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Abstract

Background: Prediction of the structural classes of proteins can provide important information about their
functionalities as well as their major tertiary structures. It is also considered as an important step towards protein
structure prediction problem. Despite all the efforts have been made so far, finding a fast and accurate
computational approach to solve protein structural class prediction problem still remains a challenging problem in
bioinformatics and computational biology.

Results: In this study we propose segmented distribution and segmented auto covariance feature extraction
methods to capture local and global discriminatory information from evolutionary profiles and predicted secondary
structure of the proteins. By applying SVM to our extracted features, for the first time we enhance the protein
structural class prediction accuracy to over 90% and 85% for two popular low-homology benchmarks that have
been widely used in the literature. We report 92.2% and 86.3% prediction accuracies for 25PDB and 1189
benchmarks which are respectively up to 7.9% and 2.8% better than previously reported results for these two
benchmarks.

Conclusion: By proposing segmented distribution and segmented auto covariance feature extraction methods to
capture local and global discriminatory information from evolutionary profiles and predicted secondary structure of
the proteins, we are able to enhance the protein structural class prediction performance significantly.

Background
Protein structural class prediction problem is defined as
categorizing a given protein into one of the four struc-
tural classes namely, all-a, all-b, a + b, and a/b [1].
Knowledge of the structural classes of proteins can also
provide important information about their functional-
ities and overall folding types [2,3]. Therefore, protein
structural class prediction problem is considered as an
important step towards the protein structure prediction
problem. Despite the importance of this problem, find-
ing a fast and accurate computational approach to solve

this problem when the sequence similarity rate is low
still remains an unsolved problem for bioinformatics
and computational biology.
During the past two decades, a wide range of studies,

using machine learning-based methods, have been con-
ducted to solve this problem [4,5]. These studies can be
categorized into two groups. The first group consists of
studies that have tried to address this problem by pro-
posing novel classification techniques [6,7]. They pro-
posed a wide range of classification techniques based on
different learning algorithms such as, Bayesian based
learners [8], Meta-classifiers [9-13], Support Vector
Machines (SVM) [14-17], Artificial Neural Network
(ANN) [18-20], and ensemble classifiers [21-25]. Among
a wide range of classification techniques used to tackle
this problem, SVM classifier has attained the best results
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for this task [5,22,26,27]. The second group consists of
studies that have mainly focused on proposing novel
features that capture local and global discriminatory
information to address protein structural class predic-
tion problem such as sequence based information
[10,28-30], pseudo amino acid composition [31-33], phy-
sicochemical-based information [15,22,28,34-36], and
structural based information [5,33,37-40]. The most
important enhancements in protein structural class pre-
diction accuracy have been based on relying on these
techniques rather than exploring the impact of classifi-
cation techniques. These recent enhancements were
mainly because of extracting features from Position
Specific Scoring Matrix (PSSM) profiles [41] as well as
structural information extracted from the predicted sec-
ondary structure of proteins [42].
The most significant enhancement by solely relying on

the PSSM for feature extraction was achieved by [16,26,40].
They used PSSM profiles to extract sequence order infor-
mation based on the concepts of dipeptide composition,
auto covariance and composition of the amino acids. They
used entire protein sequence as a general entity to extract
these features. Hence, the auto covariance and dipeptide
composition calculated along an entire protein sequence
were used as its local descriptor. Further enhancement for
protein structural class prediction accuracy has been
achieved by including structural information extracted
from the predicted secondary structure of the proteins
using PSIPRED [42]. By adding these features to the
extracted features from the PSSM, the protein structural
class prediction accuracy has been significantly improved
especially when the sequence similarity rate was low
[27,37,43]. Similar to the features extracted from the
PSSM, the whole protein as a general entity was used to
extract these features as well. Despite all the recent efforts
on extracting effective features to capture local and global
discriminatory information from evolutionary and struc-
tural profiles, the protein structural class prediction accu-
racy have not been improved significantly since the study
of Mizianty and Kurgan in 2009 [5,6].
In this study, we propose segmented auto covariance and

segmented distribution feature extraction methods to cap-
ture more local sequence order information from evolu-
tionary and structural profiles. We also employe the
concept of occurrence and composition feature groups to
capture global sequence order information based on evolu-
tionary, and structural profiles. First, by solely relying on
the PSSM profiles for feature extraction, we enhance the
protein structural class prediction accuracy by over 15%
and 5% for 25PDB and 1189 benchmarks respectively com-
pared to similar studies [26]. These enhancements highlight
the potential discriminatory information embedded in the
PSSM that have not been adequately explored in the litera-
ture. Then, by exploring our proposed feature extraction

techniques to include structural information derived from
the predicted secondary structure using SPINE-X [44], we
achieve up to 92.2% and 86.3% prediction accuracies
respectively for 25PDB and 1189 benchmarks and enhance
the overall protein structural class prediction accuracy even
further by 7.9% and 2.8% better than previously reported
results found in the literature [5,6,27].

Benchmarks
To evaluate the prediction performance of our proposed
approaches, we employe two benchmarks namely 25PDB
and 1189. These two benchmarks have been widely used
for protein structural class prediction problem. The
25PDB was introduced by [45] consisting of 1673 proteins
with less than 25% sequence similarities in average (the
homology-range between 22% and 45%). This benchmark
extracted from 25% PDBSELECTED which includes high-
resolution non-homologous proteins from the Protein
Data Bank (PDB) [46]. Therefore, it is considered as an
appropriate representative of benchmarks consisting of
proteins in twilight zone (proteins with sequence similari-
ties between 20% and 45%) for protein structural class
prediction problem. Hence, in this study, the 25PDB
benchmark is used as the main source to investigate the
effectiveness of our proposed model.
The other benchmark employed in this study is known

as the 1189 benchmark. The 1189 benchmark was intro-
duced by [8] consisting of 1189 proteins with less than
40% sequence similarities. This benchmark was modified
in later studies to address further corrections of Structural
Classification of Proteins (SCOP) [47] and 97 of its proteins
were removed [45]. Therefore, later version of this bench-
mark consists of 1092 proteins. Sequences in this bench-
mark have lower resolution than proteins in the 25PDB
benchmark. Therefore, despite higher sequence similarity
in average among proteins in this benchmark compared to
25PDB benchmark, similar (or in many cases, even lower)
protein structural class prediction accuracies has been
reported for 1189 benchmark compared to 25PDB bench-
mark [5,6,24,48]. Since, this benchmark has been widely
used to investigate the performance of the methods used
for protein structural class prediction problem, it is also
adopted here to compare our achieved results directly
with previously reported results found in the literature
[45]. Employed benchmarks in this study and the number
of proteins belonging to each structural class are shown in
Table 1.

Feature extraction methods
In this study, we use PSSM profiles to extract evolution-
ary-based information as well as predicted secondary
structure using SPINE-X to extract structural-based
information. PSSM is calculated by applying the PSI-
BLAST [41] in which its cut off value (E) is set to 0.001
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on our explored benchmarks (using NCBI’s non redun-
dant (NR) protein data base). Given a protein sequence,
PSSM produces the substitution probability of the
amino acids along its sequence based on their position
with all 20 amino acids. PSSM consists of two L × 20
matrices (L is the length of a protein and the columns
of the matrices represent 20 amino acids). The first
matrix is called PSSM_cons and gives the log-odd of the
substitution probability. The second matrix is called
PSSM_prob and gives the normalized substitution prob-
ability for each amino acid [27].
We also use predicted secondary structure using

SPINE-X which was recently proposed by [44] and
attained better results than PSIPRED on predicting pro-
tein secondary structure (especially for the coded area).
Given a protein sequence, SPINE-X produces a L × 3
matrix (which will be referred to SPINE-M for the rest of
this study) including the normalized probability of contri-
bution of a given amino acid based on its position along
the protein sequence to build one of the three secondary
structure elements namely, a-helix, b-strands, and coils.
It also return a transformed version of the protein
sequence (also extracted from the SPINE-M) in which
each amino acid along the protein sequence is replaced
with H (represents helix), E (represents strand), or C
(represents coil) based on its tendency to incorporate in
building one of these secondary structure elements. We
will refer to this sequence as the structural consensus
sequence. It is expected that predicted secondary struc-
ture using SPINE-X provides significant structural infor-
mation for the protein structural class prediction
problem similar to or even better than PSIPRED due to
its better performance [44].

Consensus sequence-based occurrence
To provide global discriminatory information about the
sequence order of the amino acids along a protein
sequence, we first extract the occurrence of the amino
acids from the evolutionary consensus sequence as well as
occurrence of secondary structure elements from the
structural consensus sequence. As it was mentioned ear-
lier, the structural consensus sequence is produced as one
of the output of SPINE-X. The evolutionary consensus
sequence is calculated based on the PSSM as follows. To
extract this sequence, we replace a given amino acid along
the original protein sequence (O1, O2, ..., OL) with an
amino acid with maximum substitution probability in the
row corresponding to the location of that amino acid in

the PSSM (CP1, CP2, ..., CPL). This is done using the fol-
lowing two steps. In the first step, the index is found as:

Ii = argmax{Pij : 1 ≤ j ≤ 20}, 1 ≤ i ≤ L, (1)

where Pij is the substitution probability of the amino
acid at location i with the j-th amino acid in the
PSSM_cons. In the second step, we replace the amino acid
at i-th location of original protein sequence by the j-th
amino acid to form the consensus sequence. Note that the
PSSM_cons is used in this study for feature extraction
(which it is normalized using min-max method) as it was
used in the literature [26,27].
After calculating evolutionary consensus sequence, we

count the occurrence of each amino acid (for all 20
amino acids) along this sequence and produce corre-
sponding feature group (AAO). Similarly, we calculate
the occurrence of each secondary structure element (for
all three elements) in the structural consensus sequence
and produce the corresponding feature group (SSEO).
Occurrence feature group as the global descriptor of the
proteins is used in this study instead of composition of
the amino acids (occurrence of amino acids divided by
the length of protein sequence) since it maintains the
length information which is disregarded in the composi-
tion feature group [15].

Semi-composition
In this method, we calculate semi-composition feature
group from both PSSM and SPINE-M. It is called semi-
composition because instead of using the protein
sequence directly to calculate the composition of each
amino acid along the protein sequence (as it was done
conventionally [27]), we calculate the summation of the
substitution probability for each amino acid directly from
the PSSM (similar to [26]) or normalized frequency of
each secondary structure element from the SPINE-M.
The semi-composition derived from the PSSM (PSSM-
AAC) is calculated as follows:

PSSM − AACj =
1
L

L∑
i=1

Pij, (j = 1, ..., 20). (2)

In the similar manner, we calculate the semi-composi-
tion of each secondary structure element by adding the
normalized frequencies of the corresponding element
from the SPINE-M (SPINE-SSEC) as follows:

SPINE − SSECj =
1
L

L∑
i=1

Sij, (j = 1, 2, 3), (3)

where Sij is the normalized probability of the occur-
rence of the j-th secondary structure element at location
i of the protein sequence in the SPINE-M. It was shown
that using semi-composition method is able to provide

Table 1 The properties of 1189 and 25PDB benchmarks.

Benchmarks All-a All-b a/b a + b Total

1189 223 294 334 241 1092

25PDB 443 443 346 441 1673
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more discriminatory information compared to extracting
composition of the amino acids feature group from the
original protein sequence [26]. This feature group is also
able to provide important global discriminatory informa-
tion about the substitution probability of the amino
acids as well as normalized frequency of secondary
structure elements.

Segmented distribution
This method is specifically proposed to add more local
sequence order information about how the amino acids
based on their substitution probability with each other
(extracted from the PSSM) as well as their tendency to
incorporate in one of the secondary structure elements
(extracted from SPINE-M) are distributed along the pro-
tein sequence. We propose this segmentation method in
the manner where segments of a protein sequence are
of unequal lengths and each segment is represented by a
distribution feature which is computed as follows. First,
for the PSSM, to extract the segmented distribution
feature group (PSSM-SD), we compute the total sum
of substitution probability of the j column of the
PSSM (Tj =

∑L
i=1 Pij). Then, we start from the first row

of the PSSM and compute the partial sum of the substi-
tution probability of the amino acid amino acid j, for

the first i amino acids which is given by S1 =
∑I(1)

j

i=1
Pij.

Using the distribution factor FP (which is a parameter
investigated in this study), we find out the maximum

value I(1)
j of index i such that partial sum S1 is less than

or equal to the FP% of total sum (Tj). Thus we can say
that the first ?6? substitution probabilities contribute to
FP% of the total sum (Tj). We use ?6? to define the end-
ing location of the first segment, while its beginning
point is taken to be 1 (which represents the first row of
the PSSM). The distribution feature of this segment is
given by ?6?. In a similar manner, we find out the num-

ber of first I(2)
j , I(3)

j , ..., I(50/FP)
j amino acids of the protein

sequence that contribute to 2FP%, 3FP%, ..., 50% of Tj

(50% of Tj starting from the first row of the PSSM),

respectively. Indices I(2)
j , I(3)

j , ..., I(50/FP)
j , are used to define

the ending locations of segments 2, 3, ..., 50/FP , respec-
tively; while the beginning location of all these segments
remains to be 1. Hence, the distribution features for

these segments are computed as I(i)
j , i = 2, 3, ..., 50/FP.

Note that we have thus computed 50/FP distribution fea-
tures by processing the protein sequence starting from
the first row of the PSSM in downward direction. We
repeat this process starting from the last row of the
PSSM in upwards direction to get another set of 50/FP
features (to explore the rest of 50% of Tj starting from
the end of protein sequence corresponding to the last

row of the PSSM). Thus, the total of 2× (50/FP) = 100/FP
distribution features are computed for each column of
the PSSM.
The distribution factor (FP) is a parameter which is

determined here experimentally. For this, three values of
FP (5, 10, and 25) are investigated. Thus there will be
20, 10, and 4 features for FP = 5, 10 and 25, respectively
for the j-th column of the PSSM. Since there are 20
amino acids (corresponding to 20 columns in the
PSSM) we produce 20 × 20, 20 × 10, and 20 × 4 fea-
tures corresponding to FP = 5, 10, and 25, respectively.
In the similar manner, we calculate the segmented dis-
tribution of the normalized frequency of the secondary
structure elements from the SPINE-M (SPINE-SD) using
FS = 5, 10, and 25 (where Fs is used as the distribution
factor for the SPINE-M equivalent to FP used for the
PSSM) and extract 3 × 20, 3 × 10, and 3 × 4 features in
total for all three elements, respectively. This procedure
is shown in Figure 1.

Segmented auto covariance
The concept of auto covariance have been widely used
in the literature to capture local sequence order infor-
mation and attained better results compared to similar
methods used for this task such as dipeptide composi-
tion [15,48,26,49]. Pseudo amino acid composition

Figure 1 Feature extraction scheme using the segmented
distribution method.
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based features are good examples of these types of fea-
tures [4,50]. These features have been computed using
the whole protein sequence as a single entity for feature
extraction. Therefore, they are not able to adequately
explore the local sequence order information embedded
in the protein sequence [26]. In the present study, we
extend the concept of segmented distribution features as
described in the previous subsection to compute the
auto covariance features from the segmented protein
sequence. This is done to provide more evolutionary
and structural sequence order information both from
the PSSM and SPINE-M. First for the PSSM, we seg-
ment the protein sequence using distribution factor of
25% (FP = 25) until reaching to FP = 50 from each side
(for the j-th column). Using a procedure similar to the
one described in the previous subsection in which FP =

25, we calculate I(1)
j , I(2)

j , I(3)
j , I(4)

j . These indices are used

to divide protein sequence into four segments as fol-
lows: From the first amino acid (corresponding to the
first row of the PSSM) to ?6?; From the first amino acid

(corresponding to the first row of the PSSM) to I(2)
j ;

From the last amino acid (corresponding to the last row

of the PSSM) to I(3)
j ; And from the last amino acid (cor-

responding to the last row of the PSSM) to I(4)
j . Then

we calculate KP (distance factor used for the PSSM)
numbers of auto covariance coefficients for each of
these segments as follows:

PSSM - segn,m,j =

1

(I(n)
j − m)

×
In
max−m∑

i=1

(Pi,j − Pave,j) × (P(i+m),j − Save,j),

(n = 1, 2, 3, 4&m = 1, . . . , KP&j = 1, . . . , 20),

(4)

where, Pave, j is the average substitution probability for
the j-th column in the PSSM (for 20 columns). Note
that 4 × KP auto covariance coefficients are computed
in this manner (2 × KP features by analyzing the PSSM
in the downward direction and 2 × KP features by ana-
lyzing the PSSM in the upward direction). We also com-
pute the global auto covariance coefficient (KP features)
corresponding to the j-th column to provide more infor-
mation as follows:

PSSM - ACm,j =

1
(L − m)

×
L−m∑
i=1

(Pi,j − Pave,j) × (P(i+m),j − Pave,j),

(m = 1, . . . , KP&j = 1, . . . , 20).

(5)

Thus, we have extracted a total of (2KP + 2KP + KP =
5KP) auto covariance features in this manner (PSSM-seg +
PSSM-AC). Therefore, for PSSM, for all of the amino

acids (all 20 columns of the PSSM) segmented auto covar-
iance of substitution probability of the amino acids are
extracted and combined to build the corresponding fea-
ture group ( PSSM-SAC which consists of 20 × (2KP +
2KP + KP) features in total). This procedure is also
repeated for SPINE-M in the similar manner (where KS is
adopted as the distance factor for the SPINE-M equivalent
to KP used for the PSSM). For all three secondary struc-
ture elements we calculate segmented auto covariance of
normalized frequency of secondary structure elements as
follows:

SPINE - segn,m,j =

1

(I(n)
j − m)

×
In
max−m∑

i=1

(Si,j − Save,j) × (S(i+m),j − Save,j),

(n = 1, 2, 3, 4&m = 1, . . . , KS&j = 1, 2, 3),

(6)

where, Save, j is the average substitution probability for
the j-th column in the SPINE-M. Similarly, the global
auto covariance corresponding to the j-th column in
SPINE-M is computed and added to this feature group
as follows:

SPINE - ACm,j =

1
(L − m)

×
L−m∑
i=1

(Si,j − Save,j) × (S(i+m),j − Save,j),

(m = 1, . . . , KS&j = 1, 2, 3).

(7)

Combining SPINE-seg and SPINE-AC, we build SPINE-
SAC feature group consisting of 3 × (2KS + 2KS + KS)) fea-
tures in total (4KS features in SPINE-seg and KS features in
SPINE-AC).

Support Vector Machine (SVM)
SVM was introduced by [51] aiming to find the Maximal
Margin Hyperplane (MMH) based on the concept of the
support vector theory to minimize the error. It trans-
forms the input data to higher dimension using the ker-
nel trick to be able to find support vectors (for nonlinear
cases). The classification of some known points in input
space xi is yi which is defined to be either -1 or +1. If x′ is
a point in input space with unknown classification then:

y′ = sign

(
n∑

i=1

aiyiK(xi, x′) + b

)
, (8)

where y′ is the predicted class of point x′. The function
K() is the kernel function; n is the number of support vec-
tors and ai are adjustable weights and b is the bias. This
classier is considered as the state-of-the-art classification
techniques in the pattern recognition and attained the best
results for the protein structural class prediction problem
[5,6,26,27]. In this study, SVM classifier implemented in
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the LIBSVM toolbox using Radial Base Function (RBF) as
its kernel is used [52]. RBF kernel is adopted in our experi-
ments due to its better performance than other kernels
functions (e.g. polynomial kernel, linear kernel, and sig-
moid [5,6]). RBF kernel is defined as follows:

K(xi, xj) = e−γ ||xi−xj||2 , (9)

where g is the kernel parameter, xi and xj are input
feature vectors. In this study, the g in addition to the
cost parameter C (which also called the soft margin
parameter) of the SVM classifier are optimized using
grid search algorithm implemented in the LIBSVM
package. The grid search algorithm tries various pairs of
g and C values and selects the values with the best clas-
sification accuracy [52] (using 10-fold cross validation
evaluation method). The range of gamma and C para-
meters to be searched in this algorithm are taken to be
their default values used in the SVMLIB toolbox (these
ranges were from 2-5 to 215 for C and from 2-15 to 23

for gamma). It is a simple algorithm as it has just two
parameters to optimize (g and C). Despite its simplicity,
it has been shown to be an effective method to optimize
these parameters [26].

Results and discussion
We first investigate the effectiveness of our proposed
feature extraction methods to capture local and global
discriminatory information from the PSSM. We com-
pare their performances with similar studies that relied
solely on the PSSM for feature extraction [26]. In this
step, we also explore the effective value for distance fac-
tor (KP) in segmented auto covariance feature extraction
method as well as segmentation factor (FP) in segmen-
ted distribution method. To find the effective value for
segmented auto covariance method, we study the KP

value between 1 and 10 (similar to [26]). We also study
the segmentation factor (FP) in segmentation distribution
between three values used in this study (25, 10 and 5). In
the second step, we conduct a similar experiments using
the SPINE-X for feature extraction. We investigate the
effectiveness of our proposed feature extraction method
to extract these features from the SPINE-M as well as the
effective values for KS (between 1 and 10) and FS (among
three values (25, 10, and 5) used in this study) in the
similar manner. In the final step, we add the structural
features extracted from the SPINE-M using our proposed
methods to the extracted features from the PSSM and
compare our results with the best results found in the lit-
erature for the protein structural class prediction pro-
blem [5,6,27].
To explore the impact of the distance factor on the seg-

mented auto covariance method, 10-fold cross validation
is adopted as it was widely used in similar studies [26,45].

In this paper, we have used k-fold cross validation where
k = 10 to measure the prediction performance. We also
provide these performance results using k-fold cross vali-
dation as a function of k where k = 2, 3, 4, ..., 10 in Addi-
tional File 1. In the 10-fold cross validation, the
benchmark is divided into ten non-overlapping subsets
called fold. Then in each iteration, the combination of
nine folds is used for training purpose and the remained
fold is used for testing purpose. This process repeats for
all 10 folds to be used as the testing set. We also use
Jackknife cross validation to report our overall achieved
prediction accuracy as well as prediction accuracy
achieved for each structural class individually to compare
them with previous studies. In this method, in each itera-
tion, all but one sample use as a training purpose while
the remained sample is used for testing purpose. This
process repeats for all the samples available in the bench-
mark to be used as the testing sample. Jackknife is con-
sidered as a computationally expensive approach for
evaluation. Furthermore, it was shown in [45] that its
performance is similar to 10-fold cross validation. Since
it has been widely used to evaluate protein structural
class prediction accuracy, it is also adopted in this study
to enable us to directly compare our results with the
state of the art results found in the literature [5,6,26,27].
We will use the overall prediction accuracy (in percen-
tage) as the main accuracy measurement to be able to
directly compare our achieved results with previously
reported results found in the literature which is defined
as follows:

Q =
C
N

× 100, (10)

where C is the number of correctly classified test sam-
ples and N is the total number of test samples. We will
also report the sensitivity, specificity and Matthews
Correlation Coefficient (MCC) measurements for each
structural class to provide more information about the
statistical significant of our achieved results [27,45]. Sen-
sitivity measures the proportion of correctly classified
proteins compared to the whole number of samples
which are classified as correct (correct versus incorrect)
and is calculated as follows:

Sensitivity =
TP

TP + FN
× 100, (11)

where TP is the number of correctly identified (true
positive) samples, while FN is the number of incorrectly
rejected samples (false negative). On the other hand,
specificity measures the proportion of the number of
correctly rejected samples compared to the whole num-
ber of rejected samples (correctly versus incorrectly) and
is calculated as follows:
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Specificity =
TN

TN + FP
× 100, (12)

where TN is the number of correctly rejected (true
negative) samples while FP is the number of incorrectly
accepted samples (false positive). These two parameters
are closely related to the prediction error and a predic-
tor which is 100% sensitive and specific is considered as
a perfect predictor (while 0% sensitive and specific is
opposite). On the other hand, MCC measures the classi-
fication correlation and varies between -1 and 1 (where
1 indicates higher prediction quality while -1 indicate
lower prediction quality and 0 indicate random correla-
tion) and calculated as follows:

MCC =
(TN × TP) − (TN × FP)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (13)

More information about these three measurement for
protein structural class prediction problem can be found
in [27] and [45]. We will report sensitivity as well as
specificity and MCC measures for all four structural
classes for the best results reported in this study.

Exploring the impact of our proposed methods relying
only on PSSM for feature extraction
In this step, we first extract the feature vector proposed by
[26] and reproduce their results with respect to different
distance factors (between 1 and 10). Their explored feature
vector consists of semi-composition (PSSM-AAC) and
global auto covariance (PSSM-AC) features extracted from
the PSSM (called ACC-PSSM-AC). In continuation, we
build a feature vector based on our proposed feature
extraction methods in this study relying solely on
the PSSM for feature extraction. We extract AAO (occur-
rence of the amino acids extracted from evolutionary
consensus sequence (20 features)), PSSM-AAC (semi-
composition from PSSM (20 features)), PSSM-SAC (seg-
mented auto covariance in which KP has been adjusted to
1 to 10 in 10 different experiments (KP × 5 × 20 features)),
and PSSM-SD (segmented distribution in which segmen-
tation factor has been adjusted to 25 (4 × 20 = 80 fea-
tures)) feature groups. The combination of these feature
groups is referred as PSSM-S (AAO + PSSM-AAC +
PSSM-SD + PSSM-SAC = PSSM-S). The results achieved
by reproducing [26] experiment compared to our results
with respect to different values of KP (between 1 and 10)
for the 25PDB and 1189 benchmarks are shown in Figure 2
and Figure 3 respectively.
Note that we optimized g and C for KP = 1 and FP =

25 using grid algorithms on the 1189 benchmarks (to
avoid over tuning) and used corresponding values for
the rest of this study (g = 0.055 and C = 500). We deter-
mine the parameters used in this study for feature
extraction as well as employed classification technique

on the 1189 benchmark while the 25PDB is not used at
all and reserved to investigate the generality and effec-
tiveness of our proposed model. However, our experi-
ments have determined that there is no significant
difference between the optimized parameters for the
25PDB and 1189 benchmarks for our extracted features.
As we can see in Figure 2 and Figure 3, our extracted

feature vector significantly outperforms the results
reported in [26] for all the values used for KP (between
1 and 10). It shows the effectiveness of the proposed
segmentation-based method to explore discriminatory
information embedded in the PSSM compared to use of
whole protein sequence as a general entity. It also shows
that by using segmented auto co-variance method, even
by using very low values for KP, we can achieve to high
prediction accuracy since it is able to explore adequate
local sequence order information (also emphasis on the
impact of segmented distribution method). We report up
to 89.6% prediction accuracy (using jackknife cross valida-
tion) by adjusting KP to 4 (20 + 20 + 5 × KP (= 4) × 20 +
80 = 520 features in total) which is 15.5% better than
74.1% prediction accuracy achieved by reproducing [26]

Figure 2 The overall accuracies of PSSM-S compared to AAC-
PSSM-AC for 25PDB benchmark.

Figure 3 The overall accuracies of PSSM-S compared to AAC-
PSSM-AC for 1189 benchmark.
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experiment (using KP = 9 in AAC_PSSM_AC) for the
25PDB benchmark (Figure 2). Similarly, we achieve up to
79.7% prediction accuracy by adjusting KP to 4 which is
5.1% better than 74.6% prediction accuracy achieved by
reproducing [26] experiment (using KP = 6 in AAC_PSS-
M_AC) for the 1189 benchmark (Figure 3). Since the best
results for both 25PDB and 1189 benchmarks are achieved
by setting KP to 4 (the achieved results do not differ signif-
icantly for different values used for KP (between 1 and 10)
which highlights the effectiveness of segmentation techni-
que rather than the effect of the distance factor (KP) to
extract this feature group), it is adopted as a distance fac-
tor to extract features for segmented auto covariance from
the PSSM for the rest of this study.
We also repeat this experiment to explore the impact

of segmentation factor FP in segmented distribution fea-
ture extraction method. The prediction accuracies
achieve by adjusting the segmentation factor to 10 and
5 are not improved (which even by increasing KP, they
are reduced) compared to the achieved results by adjust-
ing this parameter to 25. It highlights the sufficiency and
effectiveness of adopting FP = 25 as the segmentation
factor compare to use of 10 and 5. In other word, using
four segments is able to effectively provide adequate dis-
criminatory information for this task better than
increasing the number of segments to 10 or 20.
In Table 2, we show the prediction accuracy achieved

by adding proposed feature groups (in which KP = 4
and FP = 25) in this study one by one to PSSM-AAC to
build PSSM-S (for both 25PDB and 1189 benchmarks).
In this manner, we can investigate the effectiveness of
each feature group individually on the reported predic-
tion accuracy. As we can see, adding PSSM-SAC and
PSSM-SD significantly enhance the protein structural
class prediction accuracy which highlights the impact of
segmentation approach to provide significant discrimi-
natory information for this task.

Exploring the impact of our proposed methods relying
only on SPINE-X for feature extraction
In this step, we investigate the impact of our proposed
feature extraction method on the SPINE-X for feature
extraction. We build a feature vector based on our

proposed methods in this study relying solely on the
SPINE-M for feature extraction. We extract SSEO
(occurrence of the secondary structure elements from
predicted secondary structure using SPINE-M (3 fea-
tures)), SPINE-SSEC (semi-composition from SPINE-M
(3 features)), SPINE-SAC (segmented auto covariance
were KS adjust to 1 to 10 in 10 different experiments
(KS × 5 × 3 features)), and SPINE-SD (segmented distri-
bution where segmentation factor adjusts to 25 (4 × 3 =
12 features)) feature groups. The combination of these
feature groups is referred as SPINE-S (SSEO + SPINE-
SSEC + SPINE-SD + SPINE-SAC = SPINE-S). The pro-
tein structural class prediction results are obtained in
this subsection using the Jack-knife cross validation
method.
The results achieved for SPINE-S with respect to dif-

ferent values of KS (between 1 and 10) for the 25PDB
and the 1189 benchmarks are shown in Figure 4. These
results are obtained with distribution factor FS = 25. As
we can see in Figure 4, these SPINE-S features give best
results for KS ≥ 4. For KS = 4, these features produce
82.3% for the 25PDB benchmark and 80.3% for the 1189
benchmark. Note that these results are comparable to
their corresponding PSSM results reported in Section 5.1.
This shows the effectiveness of the proposed segmenta-
tion-based method to explore discriminatory information
from the SPINE-M (similar to the PSSM). For KS = 4, the
feature vector has 78 features (3 + 3 + 5 × KS (= 4) × 3 +
12 = 78). Furthermore, we have studied the SPINE-S fea-
tures for distribution factor (FS) having values 5, 10, and
25. We have found that all the three values of FS gave
similar results. Therefore, we have reported the results for
FS = 25.
In Table 3, we show the prediction accuracy achieved

by adding proposed feature groups (in which KS = 4 and
FS = 25) in this study one by one to SPINE-SSEC to

Table 2 The impact of the proposed feature extraction
groups (using PSSM for feature extraction) proposed in
this study to enhance protein structural class prediction
accuracy (in %).

Combination of features 25DDB 1189

PSSM-AAC 64.3 61.2

PSSM-AAC + PSSM-SAC 69.4 68.0

PSSM-AAC + PSSM-SAC + PSSM-SD 88.6 77.9

PSSM-AAC + PSSM-SAC + PSSM-SD + AAO 89.6 79.7

Figure 4 The overall accuracies of SPINE-S with respect to
different values of KS for 25PDB and 1189 benchmarks (where
FS = 25).
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build SPINE-S (for both of the 25PDB and 1189 bench-
marks). In this manner, we can investigate the effective-
ness of each feature group individually on the reported
prediction accuracy. We can observe from Table 3 that
addition of SPINE-SAC and SPINE-SD has enhanced
the protein structural class prediction accuracy, similar
to PSSM.

Exploring the impact of our proposed method using both
PSSM and SPINE-X for feature extraction
In continuation we investigate the effectiveness of our
proposed feature extraction methods to extract struc-
tural information from the SPINE-X and add these fea-
tures to evolutionary information extracted from the
PSSM. We extract SSEO (3 features), SPINE-SSEC (3
features), SPINE-SAC (where KS adjusted from 1 to 10
in 10 different experiments (KP × 5 × 3 features)), and
SPINE-SD (where FS = 25 for the SPINE-M). The gen-
eral architecture of our proposed feature extraction
model is shown in Figure 5. The combination of the
extracted features from the PSSM and the SPINE-M is
referred to as PSSM-SPINE-S for the rest of this study
(AAO + PSSM-AAC + PSSM-SAC + PSSM-SD + SSEO +
SPINE-AAC + SPINE-SAC + SPINE-SD = PSSM-SPINE-S).

In the first step, we set the segmentation factor (FS) to
25 and adjust distance factor (KS) between 1 and 10 and
add these features to the extracted features from the
PSSM (while for the PSSM, distance factor is set to KP = 4
and segmentation factor is set to 25 which is investigated
earlier in Section 5.1). We conduct 10 experiments by
adjusting KS from 1 to 10 in this step (using jackknife
cross validation). The results achieved for both of the
25PDB and 1189 are shown in Figure 6. In this part, for
the first time we enhance the protein structural class pre-
diction accuracy to over 90% for 25PDB benchmark and
85% for 1189 benchmark. By adjusting KS = 4 (similar to
the distance factor adopted to extract segmented auto cov-
ariance feature group from the PSSM) and segmentation
factor FS = 25 (similar to FP) we achieve up to 92.2% and
86.3% prediction accuracies for both of the 25PDB and
1189 benchmarks (20 + 20 + 5 × KP (= 4) × 20 + 80 + 3 +
3 + 5 × KS (= 4) × 3 + 12 = 598 features in total), up to
7.9% and 2.8% better than previously reported results for
these two benchmarks using evolutionary and structural
features simultaneously [6,27,5].
These enhancements achieved by increasing the predic-

tion accuracy for all of the structural classes monotoni-
cally. We achieve to over 90% prediction accuracies
(sensitivity) for three structural classes for the 25PDB
benchmark (96.8%, 93.7%, and 90.1% prediction accuracies
for all-a, all-b, and a/b structural classes, respectively).
We also report 87.0% prediction accuracy for a + b struc-
tural class, which is considered as a difficult structural
class to predict which is 9.4% over the highest results
reported for this structural class [48]. Despite the results
achieved for the 1189 benchmark have not been as high as
the results achieved for the 25PDB benchmark, they still
have been significantly better than the reported results for
this benchmark (especially by considering that it has not

Table 3 The impact of the proposed feature extraction
groups (using SPINE-M for feature extraction)proposed in
this study to enhance protein structural class prediction
accuracy (in %).

Combination of features 25DDB 1189

SPINE-AAC 78.2 75.1

SPINE-AAC + SPINE-SAC 79.2 78.2

SPINE-AAC + SPINE-SAC + SPINE-SD 81.6 79.0

SPINE-AAC + SPINE-SAC + SPINE-SD + SSEO 82.3 80.3

Figure 5 The general architecture of our proposed feature extraction model. The number of features extracted in each feature group is
shown in the brackets below the feature groups’ names.
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been improved since the study of Mizianty and Kurgan in
2009). We also report 98.2%, 91.5%, and 72.2% prediction
accuracies for all-a, all-b, and a + b structural classes
which are respectively 4.5%, 4.1% and 1.2% over the best
results reported for these structural classes in the literature
[6,5]). The results achieved (overall prediction accuracy as
well as sensitivity for each structural class) in this study
compared to previously reported results for the 25PDB
and 1189 benchmarks are shown in Table 4 and Table 5,
respectively.
Adding structural features to evolutionary features

extracted in our experiments enhances the results for

up to 2.4% and 6.6% better than relying solely on evolu-
tionary features for the 25PDB and 1189 benchmarks
respectively. This emphasis on the impact of structural
information extracted from the SPINE-X in general for
the protein structural class prediction problem.
We also provide the specificity and MCC for the best

results reported in this study (results achieved for the
PSSM-S, SPINE-S, and PSSM-SPINE-S) for the 25PDB
and 1189 benchmarks in Table 6. As we can see, high
values for specificity (near 100%) similar to the high
sensitivity values in Table 4 and Table 5 (near 100%) as
well as MCC values (which are all higher than 0.5) for
our achieved results support the statistical significant of
our reported results in this study.

Conclusion
In this study we proposed novel segmented distribution and
segmented auto covariance feature extraction methods to
capture more local and global discriminatory information
from evolutionary profile and predicted secondary structure
of proteins. We first extract the corresponding features
from the PSSM in addition to the occurrence of the amino
acids extracted from evolutionary consensus sequence and
semi-composition extracted from the PSSM. Then by
applying SVM to the extracted features, we enhanced the
protein structural class prediction accuracy for low-homol-
ogy protein sequences (twilight zone) up to 15.5% for the
25PDB benchmark and 5.1% for the 1189 benchmark better
than similar studies that relied solely on the PSSM for

Figure 6 The overall accuracies of PSSM-SPINE-S with respect
to different values of KS for 25PDB and 1189 benchmarks
(where KP = 4 and FP = 25%).

Table 4 Comparison of the results reported for the 25PDB benchmark (in percentage %)

References Method All-a All-b a/b a + b Overall

[45] Logistic Regression 69.1 61.6 60.1 38.3 57.1

[53] Specific Tri-peptides 60.6 60.7 67.9 44.3 58.6

[33] LLSC-PRED 75.2 67.5 62.1 44.0 62.2

[33] SVM 77.4 66.4 61.3 45.4 62.7

[38] AAD-CGR 64.3 65.0 65.0 61.7 64.0

[7] CWT-PCA-SVM 76.5 67.3 66.8 45.8 64.0

[54] AATP 81.9 74.7 75.1 55.8 71.7

[16] AADP-PSSM 83.3 78.1 76.3 54.4 72.9

[55] SCPRED 92.6 80.1 74.0 71.0 79.7

[37] SSA 92.6 83.7 80.5 65.9 81.5

[37] PSSA 94.6 76.3 73.1 74.4 80.0

[24] RKS-PPSC 92.8 83.3 80.8 70.1 82.9

[48] SVM 92.6 81.3 81.5 76.0 82.9

[27] MODAS 92.3 83.7 81.2 68.3 81.4

[26] AAC-PSSM-AC 85.3 81.7 73.7 55.3 74.1

[22] Physicochemical-based features 86.1 80.8 80.6 60.1 76.7

[5] Structural-based features 95.0 85.6 81.5 73.2 83.9

[6] Structural-based features 95.0 81.3 83.2 77.6 84.3

This Study PSSM-S 93.5 90.3 92.1 81.4 89.6

This Study SPINE-S 93.8 83.1 78.4 73.9 82.3

This Study PSSM-SPINE-S 96.8 93.7 90.1 87.0 92.2
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feature extraction [26]. Our results supported the idea that
potential sequence order information embedded in the
PSSM has not been adequately explored in the literature.
In continuation, we added similar features extracted

from the predicted secondary structure using the SPINE-X
(segmented distribution, segmented auto covariance of the
normalized probability of secondary structure elements,
occurrence of secondary structure elements extracted from
the structural consensus sequence, and semi-composition
of the secondary structure elements extracted from the
SPINE-M) to previously extracted features from the PSSM.
By incorporating structural information, we achieved up to
92.2% and 86.3% for the 25PDB and the 1189 benchmarks
which were respectively up to 7.9% and 2.8% better than
previously reported results found in the literature for these

two benchmarks that have been widely used for the protein
structural class prediction problem [5,6,27].

Future works
We are currently investigating the effectiveness of our pro-
posed techniques in this study to tackle protein fold recog-
nition. We are aiming to develop our protein structural
class, and fold prediction server which will be publicly
available in the near future. We also aim at exploring the-
state-of-the-art feature reduction techniques on our
extracted features to investigate the possibility of further
feature reduction for these tasks.
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Additional file 1: Results as a function of k in k-fold cross validation
The results achieved using SVM to the SPINE-S, PSSM-S, and PSSM-
SPINE-S feature vectors using 2 to 10 fold cross validation for
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Table 5 Comparison of the results reported for the 1189 benchmark (in percentage %)

References Method All-a All-b a/b a + b Overall

[8] Bayes Classifier 54.8 57.1 75.2 22.2 53.8

[45] Logistic Regression 57.0 62.9 64.7 25.3 53.9

[56] FKNN 48.9 59.5 81.7 26.6 56.9

[57] WSVM - - - - 59.2

[53] Specific Tri-peptides - - - - 59.9

[21] IB1 65.3 67.7 79.9 40.7 64.7

[38] AAD-CGR 62.3 67.7 66.5 63.1 65.2

[58] SVM 75.8 75.2 82.6 31.8 67.6

[54] AATP 72.7 85.4 82.9 42.7 72.6

[16] AADP-PSSM 69.1 83.7 85.6 35.7 70.7

[55] SCPRED 89.1 86.7 89.6 53.8 80.6

[24] RKS-PPSC 89.2 86.7 82.6 65.6 81.3

[27] MODAS 92.3 87.1 87.9 65.4 83.5

[26] AAC-PSSM-AC 80.7 86.4 81.4 45.2 74.6

[22] Physicochemical-based features 80.2 83.6 85.4 44.6 74.8

[5] Structural-based features 92.4 87.4 82.0 71.0 83.2

[6] Structural-based features 93.7 84.0 83.5 66.4 82.0

This Study PSSM-S 92.6 86.0 76.7 64.3 79.7

This Study SPINE-S 91.9 88.3 78.9 61.7 80.3

This Study PSSM-SPINE-S 98.2 91.5 83.8 72.2 86.3

Table 6 The specificity (in percentage) and MCC
measurements for the best results: (a) for the 25PDB
benchmark; (b) for the 1189 benchmark

Feature Vector Specificity (%) MCC

All-a All-b a/b a + b All-a All-b a/b a + b

(a)
PSSM-S

97.7 96.3 95.2 91.9 0.93 0.80 0.78 0.91

SPINE-S 97.8 94.0 94.4 90.5 0.89 0.80 0.75 0.61

PSSM-SPINE-S 98.9 97.7 96.7 96.4 0.94 0.89 0.86 0.87

(b)
PSSM-S

98.2 94.8 89.8 90.0 0.91 0.78 0.67 0.56

SPINE-S 97.9 95.8 90.7 89.2 0.86 0.85 0.70 0.51

PSSM-SPINE-S 99.5 96.8 92.9 92.2 0.95 0.88 0.77 0.66
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