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Abstract: Nitric oxide (NO) is an important vasoprotective molecule that serves not only as a vasodilator but also exerts 

antihypertrophic and antiproliferative effects in vascular smooth muscle cells (VSMC). The precise mechanism by which 

the antihypertrophic and antiproliferative responses of NO are mediated remains obscure. However, recent studies have 

suggested that one of the mechanisms by which this may be achieved includes the attenuation of signal transduction 

pathways responsible for inducing the hypertrophic and proliferative program in VSMC. Endothelin-1 is a powerful vaso-

constrictor peptide with mitogenic and growth stimulatory properties and exerts its effects by activating multiple signaling 

pathways which include ERK 1/2, PKB and Rho-ROCK. Both cGMP-dependent and independent events have been re-

ported to mediate the effect of NO on these pathways leading to its vasoprotective response. This review briefly summa-

rizes some key studies on the modulatory effect of NO on these signaling pathways and discusses the possible role of 

cGMP system in this process. 
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INTRODUCTION 

 Increased vascular smooth muscle cell (VSMC) hyper-
trophy, migration and proliferation are among key events 
that contribute to remodeling of the vasculature associated 
with cardiovascular diseases. In recent years, an important 
role of endothelin-1 (ET-1) in vascular hypertrophy and pro-
liferation, leading to vasculopathies including atherosclerosis 
and hypertension has been suggested [1,2]. Conversely, ni-
tric oxide (NO), originally described as a non-prostaglandin, 
endothelium-derived relaxing factor (EDRF), in addition to 
its potent vasodilator action, has emerged as an important 
vasculo-protective agent through its ability to exert anti-
hypertrophic, anti-proliferative and anti-apoptotic responses 
in the cardiovascular system [3-7]. The balance between 
these two endothelium-derived opposing agents helps regu-
late vascular homeostasis. Even though previous studies 
have suggested possible interactions between NO and ET-1, 
the mechanistic contribution of NO on ET-1-induced vascu-
lar remodeling still remains poorly understood. The aim of 
this review is to highlight the effect of the NO system on the 
key signaling pathways induced by ET-1 that are linked to 
hypertrophy and proliferation of VSMC.  

ET-1-INDUCED SIGNALING PATHWAYS 

 ET-1 is a potent vasoconstrictor peptide which also ex-
hibits mitogenic [8-11], and hypertrophic properties [12]. 
ET-1 has been shown to stimulate VSMC proliferation [13], 
migration [14], contraction [15], extracellular matrix deposi-
tion remodeling and deposition [16-18], secretion of growth 
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factors and inflammatory mediators [19]. It exerts its bio-
logical actions in a paracrine/autocrine fashion through the 
activation of two receptor subtypes, ETA and ETB [20,21]. 
Both receptors belong to a large family of seven transmem-
brane guanine nucleotide-binding protein-coupled receptors 
(GPCRs). Each receptor couples to different G protein fami-
lies. ETA receptors are highly expressed in VSMC but are 
also found in cardiomyocytes, fibroblasts, hepatocytes, adi-
pocytes, osteoblasts as well as in brain neurons [20,22]. ETB 
receptors are predominantly expressed in endothelial cells, 
however, a relatively low level of expression in other cells 
including cardiomyocytes, hepatocytes, fibroblasts, os-
teoblasts, and VSMC has been reported [21]. These two ET-
1 receptors exhibit somewhat different physiological roles 
[22-25]. ET-1 induced activation of ETA receptors on smooth 
muscle cells is believed to contribute to vasoconstriction, 
cell growth and cell adhesion, whereas binding of ETB recep-
tors leads to vasodilation through the release of NO and 
prostacyclin [3,25].  

 The activation of the ETA receptor triggers multiple sig-
naling pathways (Fig. 1) [26,27]. One of the primary targets 
include phosphoinositide-specific phospholipase C  (PLC 

) [28,29], which hydrolyzes the membrane phospholipid 
phosphatidylinositol-4’-5’-biphosphate (PIP2) to generate 
two second messengers: hydrophobic diacylglycerol (DAG), 
and soluble inositol-1’,4’,5’-triphosphate (IP3). IP3 contrib-
utes to Ca

2+
 release from intracellular stores which play an 

important role in regulating the contractile response of the 
cell. DAG, together with Ca

2+
, activates the phosphatidylser-

ine-dependent protein kinase, protein kinase C (PKC). PKC 
is a serine/threonine kinase that translocates from the cytosol 
to the cell membrane where it becomes activated and pho-
phorylates several proteins [30]. ET-1-induced activation of 
PKC in VSMC leads to protein synthesis [31], cellular pro-
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liferation [30,32] and contraction [33]. Downstream of PKC, 
ETA receptor activation also results in the stimulation of the 
mitogen activated protein kinases (MAPKs), a family of ser-
ine/threonine protein kinases known to promote cell growth 
[34]. These MAPK include ERK1/2, c-Jun-NH2-terminal 
kinase (JNK) and p38MAPK [27,35-38]. ET-1 has also been 
shown to activate the phosphatidylinositol-3-kinase (PI3K)/ 
protein kinase B (PKB) pathway [27,39,40], which signals 
cell growth, transformation, differentiation, motility and sur-
vival [41,42].  

NITRIC OXIDE SYSTEM 

 NO is a short-lived free radical generated by the oxida-
tion of L-arginine to L-citrulline by a reaction catalyzed by 
nitric oxide synthase (NOS). Three distinct NOS enzymes 
have been identified, each a product of a unique gene. These 
are classified as neuronal NOS (nNOS or NOS-1), inducible 
NOS (iNOS or NOS-2) and endothelial NOS (eNOS or 
NOS-3) [43]. It was originally believed that NOS-1 and 

NOS-3 are constitutively expressed in neuronal and endothe-
lial tissues, whereas NOS-2 expression is induced in re-
sponse to cytokines or endotoxin activation. However, later 
studies have demonstrated a constitutive expression of NOS-
2 in some tissues [44,45], and evidence has been presented to 
indicate that NOS-1 and NOS-3 may also be regulated by 
certain stimuli [46-50]. The principal mechanism by which 
NO exerts its biological effects involves the activation of 
soluble guanylate cyclase (sGC), a heterodimeric NO recep-
tor that becomes activated once NO binds to its heme con-
taining group. Binding of NO leads to allosteric modification 
of sGC, resulting in enhanced catalytic activity [51]. GCs are 
enzymes that catalyze the conversion of intracellular GTP 
into the second messenger cyclic guanosine 3’5’-mono-
phosphate (cGMP) [52]. Thus formed, cGMP binds and acti-
vates cGMP-dependent protein kinase (PKGs) [52]. Two 
different types of PKG, type I (PKG-1) and type II (PKG-2) 
are expressed in mammalian tissues, however, their relative 
distribution is tissue and species dependent [53,54]. In car-
diovascular tissues, a predominant expression of PKG-1 has 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). ET-1-induced signaling cascade in VSMC. ET-1 receptor stimulation leads to both Gq , as well as  activation, which then acti-

vates PLC . PLC  converts PIP2 to IP3 and DAG. IP3 is responsible for elevating intracellular calcium 
concentrations. DAG activates 

PKC. Through the activation of several downstream intermediates, Ca
2+

 alone or in partnership with PKC or other intermediates triggers the 

activation of Ras/Raf/MEK/ERK1/2 as well as PI3-K/PKB pathways. Activation of ERK and PKB signaling cascades play a key role in me-

diating various cellular responses such as gene transcription, protein synthesis, cell growth and cell survival.  
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been reported, and its role in mediating the anti-proliferatve 
effect of cGMP has been suggested [54-57]. PKG-1 elicits its 
effects through serine/threonine phosphorylation of multiple 
substrates which include IP3 receptor, phospholamban, tro-
ponin, the myosin light chain phosphatase, c-raf kinase, Ca

2+
 

and K
+
 channels [52, 58-62]. NO can also exert its effects 

through non sGC/cGMP/PKG-dependent mechanisms, 
which include changes in cAMP signaling [63] or through 
the production of highly reactive peroxynitrite radical, capa-
ble of post-translational modification of protein function by 
nitration of tyrosine residues [64-66].  

NO MODULATION ON ET-1 SIGNALING 

 Existence of a cross-talk between NO and ET-1 system 
within the cardiovascular system has been known for a long 
time [3]. It has been demonstrated that NO counteracts the 
vasoconstrictor effect of ET-1 in normal human arteries [67] 
and blockade of NO production results in hypertension [68]. 
This implies that a balance between NO and ET-1 system 
may play an important role in maintaining vascular homeo-
stasis [69-71]. In the context of vasculopathies, an upregula-
tion of NO production, either by the use of NO donors, 
eNOS gene transfer or other mechanisms has been demon-
strated to inhibit neointima formation and VSMC prolifera-
tion in animal models and confer vasculoprotection [72-74]. 
However, precise molecular events that contribute to this 
protective response remain poorly defined. Since an exag-
gerated migration, proliferation and hypertrophy of VSMC 
play an important role in vascular proliferative diseases, sev-
eral studies have focussed on investigating the effect of the 
NO system on the signaling pathways that mediate these 
responses. In this regard, ET-1-induced phosphorylation of 
ERK1/2 in pulmonary VSMC of rats was shown to be 
potently inhibited by the NO donor SNP (sodium nitroprus-
side) [75]. Interestingly, in these studies, treatment of VSMC 
with L-NAME (nitro-L-arginine methyl ester), a nonspecific 
inhibitor of NOS, amplified ET-1-induced ERK1/2 phos-
phorylation, suggesting that alterations in NO levels can 
modify the ET-1-induced signaling responses [75]. A similar 
effect of SNAP (s-nitroso-N-acetylpencillamine), another 
NO donor, as well as L-NAME, on ET-1-induced ERK1/2 
phosphorylation in A10 VSMC has also been reported in 
studies from our laboratory (Fig. 2A and 2B) [76]. Since 
SNAP raises intracellular cGMP levels via sGC in A10 
VSMC [65,66], additional studies demonstrated that 8-Br-
cGMP (8-bromoguanosine 3’, 5’-cyclic monophosphate), a 
non-hydro-lyzable analogue of cGMP, mimicked the effect 
of SNAP and SNP and inhibited ET-1 stimulated ERK1/2 
phosphorylation (Fig. 2C) [76]. Moreover, the ability of 
ODQ (1H-[1,2,4] oxadiazolo[4,3,-a]quino-xalin-1-one), a 
selective sGC inhibitor, to reverse SNAP-induced attenua-
tion of ERK1/2 phosphorylation (Fig. 2D) [76] established a 
role of activated sGC and cGMP in mediating the effects of 
these NO donors on ET-1-induced ERK signaling. Consis-
tent with these observations, an involvement of cGMP eleva-
tion and PKG activation in ET-1-induced ERK phosphoryla-
tion in neonatal rat ventricular myocytes have also been re-
ported [5]. In addition to ET-1, angiotensin II, insulin and 
IGF-1-induced ERK1/2 and other signaling events in cardiac 
fibroblasts, as well as in VSMC, have been shown to be  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Modulation of ET-1-induced ERK1/2 phosphorylation 

by NO/cGMP system in A10 VSMC. A. The NO donor SNAP 

dose-dependently reduced ET-1-induced ERK1/2 phosphorylation. 

B.L-NAME, NO synthase inhibitor, dose-dependently potentiated 

ET-1-induced ERK1/2 phosphorylation. C. The cGMP analog, 8-

Br-cGMP, mimicked SNAP effect by dose-dependently attenuating 

ET-1-induced phosphorylation of ERK1/2. D.ODQ, an inhibitor of 

sGC, reversed SNAP-induced attenuation of ERK1/2 phosphoryla-

tion in response to ET-1. Adapted from [76]. 

 

attenuated by NO donors [77-79]. SNAP treatment was also 
shown to inhibit ET-1-induced total protein synthesis, an 
index of hypertrophy, in A10 VSMC (Fig. 3) as well as in 
cardiomyocytes [5,76,80]. 
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Fig. (3). Attenuation of ET-1-induced total protein synthesis by 

SNAP in A10 VSMC. NO donor SNAP dose-dependently inhibited 

ET-1-induced [
3
H] Leucine incorporation into total cellular protein. 

Adapted from [76]. 

 

 In the case of A10 VSMC, no attempts were made to 
directly test the role of cGMP in mediating the antihypertro-
phic response of SNAP [76], however, in cardiomyocytes 
this effect appeared to be cGMP-dependent [5,80]. In these 
studies 8-Br-cGMP mimicked the effect of SNAP on hyper-
trophic responses [5,80], and pharmacological blockade of 
PKG by KT5823, a selective PKG inhibitor, reversed the 
inhibitory effect of SNAP on ET-1-induced phosphorylation 
of ERK1/2 and c-fos gene expression [5]. 

 In addition to the ERK pathways, NO has also been 
shown to attenuate ET-1-induced phosphorylation of PKB in 
A10 VSMC (Fig. 4A) [76]. As was the case with ERK path-
way, treatment with L-NAME potentiated ET-1-induced 
phosphorylation of PKB (Fig. 2B), further suggesting a 
modulatory role of the NO system on ET-1-induced signal-
ing responses. Moreover, in these studies, 8-Br-cGMP mim-
icked and ODQ restored the inhibitory effect of SNAP on 
ET-1-induced phosphorylation of PKB (Figs. 4C and 4D) 
[76]. These studies suggested a role of cGMP-dependent 
events in modulating NO-induced inhibition of ERK and 
PKB signaling pathways induced by ET-1. Although not 
studied in VSMC, ET-1-induced activation of RhoA-ROCK-
dependent signaling pathway that participates in cardiac hy-
pertrophy was also reported to be attenuated by SNAP and 8-
Br-cGMP [80]. In these studies, ET-1-induced translocation 
of RhoA and phosphorylation of cofilin-2, a downstream 
effector of RhoA-ROCK signaling, was significantly inhib-
ited by SNAP as well as 8-Br-cGMP. Consistent with a role 
of the cGMP system in mediating the antihypertrophic and 
antiproliferative effects of the NO generating system, multi-
ple studies using isolated cells and animal models have dem-
onstrated an involvement of PKG in this process. For exam-
ple, expression of a constitutively active PKG was shown to 
increase the antiproliferative effects of NO in VSMC [81] 
and to reduce neointimal growth in a model of in-stent 
restenosis [82]. In addition, high-glucose-induced prolifera- 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Modulation of ET-1-induced PKB phosphorylation by 

NO/cGMP system in A10 VSMC. A.NO donor, SNAP dose-

dependently reduced ET-1-induced PKB phosphorylation. B.L-

NAME, NO synthase inhibitor, dose-dependently potentiated ET-1-

induced PKB phosphorylation. C.cGMP analog, 8-Br-cGMP, mim-

icked SNAP effect by dose-dependently attenuating ET-1-induced 

phosphorylation of PKB. D.ODQ, an inhibitor of sGC, reversed 

SNAP-induced attenuation of PKB phosphorylation in response to 

ET-1. Adapted from [76]. 

tion and migration of VSMC was also inhibited by overex-
pression of PKG-1 in VSMC [57]. Despite these observa-
tions supporting a role of the cGMP/PKG system, and 
cGMP-independent events have also been proposed to medi-
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ate NO response. For example, a role of cAMP in mediating 
the growth, inhibitory and signaling responses of NO has 
been suggested in VSMC [63,65]. Moreover, studies using 
mouse models lacking PKG-1 have indicated that non-PKG-
dependent pathways may also contribute to some of the anti-
hypertrophic and antiproliferative effects of NO [83,84]. In 
addition, NO-induced peroxynitrite (ONOO

-
) generation has 

also been proposed to mediate some of the cGMP-
independent effects of NO [64,85] (Fig. 5). 

 The mechanism by which the NO/cGMP system attenu-
ates ET-1-induced signaling pathways is poorly understood, 
however, there are reports indicating that NO can inhibit 

cytoplasmic Ca
2+

 levels [86,87] and, since increased Ca
2+

 is 
critical to trigger downstream signaling events of ET-1, a 
decreased Ca

2+
 would turn off the ET-1-induced signaling 

response (Fig. 5). Additionally, PKG-induced phosphoryla-
tion of c-Raf kinase on serine 43, which results in the uncou-
pling between Ras and Raf, can block ERK phosphorylation 
by ET-1 [60] (Fig. 5). NO generation has also been shown to 
attenuate IGF-1 and insulin-induced elevation in H2O2 levels 
through a cGMP-dependent event in VSMC [79]. ET-1-
induced ERK1/2 and PKB signaling is known to require ac-
tivation of the NADPH-oxidase system, resulting in H2O2 
generation [40], thus, it is possible that NO/cGMP-induced 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). A schematic model summarizing the potential mechanism by which NO system may attenuate ET-1-induced ERK1/2 and PKB 

signaling in A10 VSMC. 
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reduction in H2O2 generation may also contribute to attenua-
tion of ET-1-induced signaling in VSMC. 

CONCLUSION 

 NO is a well established vasculoprotective agent. Stimu-
lation of sGC leading to enhanced production of cGMP, 
which in turn activates PKG, appears to be one of the princi-
pal pathways involved in mediating the effect of NO. NO 
has been suggested to antagonize the physiological and 
pathological effects of growth factors and vasoactive pep-
tides, such as ET-1. NO-induced inhibition of one or more 
serine/threonine kinases such as ERK1/2 and PKB, impli-
cated in triggering the hypertrophic and hyperproliferative 
responses in VSMC, may be one of the mechanisms by 
which this is accomplished. However, the precise molecular 
events that trigger this effect are poorly understood. Both 
cGMP-dependent and independent pathways may participate 
in this process in a context and cell specific fashion. Addi-
tional studies using both pharmacological and genetic ap-
proaches will help to better enhance our knowledge in this 
area. 
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