clontech). After 
in vivo excision, bacterial colonies were randomly selected and 
grown in LB-ampicillin broth by incubation with shaking at 

31˚C overnight. Then, plasmids from selected colonies were 
extracted using the DNA-spin Plasmid DNA Purification Kit 
(iNtRON Biotechnology, Seoul, Republic of Korea) and sequen
ced with a PE377 DNA sequencer (Perkin-Elmer, Boston, Mas-
sachusetts, USA) using the Bigdye Terminator Cycle Sequenc-
ing Ready Reaction Kit (Applied Biosystems, Foster City, Cali-
fornia, USA).

Bioinformatic analysis
The ESTs were initially analyzed with well-established pro-

cedure for EST sequence processing and annotated using the 
PESTAS automated EST analysis platform (http://pestas.kribb.
re.kr) [11-13]. Each EST cluster was analyzed using BLASTX 
against the GenBank non-redundant protein database (April 
2010 release) and Plasmodium annotated protein database in 
PlasmoDB (ver. 7.1, released November 2010, http://plasmodb. 
org/plasmo/) with an E-value of <10-5 for selection of match-
ing [14]. After the first assignment, a BLASTN and TBLASTX 
search of the unmatched EST clusters was performed against 
the P. berghei EST and genome database in PlasmoDB to ascer-
tain whether they were encoded in the P. berghei genome as 
putative new transcripts. EST cluster-associated GO terms were 
functionally classified based on protein-level annotation using 
BLAST2GO (cut-off ≤1e-10) [15]. Functional domains in novel 
clusters were assigned using InterProScan (HMMPfam, HMM
Smart, HMMTigr, HMMPanther, and Superfamily, flagged as 
true by InterProScan with E-value <1e-2) [16]. All of the P. ber-
ghei ESTs generated from this study were submitted to the db
EST division of GenBank with accession numbers (HS576390-
HS586433). Based on our ESTs, a specific P. berghei EST data-
base (P. berghei EST DB) was constructed (http://parasite.knu.
ac.kr). 

RESULTS

P. berghei ESTs
The 12,000 clones containing DNA inserts were sequenced, 

sequence <100 bp were removed, and the remainder was pro-
cessed with bioinformatic software programs to generate high 
quality ESTs. First, total ESTs were aligned against a non-re-
dundant database of mouse gene for exclusion of mouse DNA 
contamination and 4 ESTs displayed encoding mouse genes 
(0.04%). A total of 10,040 ESTs having an average length of 
643 bp and 74% [A+T] content were produced (Table 1). Clus-
ter analysis with the processed ESTs, using TGICL, assembled 
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10,040 ESTs into 2,462 EST clusters with 1,432 contigs con-
taining at least 2 or more overlapping sequences and 1,030 
ESTs remained as singletons. The sequences of assembled con-
tigs could be up to 2.5 kb in length and were composed of an 
average of 6.3 ESTs. The 2,462 EST clusters were compared 
with the P. berghei annotated protein database in PlasmoDB; 
2,043 (83%) EST clusters were annotated with P. berghei pro-
teins showing significant BLASTX matching at the cutoff value 
of <1e-5 with 419 EST clusters remaining unmatched. From 
BLASTX analysis, we found that 244 genes with predicted cod-
ing regions were fully covered by EST clusters.

After the first assignment, a BLASTN and TBLASTX search of 
the 419 unmatched EST clusters was performed against P. ber-
ghei EST databases in PlasmoDB. Of the 419 EST clusters, 371 

(88.5%) displayed matching to P. berghei EST in the databases 
(Table 1). The 48 unmatched EST clusters were aligned using a 
BLASTN and TBLASTX analysis against a non-redundant pro-
tein database at the National Center for Biotechnology Infor-
mation (NCBI) and the P. berghei genome database to ascer-
tain whether they were encoded in the P. berghei genome. Cor-
responding sequences were apparent with 48 (11.5%) of these 
non-matched ESTs, most of them were hypothetical proteins 
with unknown function, implicating these EST clusters as pu-
tative new transcripts in P. berghei (Table 1). These results sup-
port the view that the P. berghei protein database remains in-
complete.

Abundant P. berghei ESTs 
We examined the redundancy of EST clusters, because redun

dant EST appears to reflect the highly expressed genes, which 
can highlight the importance of the genes in their respective 
biological pathways. The most abundantly detected transcripts 
(i.e., EST clusters containing more than 50 ESTs) are summa-
rized in Fig. 1. Many of them corresponded to ribosomal, hy-
pothetical, membrane proteins, or proteins in the purine sal-
vage pathway. 

Protein domains in P. berghei ESTs
We further analyzed EST clusters with Pfam (http://pfam.

sanger.ac.uk) to catalog the protein domains present in the P. 

Table 1. Transcriptome features of Plasmodium berghei EST 

Numbers

Total number of clones 12,000
Number of ESTs 10,040

Average length of the ESTs (nt)a 643
Number of EST clusters 2,462

Contigs 1,432
Singletons 1,030

Matches to P. berghei DB
Clusters to proteins 2,043
Clusters to ESTs 371
Clusters to DNA 48
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Fig. 1. The abundant transcripts in Plasmodium berghei. 
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berghei EST datasets, because the identification of domains that 
contain within proteins, especially hypothetical proteins, can 
provide insights into their functions [17]. The prevalence of 
protein domains in P. berghei ESTs is summarized in Table 2 
showing RNA recognition motifs (RRM; PF00684), which con-
tained the RNA binding protein implicated in regulation of 
splicing, RNA stability, and translation, to be most prevalent. 
Proteasome, subunit alpha/beta (PF00276), variant antigen 
Yir/Bir/Cir (PF01849) and chaperonin Cpn60/TCP-1 (PF00009) 
are among the top 10 Pfam families in the ESTs. These results 
together with previous results, the redundancy of EST clusters, 
indicate that proteins in the asexual blood stages of P. berghei 
are mainly related in translation/protein folding and degrada-
tion. Human malaria parasites evade the host immune respon
se through the members of multigene families, such as Var, Rif, 
and Stevor, encoding virulence determinants of cytoadhesion 
and antigenic variation. In rodent malaria parasites (P. yoelii, P. 
berghei, and P. chabaudi), a large paralogous multigene family 
of variant antigens, Yir/Bir/Cir, is also conserved [18]. Consis-
tent with their importance, variant antigen Yir/Bir/Cir (PF01849) 
displayed a significant portion in the prevalence of protein do-
mains in P. berghei ESTs. 

Functional categorization of P. berghei ESTs
The EST clusters were grouped as functional categories based 

on GO molecular functions. GO, which consists of 3 major 
ontologies, i.e., biological process, molecular functions, and 
cellular components, is the most widely used method to pre-
dict gene families and functions of EST sequences. The BLAST-
2GO program was used in the functional classification of the P. 
berghei ESTs. From this, 1,631 (66.2%) EST clusters were as-
signed to biological processes (523; 21.2%), cellular compo-
nents (377; 15.3%), and molecular functions (731; 29.7%) 
(Fig. 2). Consistent with our expectation, the majority of the 
genes with functional assignments were related to translation/
protein folding, ribosomal structure, and metabolism. In par-
ticular, EST clusters were classified into proteolysis (GO: 000
6508), including berghepain-2, a falcipain-2 homologue in P. 
berghei, plasmepsin, and many aminopeptidases has a signifi-
cant proportion in biological processes. Interestingly, amino-
peptidases, especially methionine aminopeptidases (MetAP), 
were more frequently detected compared with other protein-
ases, indicating the exuberant expression of MetAP in P. ber-

ghei. Aminopeptidases have been suggested as new targets for 
anti-malarial drug development [19]. In P. falciparum, 4 methi-
onine aminopeptidases are expressed among the 9 identified 

Table 2. The prevalence of protein domains in P. berghei ESTs 

Protein family Pfam accession No. Rank No. of ESTs

RNA recognition motif domain PF00684 1 36
Proteasome, subunit alpha/beta PF00276 2 32
Variant antigen yir/bir/cir PF01849 3 26
Chaperonin Cpn60/TCP-1 PF00009 4 24
Ubiquitin-conjugating enzyme, E2 PF01779 5 20
ATPase, AAA-type, core PF11940 6 16
Heat shock protein 70 PF01020 7 14
Proteasome, alpha-subunit, conserved site PF03939 7 14
Histone core PF00056 8 12
DNA/RNA helicase, DEAD/DEAH box type, N-terminal PF00137 8 12
Serine/threonine-protein kinase-like domain PF02136 8 12
WD40 repeat, subgroup PF08282 8 12
Protein synthesis factor, GTP-binding PF00009 9 10
Ras PF00333 9 10
Cytoadherence-linked asexual protein PF01248 9 10
Pathogenesis-related transcriptional factor/ERF, DNA-binding PF00252 9 10
Like-Sm ribonucleoprotein (LSM) domain PF00012 9 10
Protein phosphatase 2C, N-terminal PF01918 10 8
ABC transporter-like PF03144 10 8
Peptidase C19, ubiquitin carboxyl-terminal hydrolase 2 PF00481 10 8
Mitochondrial substrate/solute carrier PF02773 10 8
Heat shock protein DnaJ, N-terminal PF00240 10 8
Helicase, C-terminal PF00883 10 8
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aminopeptidases [20]. An inhibitory compound against MetAP, 
XC11 was active against both chloroquine sensitive and resis-
tant P. falciparum 3D7 in culture and P. berghei in mice, impli-
cating MetAP as an important drug target for anti-chloroquine 
resistant malaria [21]. 

The substantial proportions of transport proteins (GO: 000
6810, 3%) together with intracellular protein transport pro-
teins (GO: 0006886, 1.5%, data not shown), and vesicle-me-
diated transport proteins (GO: 0016192, 1.3%, data not shown) 
were indicative of the importance of intracellular and extracel-

lular trafficking of proteins in this pathogenic parasite. More-
over, as consistent with Fig. 1, chaperones (GO: 0031072) con-
stituted a significant proportion in the class of molecular func-
tions (1%, data not shown) and also chaperonin (PF00009) 
and HSP70 (PF01020) are frequently detected domains in P. 
berghei ESTs (Table 2). Therefore, these results suggested that 
protein trafficking is essential for survival of Plasmodium in bl
ood stages and a promising drug target to combat against hu-
man malaria. 

DISCUSSION

The availability of genome, transcriptome, and proteome 
data of Plasmodium spp. has greatly advanced the understand-
ing of the biology of these organisms. However, the high A/T 
content in the P. berghei genome hampers prediction of open 
reading frames or identification of target genes. Therefore, this 
large EST collection can provide high quality data regarding 
coding sequences and expressed gene profiles. As the first ex-
pression profile analysis of P. berghei, 5,582 ESTs and 5,482 
GSSs were functionally classified [7]. Thereafter, the transcrip-
tion profile of asexual stage of P. berghei was analyzed by hy-
bridization to a P. berghei GSSs amplicon DNA microarray cat-
egorizing into the 4 strategies of gene expression, such as house-
keeping, host-related expression, strategy-specific expression, 
and stage-specific expression. In his study, 10,040 ESTs enrich
ed in intact 5́  ends from P. berghei cDNA library were assigned 
to functional categories based on GO using BLAST2GO re-
vealed the expressed gene profile of P. berghei during asexual 
blood stages. The redundancy of EST clusters and the preva-
lence domain analysis of P. berghei proteins could provide clues 
for determining their functions and their importance in meta-
bolic pathways. Among the highly abundant transcripts (Fig. 
1), the enzymes engaged in nucleotide metabolism, purine 
nucleotide phosphorylase (PNP), and hypoxanthine phospho
ribosyltransferase (HPRT) were well detected by multiple ESTs. 
Plasmodium spp. are unable to synthesize purine de novo and 
alternatively rely on the salvage pathway with host purines. 
Hypoxanthine, a primary source of purine, is produced by PNP 
or in human serum and converted into inosine monophos-
phate (IMP) by HPRT. Immunocillin-H, a PNP transition state 
analogue, inhibits P. falciparum growth by inhibiting PNP [22, 
23]. The significant dependence on HPRT for nucleotide syn-
thesis was presently reflected by its abundance in the ESTs. The 
results are consistent with the focus on HPRT as a promising 
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drug target for the development of anti-malarial therapies, by 
virtue of its different characteristics from host protein [24]. 

The immunosuppressants FK506 and rapamycin have anti-
malarial properties by virtue of binding to the target FK506-
binding protein (FKBP) having peptidyl-prolyl cis-trans isom-
erase activity. However, their mechanisms of action against ma-
laria parasites are unclear [25]. In P. falciparum, PfFKBP35 with 
peptidyl-prolyl cis-trans isomerase activity has been reported 
[26]. PfFKBP35 is inhibited by FK506, rapamycin, and calineu
rin, although the latter is independent of FK506 binding. The 
immunosuppressive peptide cyclosporin A also inhibits the 
growth of malaria parasites, presumably by binding to cyclo-
philins (distinct intracellular prptidyl-prolyl cis-trans isomer-
ase) [27]. Peptidyl-prolyl cis-trans isomerase activity that is com
pletely inhibited by cyclosporin A but not by FK506 or rapa-
mycin has been detected in extracts of P. falciparum [27]. These 
results support the suggestion that P. falciparum probably con-
tains more cyclophilins. Peptidyl-prolyl cis-trans isomerase dif-
fering from the PfFBPR35 homologue was highly abundant in 
the P. berghei ESTs (Fig. 1).

Similar with the abundance of heat shock protein (HSP) 
from P. vivax as evident from EST analysis [28], HSP constitut-
ed 1.34% of all P. berghei ESTs. HSP70 (0.8%), 1 of the 2 ma-
jor HSPs (HSP90 and HSP70), was more abundant compared 
to HSP90 (0.3%) in the P. berghei library. The importance of 
HSP70 as a molecular chaperone concerning temperature chan
ges between vector and host, and protein trafficking, has made 
the protein an important potential anti-malarial drug target. 
The semisynthetic Hsp90 inhibitor (17-[allylamino]-17-deme-
thoxygeldanamycin) that is active against Plasmodium HSP90 
is effective in attenuating parasite growth and prolonging sur-
vival in a mouse model of malaria [29]. 

Malaria parasites possess a relict plastid called the apicoplast 
that is homologous to the chloroplast of plants. The apicoplast 
contains the capacity for besides basic metabolic processes such 
as protein translation, and the biosynthesis of fatty acids, iso-
prenoids, iron-sulphur clusters and heam, which are essential 
for parasite survival. However, fewer than 50 proteins are en-
coded for in the apicoplast genome; the vast majority of meta-
bolic pathway related proteins are encoded in the nuclear ge-
nome and are subsequently transported to the apicoplast [30, 
31]. Interestingly, the transport machinery of apicoplast target-
ing proteins is similar with that in the chloroplast; the translo-
con of the outer envelope of chloroplast (TOC) and translo-
con of inner envelope of chloroplast (TIC) complexes are as-

sumed to promote protein transport [32,33]. Analysis of the 
presently obtained ESTs revealed 2 TIC components, Tic20 and 
Tic22, and no TOC components, consistent with a previous 
report [34]. Because the apicoplast is non-photosynthetic, sour
ces of energy and carbon for such anabolic synthesis should be 
required. As an important cytosolic source of carbon, dihydro
xyacetone phosphate (DHAP) is imported and converted to 
glycerol-3-phosphate (G3P), which is a precursor for phos-
pholipids synthesis. G3P is sequentially acylated by glycerol-3-
phosphate acyltransferase (ACT1) and 1-acyl-glycerol-3-phos-
phate acyltransferase (ACT2) to produce phosphatidic acid [35]. 
One enzyme in this pathway, ACT2, was found to be encoded 
for by the P. berghei ESTs. 

In the present study, 10,040 ESTs from P. berghei cDNA li-
brary were generated, increasing the number of P. berghei se-
quence in public database. Moreover, the present screening 
method, which used ESTs enriched in genes with intact 5́  ends, 
provided 244 genes with predicted coding regions fully cov-
ered by 254 EST clusters, showing a powerful means for con-
firmation of in silico annotation and identification of the tar-
get genes. Also, 48 putative new transcripts encoded in P. ber-

ghei genome that did not match any EST and annotated pro-
tein database of P. berghei were identified. However, many of 
the EST assemblies (Fig. 1) together with these putative new 
transcripts were assigned to the categories that encode hypo-
thetical proteins with unknown functions, indicating that fur-
ther studies are needed to define their functions in metabolic 
pathways. In addition, many EST clusters from this study are 
contained long 5́  and 3́  untranslated regions (UTRs). The in-
formation of these regions can be useful for understanding 
gene regulation of Plasmodium. The constructed a specific P. 

berghei EST database (http://parasite.knu.ac.kr) based on our 
ESTs and genetic resources will be helpful for bioinformatics 
analysis and identification of interested genes of Plasmodium.

The presently-collected ESTs will be a useful resource to vali-
date gene predictions, and extend our understanding of the bi-
ology of Plasmodium spp., and screening for drug target and 
vaccine candidates.
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