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Low baseline IFN-g response
could predict hospitalization in
COVID-19 patients
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The SARS-CoV-2 infection has spread rapidly around the world causing

mill ions of deaths. Several treatments can reduce mortality and

hospitalization. However, their efficacy depends on the choice of the

molecule and the precise timing of its administration to ensure viral

clearance and avoid a deleterious inflammatory response. Here, we

investigated IFN-g, assessed by a functional immunoassay, as a predictive

biomarker for the risk of hospitalization at an early stage of infection or

within one month prior to infection. Individuals with IFN-g levels below 15

IU/mL were 6.57-times more likely to be hospitalized than those with higher

values (p<0.001). As confirmed by multivariable analysis, low IFN-g levels,

age >65 years, and no vaccination were independently associated with

hospitalization. In addition, we found a significant inverse correlation

between low IFN-g response and high level of IL-6 in plasma (Spearman’s

rho=-0.38, p=0.003). Early analysis of the IFN-g response in a contact or

recently infected subject with SARS-CoV-2 could predict hospitalization and

thus help the clinician to choose the appropriate treatment avoiding severe

forms of infection and hospitalization.
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Introduction
The severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) infection that emerged in China in late 2019 has spread

rapidly around the world, causing millions of deaths, overwhelming

public health services, and resulting in severe economic and social

crisis. Individuals who are male, older than 60 years, and have

comorbidities are at higher risk for severe COVID-19, requiring

hospitalization and more frequently presenting with complications

such as multivisceral failure or death (1–4). The implementation of

preventive measures such as lockdown, social distancing (5, 6) and

vaccination (7–9) have limited its spread. Although no curative

treatment has unequivocally demonstrated its effectiveness (10), the

administration of antiviral drugs in the early phase of the disease

appears to decrease viral replication and pathogenesis (11–13),

interferon (IFN) therapy reduces the duration and severity of

symptoms, as well as mortality, if administered early (14–20), and

the treatment with monoclonal antibodies results in fewer

hospitalizations and deaths in immunocompromised patients

(21–23).

The immune response to a viral agent, including SARS-

CoV-2, involves both the innate and adaptative response. Innate

immunity induced by Toll-like receptors 3 (TLR3) and TLR7/8

signaling activates effector cells to mediate viral clearance,

induces inflammation through secretion of proinflammatory

cytokines (e.g., IL-6 and IL-1b), produces antiviral cytokines

and stimulates the adaptative immune response by activating

antigen-specific T cells. Type I and II IFN (i.e., IFN-a/b and

IFN-g, respectively) are the first-line cytokines against viral

infections. While many studies have focused on type I and III

IFN alteration in severe forms of COVID-19 (24–34), less

research has been conducted on type II IFN deficiency (35–

38). However, if type I IFN is a component of innate immunity,

type II IFN is involved in both innate and adaptative immune

responses. Indeed, IFN-g is produced by natural killer cells and

macrophages, effector cells in innate immunity, as well as by

CD4+ T cells of the Th1 type and CD8+ T cells that participate in

the adaptative response.

Moreover, rapidly after the beginning of the pandemic,

many authors highlighted that an excessive pro-inflammatory

innate immune response could be deleterious in the defense

against the virus, leading to a cytokine storm responsible for

acute respiratory distress syndrome, multivisceral failure and

even death. Interleukin-6 (IL-6) is one of the main cytokines

involved in the cytokine storm (35, 39–43). This observation

made anti-IL-6 and corticosteroids first-line treatments for

severe COVID-19. However, the evidence of excessive

secretion of pro-inflammatory cytokines, including IL-6, is

often late in the infection and does not allow the
Frontiers in Immunology 02
implementation of preventive measures. It is likely that a

deficiency in interferons, responsible for a persistence of the

virus by defect of clearance, can support the overexpression of

pro-inflammatory cytokines at the origin of the cytokine storm

(35, 41).

To our knowledge, no study has investigated the IFN

response at an early stage of SARS-CoV-2 infection, or even

before contamination, to detect preexistent immune dysfunction

in subjects who may subsequently progress to a severe form of

the disease. Thus, we hypothesize that dysregulation of the basal

IFN-g response, as assessed by an easy to perform functional

immunoassay, promotes severe forms of COVID-19 requiring

hospitalization. A clinically applicable blood biomarker

identifying patients with dysregulated IFN-g response could

optimize management by directing the prescription of

antivirals and/or IFN and/or monoclonal antibodies to

patients likely to benefit from them, thus reducing the number

of hospitalizations, while avoiding deleterious over-prescription

and potential associated adverse effects in those for whom the

treatment would not be of interest.
Materials and methods

Participants, data collection and
ethics statement

We performed a prospective monocentric longitudinal and

ancillary study at the Nice University Hospital, France. The

participants included were extracted from three prospective

monocentric cohorts: (i) patients recruited during an

infectious diseases or emergency room consultation following

COVID-19 symptoms, or a contact case between March 2020

and January 2022 (CovImmune 1 study, NCT04355351); (ii)

patients recruited by partner laboratories during a positive RT-

PCR for SARS-CoV-2, performed in the context of suggestive

symptomatology, contact case, or health pass, between August

2021 and November 2021 (CovImmune 1 s tudy ,

NCT04355351); (iii) voluntary participants from the general

population monitored systematically and periodically since July

2020 as part of an epidemiological study in the context of

COVID-19 (CovImmune 2 study, NCT04429594). COVID-19

positive participants for whom we had a stimulated blood

sample either a) within one month prior to infection or b)

within five days after the first symptoms of the disease or after a

close contact with a COVID-19 case, were enrolled in this study.

Demographic, clinical, biological, and outcome data were

collected by the study investigators and then centralized in an

anonymized database. Written informed consent was obtained

from all study participants.
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Blood collection and immunoassays

Blood samples were collected between 8am and 12pm by

nurses or physicians in tubes containing lithium heparinate.

After receipt in the laboratory, one milliliter of whole blood was

stimulated with immune agents that mimic the pathogen-

associated molecular patterns that activate immune cells (R848

as TLR7/8 agonist and anti-CD3 as T-cell stimulant) in

QuantiFERON-Monitor® specific tubes (Qiagen®, Germany)

within eight hours from blood collection. To measure IFN-g
levels produced by SARS-CoV-2-specific T cells, we used the

QuantiFERON® SARS-CoV-2 test (Qiagen®, Germany) in

which one milliliter of whole blood was collected in tubes

containing a mixture of SARS-CoV-2 peptides. Blood samples

stimulated with SARS-CoV-2 specific and nonspecific immune

agents were then incubated for 16 to 18 hours at 37°C and then

centrifugated at 2000-3000 x g for 15 minutes to harvest the

plasmas. Plasmas were then stored at –80°C until analysis and

freeze-thaw cycles were minimized to preserve the quality of the

samples. Plasma IFN-g levels after stimulation were measured by

enzyme-linked immunosorbent assay (ELISA). The procedure

with nonspecific response is summarized in Figure 1. To note,

when IFN-g values obtained after a nonspecific response were

above the limit of detection range (e.g., IFN-g >1000 IU/mL), the

values were arbitrarily scored as 1000 IU/mL. This functional

test is simple to implement for both clinical and laboratory staff,
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making it applicable for routine use. In addition, for patients

included via hospital consultations (CovImmune 1 study),

we also measured plasma IL-6 by ELISA without

cellular stimulation with custom-designed cartridges

Ella (ProteinSimple™).

The proportions and numbers of CD4+ T cells, CD8+ T

cells, NK cells and B cells, as well as their IFN-g production with

no stimulation or after nonspecific stimulation, were assessed in

three healthy volunteers by flow cytometry. Eight milliliters of

blood were collected: 2 mL with unstimulated cells, including 1

mL to measure IFN-g by ELISA and 1 mL to identify IFN-g-
producing cells by flow cytometry, 2 mL with cells stimulated

with TLR7/8 agonist, 2 mL with cells stimulated with anti-CD3,

and 2 mL with cells stimulated with both TLR7/8 agonist and

anti-CD3. After 4 hours of incubation, BD GolgiStopTM

(0.66μL/mL) was added to the samples for flow cytometry,

followed by an additional incubation time of 12 hours. Finally,

cells were fixed and stained using fluorochrome-conjugated

antibodies against surface molecules (CD45 BV786, CD5

PerCP-Cy5.5, CD2 FITC, CD7 BV711, CD3 BV510, CD8 PE,

CD4 BV605, CD19 PE-Cy7, CD16 BV510, CD56-BV510, CD64

APC-H7) and intracellular molecules (CD3 APC, IFN-g R718).
All antibodies used are commercially available. Flow cytometry

data were acquired on a BD FACSLyric™ and analyzed using

BD FACSuite™ software. The gating strategy is depicted in

Supplementary Figure 1.
FIGURE 1

Procedure for the in vitro stimulation of immune cells in whole blood. Immune ligands mimic pathogen-associated molecular patterns that
activate innate immune cells through TLR7/8 and T cells through CD3. IFN, interferon; mAbs, monoclonal antibodies; TLR, toll-like receptor.
Created with BioRender.com.
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Statistical analyses

Data are presented as mean and standard deviation for

quantitative variables with Gaussian distribution, as median

and interquartile range [25th percentile; 75th percentile] for

quantitative variables with non-Gaussian distribution, or as

numbers and percentages for qualitative variables. The

Shapiro-Wilk normality test was used to verify the distribution

of data. Comparisons were performed using the unpaired two-

sided Student’s t-test or Wilcoxon-Mann-Whitney U test

according to data distribution for quantitative variables, and

the Chi-square test for qualitative variables. The associations

between specific and nonspecific IFN-g responses, and between

nonspecific IFN-g response and plasma IL-6 values were

compared using Spearman rank correlation coefficient.

Multivariable logistic regression model was used to investigate

independent factors that influence hospitalization. Receiver

Operating Characteristic (ROC) curve was used to define an

IFN-g threshold below which patients would be considered at

risk for hospitalization. Kaplan-Meier analysis was used to

estimate the probability of hospitalization based on IFN-g
response. Statistical analyses were performed using GraphPad

Prism 8 (GraphPad Software, Inc., San Diego, CA) for

unadjusted analysis and Jamovi (version 1.8.4.0) for

multivariable analysis. All comparisons were two-tailed, and

the differences were considered significant when p value < 0.05.
Frontiers in Immunology 04
Results

Interferon-g production after nonspecific
stimulation of innate and adaptive
immune cells in healthy volunteers

Immune cells of seven healthy donors were stimulated with

immune ligands: TLR7/8 agonist as a stimulant of innate

immune cells, anti-CD3 as T cells stimulant, both TLR7/8

agonist and anti-CD3, or no stimulation. As shown in

Figure 2A, a very low level of IFN-g was detected in plasma

without cell stimulation. TLR7/8 agonist and anti-CD3

stimulations significantly increased IFN-g production

(p=0.0006 and p=0.03, respectively). Stimulation with the

combination of a TLR7/8 agonist and an anti-CD3

significantly increased IFN-g production (p=0.0006), but

without a significant increase compared to the TLR7/8 agonist

alone, probably due to a too small sample size.

The immune cells involved in IFN-g production after

nonspecific stimulation were innate immune cells, particularly

NK cells, CD4+ T and CD8+ T cells (Figure 2B). Interestingly, we

showed that the TLR7/8 agonist also activated CD8+ T cells (44, 45)

and that the action of the two immune agents together seemed to be

synergistic. There are probably large variations in the proportions

and cell types activated after nonspecific stimulation from one

individual to another (Supplementary Figure 2).
A B

FIGURE 2

Evaluation of IFN-g production after stimulation or not of circulating peripheral blood cells in healthy donors. (A) Plasma cytokine levels in seven
healthy donors after in vitro nonspecific stimulation of immune cells by anti-CD3, or TLR7/8 agonist, or both anti-CD3 and TLR7/8 agonist, or no
stimulation. IFN-g production was mainly increased after TLR7/8 agonist stimulation and partially after anti-CD3 stimulation. (B) Representative plots
of IFN-g production by CD4+ T cells, CD8+ T cells, NK cells and B cells after stimulation or not with TL7/8 agonist and/or anti-CD3. As expected,
after nonspecific stimulation CD4+ T, CD8+ T and NK cells produce more IFN-g, but not B cells. The level of IFN-g measured on the same individual
and in the same conditions with no stimulation and after nonspecific stimulation with anti-CD3, TLR7/8 agonist, or both was 4.9, 300.2, 466.3 and
>1000.0 IU/mL, respectively. *p<0.05; **p<0.01; ns, not significant. IFN, interferon; TLR, Toll-like receptor.
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Characteristics of the population
and outcomes

We included 115 individuals infected with SARS-CoV-2 for

whom we obtained a blood sample with nonspecific cell

stimulation within one month prior to infection or within five

days after the first symptoms during the period from March

2020 to January 2022 (Figure 3). The population’s characteristics

are shown in Table 1. Sixty-six (57.4%) of the subjects were

women, and the average age of the cohort was 53.9 (± 17.2)

years. Sixty-three (54.8%) participants had at least one

comorbidity. The most frequent comorbidities were

hypertension (26.1%), immunosuppressive therapy (13.9%)

and respiratory diseases (13.0%). Seventy-eight (67.8%)

individuals were completely vaccinated. Common symptoms,

including cough (47.0%), fever (39.1%) and dyspnea (26.1%),

were reported by many individuals. Only five of them (4.3%)

received antiviral treatment. Among the 115 individuals

included in this study, twenty-eight (24.3%) subsequently

progressed to severe pneumonia requiring hospitalization, 24
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(20.9%) and 16 (13.9%) required oxygen therapy and

corticosteroids, respectively, 11 (9.6%) were transferred to an

intensive care unit, and five (4.3%) died. To note, among the 24

who required corticosteroids, 22 were hospitalized and two

were outpatients.
Factors associated with the risk of
hospitalization for COVID-19 patients

As shown in previous studies (1–3, 46–49), unadjusted

analysis of this cohort (Table 2) confirmed that the risk of

hospitalization was significantly higher with increased age

(p<0.001), male gender (p<0.001), and the existence of at least

one comorbidity (p<0.001). No significant difference was found

with body mass index (BMI) (p=0.083). As expected, the

proportion of patients vaccinated was significantly lower in the

group of patients requiring hospitalization (p<0.001). There was

no difference in the lymphocytes count between the two groups

(p=0.212), but a significant difference in the ability of immune
FIGURE 3

Flow chart showing participants enrollment. The participants were included from three cohorts: (i) patients recruited during a hospital
consultation following COVID-19 symptoms, or as contact of a diagnosed COVID-19 case (CovImmune 1 study, NCT04355351); (ii) patients
recruited by partner laboratories during a positive RT-PCR for SARS-CoV-2 (CovImmune 1 study, NCT04355351); (iii) participants monitored
periodically since July 2020 as part of an epidemiological study in the context of COVID-19 (CovImmune 2 study, NCT04429594) and
developing a SARS-CoV-2 infection. COVID-19 positive participants for whom we had a stimulated blood sample either a) within one month
prior to infection or b) within five days after the first symptoms of the disease or after a close contact with a COVID-19 case, were enrolled in
this study. COVID-19, coronavirus disease 2019; RT-PCR, reverse transcription-polymerase chain reaction. Created with BioRender.com.
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cells to respond to a nonspecific stimulus, as measured by IFN-g
production, in those who were subsequently hospitalized (97.0

[interquartile range (IQR), 23.6-332.0] IU/mL vs 11.6 [IQR, 3.3-

53.9] IU/mL, p<0.001) (Figure 4). Because we found a difference
Frontiers in Immunology 06
in hematocrit values between the two groups (p=0.022), we

corrected for IFN-g levels by performing a ratio with hematocrit

values: again, patients who were subsequently hospitalized had a

lower ability of immune cells to respond to a nonspecific

stimulus (p<0.001). We then compared IFN-g production

between COVID-19 patients and 544 uninfected volunteers

from the general population: we found no difference between

outpatients and uninfected individuals (p=0.52) but a significant

difference between hospitalized patients and uninfected

individuals (p<0.001) (Figure 4). Of note, three patients in the

outpatient group and ten uninfected individuals had IFN-g
above the limit of detection and the value was considered to

be 1000 IU/mL. For information, the IFN-g responses of

volunteers from the general population, by age group and sex,

are available as additional data (Supplementary Table 1).

Of the 115 patients, we performed IFN-g assay after specific
stimulation with SARS-CoV-2 peptides for 84 (73%) of them, of

which ten were hospitalized and 74 were outpatients. Although

there is a correlation between specific and nonspecific cellular

responses (Spearman’s rho=0.246 [0.027; 0.443], p=0.024), we

did not find an altered specific cellular response in patients who

will subsequently be hospitalized (p=0.149). The data are shown

in Supplementary Figure 3.

As confirmed by multivariable analysis, low stimulated IFN-

g levels were an independent predictor of hospitalization in

COVID-19 patients (p=0.023), as were no vaccination (p<0.001)

and being over the age of 65 (p=0.037). These results are detailed

in Table 3.
A low IFN-g response correlates with
hospitalization in COVID-19 patients

We then examined the utility of measuring IFN-g response
as a biomarker of hospitalization in the early phase of COVID-

19 infection. We found a significant inverse correlation between

IFN-g response and hospitalization (odds ratio=0.990 [0.981;

0.996], p=0.007). Next, we evaluated the relevance of using IFN-

g response as a biomarker of hospitalization in COVID-19

patients using a receiver-operating characteristic (ROC) curve:

the area under the ROC curve (AUC) was 87.9%, revealing a

good performance of IFN-g response in predicting

hospitalization in COVID-19 patients. Using this ROC curve,

we defined an IFN-g cut-off value at 15 IU/mL to identify

patients at risk of hospitalization (sensitivity: 67.9%, specificity:

94.3%, p<0.001). In univariable analysis, individuals with less

than 15 IU/mL of IFN-g after nonspecific stimulation were 6.57-

times more likely to be subsequently hospitalized (odds

ratio=6.57 [2.55; 16.95], p<0.001) (Figure 5). We then sought

to clarify the predictive impact of the IFN-g response by

adjusting for variables independently associated with

hospitalization in the multivariable model. We found that

IFN-g level was more predictive when the subject was older
TABLE 1 Population’s characteristics.

Population’s characteristics Patients, n = 115

Baseline characteristics

Sex

Male 49 (42.6%)

Female 66 (57.4%)

Age, years 53.9 (± 17.2)

Comorbidities

BMI (kg/m²) 24.9 [21.5-28.3]

Type 2 diabetes 11 (9.6%)

Cardiovascular diseases* 11 (9.6%)

Hypertension 30 (26.1%)

Respiratory diseases (COPD, asthma) 15 (13.0%)

Active cancer 9 (7.8%)

Immunosuppressive therapy 16 (13.9%)

SARS-CoV-2 vaccination** 78 (67.8%)

Presentation at diagnosis

Symptoms

Fever (>38·0°C) 45 (39.1%)

Cough 54 (47.0%)

Dyspnea 30 (26.1%)

Headache 27 (23.5%)

Myalgia 27 (23.5%)

Diarrhea 11 (9.6%)

Anosmia 19 (16.5%)

None 9 (7.8%)

Laboratory data

Lymphocytes count (G/L) 1.1 [0.8-1.6]

Neutrophils count (G/L) 4.4 [2.9-6.3]

Hematocrit (L/L) 0.39 (± 0.64)

CRP (mg/L) 28.9 [6.4-106.6]

Serum creatinine (μmol/L) 77.0 [57.8-114.3]

IFN-g levels after in vitro cell
stimulation (IU/mL)

58.0 [15.0-234.0]

Outcomes

Hospitalization 28 (24.3%)

Oxygen therapy 24 (20.9%)

Corticosteroids 16 (13.9%)

Intensive care unit 11 (9.6%)

Death 5 (4.3%)
The number (and percentage) are indicated for categorical variables, mean (and standard
deviation) are shown for continuous variables with Gaussian distribution and median
(and interquartile range) for continuous variable with non-Gaussian distribution.
Lymphocyte and neutrophil counts, CRP and creatinine values were available for 59
patients. Hematocrit was available for 62 patients.
*heart failure or coronary artery disease.
**complete scheme (two or more injections of an mRNA vaccine, one or more injection of
Janssen vaccine).
BMI, body mass index; COPD, chronic obstructive pulmonary disease; CRP, C-reactive
protein; IFN-g, interferon-gamma.
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than 65 years, male, had at least one comorbidity and was not

vaccinated (Figure 6). In other words, the risk of hospitalization

in a young, healthy, vaccinated subject is low even if his or her

IFN-g is less than 15 IU/mL, whereas the risk is major in an

individual with one or more associated factors who would have

the same IFN-g level. Thus, our data suggest that IFN-g response,
assessed by functional immunoassay, may be a tool for

predicting the risk of hospitalization for early or subsequent

SARS-CoV-2 infection.
Frontiers in Immunology 07
A low IFN-g response correlates with a
high level of IL-6 in plasma

For the 56 (48.7%) patients included via hospital

consultations, we also had a plasma IL-6 assay without cell

stimulation. Among them, 30 (53.6%) were outpatients and 26

(46.4%) were hospitalized. As expected, hospitalized patients

exhibited more IL-6 levels than outpatients (40.70 [9.50; 71.60]

vs 7.00 [0.99; 35.70] pg/mL respectively, p<0.001). Significant
TABLE 2 Clinical and biological presentation of COVID-19 patients according to clinical course.

Outpatient care n = 87 Hospitalization n = 28 Univariable p value

Demographic data

Age 50.1 (± 15.4) 65.5 (± 17.5) <0.001

Sex (Male) 29 (33.3%) 20 (71.4%) <0.001

BMI (kg/m²) 23.8 [21.2-27.6] 26.3 [24.7-29.4] 0.083

One or more comorbidities 38 (45.2%) 25 (89.3%) <0.001

Vaccine schedule

SARS-CoV-2 vaccination* 68 (59.1%) 10 (35.7%) <0.001

Biological data at presentation

Lymphocytes count (G/L) 1.2 [0.8-1.7] 1.0 [0.6-1.5] 0.212

Neutrophils count (G/L) 3.9 [2.9-5.0] 4.9 [3.2-7.4] 0.788

Hematocrit (L/L) 0.41 (± 0.52) 0.37 (± 0.69) 0.022

IFN-g levels after in vitro cell stimulation (IU/mL) 97.0 [23.6-332.0] 11.6 [3.3-53.9] <0.001

IFN-g/hematocrit ratio (IU/mL) 270.5 [47.0-542.4] 36.3 [9.2-134.9] <0.001
The number (and percentage) are indicated for categorical variables, mean (and standard deviation) are shown for continuous variables with Gaussian distribution and median (and
interquartile range) for continuous variable with non-Gaussian distribution. Comparisons were performed using the unpaired two-sided Student’s t-test or Wilcoxon-Mann-Whitney U test
according to data distribution for quantitative variables, and the Chi-square test for qualitative variables. Significant associations are highlighted.
*complete scheme (two or more injections of an mRNA vaccine, one or more injection of Janssen vaccine).
BMI, body mass index; IFN-g, interferon-gamma. Bold value = p > 0.05.
FIGURE 4

IFN-g response and the risk of hospitalization after SARS-CoV-2 infection. Comparison of IFN-g secretion by stimulated blood cells in relation to
subsequent care for infection management and compared with no infection. Statistical significance of difference between groups was assessed
using Mann-Whitney non-parametric test. ***p<0.001; ns, not significant. IFN, interferon.
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inverse correlation was found between IFN-g response and

plasma IL-6 (Spearman’s rho=-0.38 [-0.59; -0.13], p=0.003).
Discussion

In this ancillary study of several prospective cohorts, we

investigated whether an individual’s IFN-g response, as assessed
by a functional immunoassay, could predict the risk of

hospitalization after SARS-CoV-2 infection. We found that

participants with IFN-g levels below 15 IU/mL were 6.57-times

more likely to be hospitalized for COVID-19 than those with

higher values. This risk was even higher if participants also had

an associated factor such as age >65 years, male gender, presence

of at least one comorbidity, or lack of vaccination. Probably due

to a lack of statistical power, in the overall multivariable analysis,
Frontiers in Immunology 08
the relative risk of those under 45 years was not significantly

associated with a lower risk of hospitalization than those over 65

years (Table 3), although it was in the logistic regression

considering only the IFN-g response and the age group

(Figure 6A). Unlike other studies (4, 50), obesity was not

found to be a risk factor for hospitalization, probably because

few subjects were overweight in this cohort of individuals from

southern France. In addition, we found a significant inverse

correlation between IFN-g response and plasma IL-6 in a

subgroup of 56 patients, supporting data from other teams

(24, 35, 41). This association supports the hypothesis that

interferon deficiency may promote excess secretion of

proinflammatory cytokines, probably due in part to the deficit

in viral clearance. However, this result must be tempered by the

fact that it is derived from a subgroup of patients and that the

number of patients who have progressed to a severe form of
TABLE 3 Factors independently associated with hospitalization for COVID-19.

Adjusted odds ratio [95% CI] Multivariable p value

Demographic data

Age < 45 vs > 65 years 0.340 [0.043-2.694] 0.307

Age 45-65 vs > 65 years 0.129 [0.019-0.886] 0.037

Sex (Male) 3.424 [0.686-17.095] 0.134

One or more comorbidities 3.041 [0.567-16.302] 0.194

Vaccine schedule

SARS-CoV-2 vaccination* 0.098 [0.025-0.390] <0.001

Biological data at presentation

IFN-g ≤ 15 IU/mL 4.623 [1.231-17.361] 0.023
Multivariable logistic regression model was used to investigate independent factors that influence hospitalization. Significant associations are highlighted. Overall test model: p<0.001,
R²=43.8%.
*complete scheme (two or more injections of an mRNA vaccine, one or more injection of Janssen vaccine).
CI, confidence interval; IFN-g, interferon-gamma. Bold value = p > 0.05.
FIGURE 5

Hospitalization-free survival rate based on IFN-g response. The IFN-g threshold of 15 IU/mL, determined by ROC curve (sensitivity 67.9% and
specificity 94.3%), was used for Kaplan-Meier analysis. Of the 32 patients with IFN-g ≤15 IU/mL, 17 (53%) were subsequently hospitalized,
whereas only 11 of 72 (15%) patients with IFN-g >15 IU/mL were hospitalized. IFN, interferon; ROC, receiver operating characteristics.
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COVID-19 requiring intensive care management is low. Further

studies, including preclinical studies, are needed to demonstrate

the impact of interferon variations on the inflammatory

response in the context of SARS-CoV-2.

In this study, the SARS-CoV-2 specific cellular response was

not associated with the risk of hospitalization. This result is not

surprising given the study design. Indeed, in addition to the fact

that the specific cellular tests were performed in only 84 patients,

they were also performed very early after the infection, even

before the contact with the infectious agent for almost half of the

patients, including non-vaccinated patients for whom the

specific response was necessarily non-existent without

presaging their subsequent antiviral response. In our opinion,

the evaluation of the specific cellular response is of particular

interest in the evaluat ion of the post-vaccinat ion

immune response.

We believe that this simple to use functional measure of

nonspecific cellular response could help clinicians identify

patients who would benefit from early antiviral or IFN

therapy, allowing for more personalized prescription.

Moreover, the immune response must be maintained in a

balanced manner and some recent data suggest that long

COVID-19 may be due to an excessive IFN response (51).

Thus, the choice of the molecule and the precise timing of its

administration seem necessary both to induce viral clearance
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and prevent immunopathology. It could therefore be

detrimental to prescribe IFN-based therapies in patients whose

immunological balance is already dysregulated in favor of this

pathway. Here again, this functional immunological test could

help optimize management for a tailored prescription. Clinical

trials could be considered: IFN or antiviral treatment if IFN-g
after cell stimulation <15 IU/mL in a patient with one or more

associated factors but not within the indications of these

therapies, to be compared to a standard-of-care arm.

The originality of this study is the analysis of the individual

functional cellular response, at the early phase of the infection,

and even before the infection for nearly half of the individuals

included. If performed too late after the contamination, the

results of the test would probably be modified by the ongoing

anti-infectious response in various proportions: IFN-g secretion
increased at the peak of the antiviral response, decreased at the

time of immune reconstitution and even more so in case of cell

exhaustion, or even increased persistently in case of long

COVID. As suggested by other teams, but without a functional

approach (30, 38), a functional immunoassay performed early

during the infection, or even before contamination, could

predict the antiviral response against SARS-CoV-2, but also

the response against other viruses or intracellular pathogens

(52). This hypothesis is partly confirmed by our work but

requires further studies.
A B

DC

FIGURE 6

Probability of hospitalization according to IFN-g levels, adjusted for (A) age class, (B) sex, (C) presence of at least one comorbidity and
(D) vaccination. Logistic regression models including explanatory variables associated with hospitalization in multivariable analysis. We show
here four representations of the model adjusted on the explanatory variables: each of them represents the impact of a factor and IFN-g
production on hospitalization after adjustment. CI, confidence interval; IFN, interferon; OR, odds ratio.
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Nevertheless, our study has several limitations. First, the

inclusion period is long, extending from the beginning of the

pandemic to a more recent period. It therefore covers infections

with various variants of SARS-CoV-2 and pre- and post-

vaccination periods. However, we are not studying the specific

immune response to SARS-CoV-2 but the antiviral response in

general, so the strain of virus should not influence the results.

Also, vaccination was included in the multivariable model,

which limits this bias. Secondly, the ability of immune cells to

respond to stimulation also depends on an individual’s age,

comorbidities, and infectious and immunological history (53). It

is therefore difficult to disentangle these variables and establish

IFN-g standards. Finally, although the cohort size is reasonable

given its prospective design and its biological assays with strict

pre-analytical procedures, the sample size remains small, and the

results need to be confirmed on a larger cohort.

Although many questions remain, early analysis of the IFN-g
response in a contact or recently infected subject could help the

clinician choose the appropriate molecule for management and

thus avoid severe forms of infection and hospitalization.
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