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A B S T R A C T

Various countries across the globe have been affected by different COVID-19 waves at different points in time and
with varying levels of virulence. With the backdrop of the two COVID-19 waves that broke out in Delhi, this study
examines the variations in the concentrations of criteria pollutants, air quality, and meteorological variables
across the waves and their influence on COVID-19 morbidity/mortality. Descriptive statistics, violin plots, and
Spearman rank correlation tests were employed to assess the variations in environmental parameters and
investigate their associations with COVID-19 incidence under the two waves. The susceptible-infected-recovered
model and multiple linear regression were used to assess the wave-wise basic reproduction number (R0) and
infection spreading trajectory of the virus. Our results show that the first wave in Delhi had three successive peaks
and valleys, and the first peak of the second wave was the tallest, indicating the severity of per-day infection cases.
During the analysed period (April 2020 and April 2021), concentrations of criteria pollutants varied across the
waves, and air pollution was substantially higher during the second wave. In addition, the results revealed that
during the second wave, NO2 maintained a significant negative relationship with COVID-19 (cases per day), while
SO2 had a negative relationship with COVID-19 (cumulative cases) during the first wave. Our results also show a
significant positive association of O3 with COVID-19 deaths during the first wave and cumulative cases and deaths
during the second wave. The study indicates that a higher relative humidity in Delhi had a negative relation with
COVID-19 cumulative cases and mortality during the first wave. The study confirms that the estimated R0 was
marginally different during the two waves, and the spread of COVID-19 new cases followed a cubic growth
trajectory. The findings of this study provide valuable information for policymakers in handling COVID-19 waves
in various cities.
1. Introduction

Countries worldwide are facing the resurgence of COVID-19 disease
caused by the severe acute respiratory syndrome coronavirus 2 (SARS-
COV-2) in the form of different waves at different points in time and with
varying levels of virulence (Iftimie et al., 2021; Soriano et al., 2021;
Jassat et al., 2021). Italy had an intense first wave during February–May
2020, and the second wave occurred August 2020–February 2021 with
comparatively less impact than in other European countries (Bontempi,
2021; Coccia, 2021). Jalali et al. (2020) reported lower disease mortality
during the second wave than the first wave in Iran, which struck during
the relatively warm months (February–May). In contrast, Germany
managed the first wave exceptionally well but suffered much in the
second wave (Graichen, 2021). India's first wave of the COVID-19
July 2021; Accepted 19 Novem
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pandemic began on 24 March 2020, and a more powerful second wave
hit the country beginning February 2021 (Krishnakumar and Rana, 2020;
Thiagarajan, 2021).

During the first wave, lockdown measures brought a significant
reduction in air pollution across different cities worldwide (Rume and
Didar-Ul Islam, 2020; Gautam, 2020; Zambrano-Monserrate et al., 2020;
Venter et al., 2020; Liu et al., 2021). Kumari and Toshniwal (2020) re-
ported reductions in PM2.5, PM10, and NO2 concentrations by 20–34%,
24–47%, and 32–64%, respectively, in 12 major world cities due to
lockdown measures. Fu et al. (2020) noted similar findings for PM2.5,
PM10, NO2, SO2, and CO concentrations in 20 major world cities due to
the lockdown effect. Rathod et al. (2021) found reductions in three
crucial air pollutants, namely, NO2, CO, and volatile organic compounds
(VOCs), in Delhi by 50%, 37%, and 38%, respectively, during the
ber 2021
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lockdown period of 2020 as compared to the similar period in 2019. After
the first wave, countries eased the stringent lockdown conditions
considerably based on necessities and their capability to fight the
pandemic. Yan et al. (2021) reported an average decline of more than
45% in stringency measures in 25 early COVID-19-affected countries
compared to the strictest measures taken during the first wave. Singh
et al. (2021) compared the air pollution of the top ten most
COVID-19-affected countries under different lockdown stringency levels
and indicated that ambient air pollution increased with the relaxation of
lockdown measures without considering the seasonal effect.

Research during the first wave of the pandemic strongly supports the
role of air pollution in the diffusion of SARS-CoV-2 viruses (Copat et al.,
2020; Coccia, 2020; Prather et al., 2020; Fattorini and Regoli, 2020;
Zoran et al., 2020). Furthermore, air pollutants are known to have a role
in inducing respiratory toxicity; hence, they are likely to also aid respi-
ratory illnesses such as COVID-19 (Comunian et al., 2020; Dutta and
Jinsart, 2021a). Epidemiological studies also highlight the possible role
of air pollution, in combination with meteorological variables such as
low temperature and relative humidity (RH), in COVID-19 disease
transmission (Lolli et al., 2020; Moriyama et al., 2020). Recently pub-
lished review papers have also highlighted the role of air pollution and
meteorological conditions in SARS-CoV-2 transmission (Andersen et al.,
2021; Bourdrel et al., 2021; Tian et al., 2021; Zhao et al., 2021). Zoran
et al. (2021) further identified the role of environmental variables during
the multiple waves of COVID-19 in Madrid, Spain.

During the first wave, several research efforts were made across
different world cities to capture spatiotemporal variations in air pollut-
ants caused by the lockdown and the role they played in the spread of
COVID-19. According to Dutta and Jinsart (2021b), approximately 16
studies were published on the first wave of the pandemic in Delhi,
highlighting the lockdown effect on air quality and its relationship with
COVID-19 disease spread. These studies proved to be immensely valuable
for policymakers to understand the critical dynamics between air pollu-
tion and COVID-19 morbidity or mortality, thereby supporting the
implementation of effective measures to control the spread of the
pandemic. However, in the face of cities experiencing multiple waves,
research efforts have been scarce in investigating the interplay between
COVID-19 disease incidence and environmental conditions under
different waves. It is essential to understand how changes in meteoro-
logical variables and air pollution interact with the spread of the
pandemic during successive waves. Such findings will be of immense use
to policymakers, guiding them in developing appropriate policy
measures.

Therefore, the main objective of this study is to examine the varia-
tions in the concentrations of criteria pollutants, air quality, and mete-
orological variables across the waves and their influence on COVID-19
morbidity/mortality. To do this, the study first aims to understand the
characteristics of the first and second waves of the COVID-19 disease
outbreak in Delhi and compare the impact of the pandemic under the
respective waves. Second, the study examines and compares the varia-
tions in criteria air pollutants, meteorological variables, and air quality
indices over the matching periods during the two successive waves.
Third, the study analyses and compares the COVID-19 morbidity/mor-
tality of the waves with the environmental variables. Finally, as the city
had a higher surge of COVID-19 positive cases and deaths during the
second wave, the study examines and compares the two waves in Delhi in
terms of their spread rates and trajectories to understand their similar-
ities and differences. An understanding of how environmental variables
influenced the COVID-19 morbidity/mortality of the two successive
waves in the same city will shed more light on the link between meteo-
rological variables and air quality factors and the COVID-19 pandemic.

We selected Delhi as the location for the study for three reasons: first,
it is the world's most polluted city (IQAir Report, 2020; Kumar et al.,
2020a); second, it witnessed the intense nature of the COVID-19 waves;
and third, using the same city as the study location can neutralise the
unmeasured confounding bias. To the best of our knowledge, this is the
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first study to assess the link between environmental variables and
SARS-CoV-2 infection spread in the context of COVID-19 disease mor-
bidity/mortality in the same city under two successive waves.

2. Methods

2.1. Study area

Delhi, located at 28.7041� N, 77.1025� E, is the capital city of India.
The city covers a geographical area of 1484 sq. Km. Over time, Delhi has
emerged as a significant city with respect to commerce, industry, medical
services, and education, thereby attracting in-migration from the entire
country. The city is projected to be the world's most populous by 2028
(UNDESA, 2018). The city is struggling to cope with its aggravating
problem of air pollution and associated health hazards. Different sources
like burning of fuels, industries, stubble burning of agricultural biomass
residue in the neighbouring states, and vehicular movement are contin-
uously pouring pollutants in the city air. In terms of vehicle stock, Delhi
topped the Indian cities with 10.26 million vehicles during 2017 (Dutta
and Jinsart, 2021c). According to the K€oppen climate classification,
Delhi's climate is extreme with five seasons. The summer is scorching
with the maximum air temperature range of 43–46 �C, while winter is
freezing with the minimum temperature range of 2–4 �C (Budhiraja et al.,
2019).

2.2. Data sources

We collected data on the total number of COVID-19 cases, per day
infection cases, mortality, and recovery for the study periods of April
2020 and April 2021, representing two successive pandemic waves, from
the Delhi Government website (http://health.delhigovt.nic.in/), which is
the source of all pandemic-related information in the city. The criteria air
pollutants considered in this study included particulate matter with
aerodynamic diameters of less than 2.5 and 10 μm (PM2.5, PM10), CO,
NO2, SO2, and ozone (O3). Three important meteorological variables,
namely temperature (T), RH, and wind speed (WS), were also considered.
The daily mean concentration data for the criteria pollutants and mete-
orological variables for the study period were obtained from the offices of
the Central Pollution Control Board (CPCB) and Indian Meteorological
Department, Delhi, respectively. Table S1 lists the air pollution and
weather station metadata.

2.3. Data analysis

During the study period, COVID-19 started spreading faster with the
initiation of the two pandemic waves, and the local government mar-
shalled different feasible or available methods to keep the outbreak
under control. Delhi saw a very strict and effective lockdown during the
first wave, while the second wave experienced a somewhat relaxed
lockdown that was well supported by the initiation of a vaccination drive.

Descriptive statistics, such as mean, maximum (max), minimum
(min), percentile, and interquartile range (IQR) were used to understand
variations in the criteria pollutants and meteorological variables for the
periods under study. Violin plots were used to infer the distribution
patterns of environmental variables across the two waves of the
pandemic. Due to the non-normal distribution of variables, Spearman's
rank correlation test was used to examine the correlations between the
criteria air pollutants and meteorological variables with COVID-19
spread. Spearman's rank correlation analyses were carried out using
IBM SPSS Statistics 25 software, and correlation matrix plots were drawn
using the ‘corrplot' package of R software.

Susceptible-infected-recovered (SIR) is a classic quantitative model
for understanding the spread of an epidemic, and the model deals with
three categories: suspected (S), infected (I), and recovered (R) portions of
the population (N) of a city under epidemic attack. The basic SIR model
was used to understand the characteristics of the infection cycle that

http://health.delhigovt.nic.in/
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prevailed during the two pandemic waves in Delhi. The following three
linear differential equations frame the SIR model of infective disease
spread (Hethcote, 2000):

dS
dt

¼ � βIS
N

; (1)

dI
dt

¼ βIS
N

� γI; (2)

dR
dt

¼ γI; (3)

where SðtÞþ IðtÞþ RðtÞ ¼ N, and Sð0Þ ¼ S0 � 0, Ið0Þ ¼ I0 � 0; and
Rð0Þ ¼ R0 � 0.

In the above three equations, β (infection transmission rate) and γ
(recovery and removal rate) are fundamental parameters governing the
infection spread dynamics. The move from susceptibility to infection (S
to I) of the population will depend on β, while infection to recovery or
death (I to R) will depend on γ. The above three differential Eqs. 1, 2, and
3 must be solved for S, I, and R numerically to determine the values of the
parameters β and γ. The R software package called 'deSolve' was used to
solve the ordinary differential equation systems using Runge-Kutta
methods and determine parameters β and γ and the R0 (basic repro-
duction number) from Eq. (4) as shown below.

R0¼ β

γ
(4)

The R0 value is vital for understanding the disease severity. If R0 is
less than 1 (R0 < 1), it indicates a controlled epidemic situation in which
one infected person will be infecting fewer than one individual on
Figure 1. COVID-19 per day and cumulative cases during (a) first wave (1 March 20
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average. Similarly, if R0 is greater than one (R0 > 1), the epidemic is
genuinely serious, as each infected individual will be able to infect many
more individuals in their vicinity. Satsuma et al. (2004) found that the
SIR model is appropriate for describing a well-localised epidemic
outburst and, hence, can be used at the city level, as in the case of Delhi.

Regression models were used to trace the infection-spreading trajec-
tory in successive waves of COVID-19. The models used the total cu-
mulative cases for the study periods as the independent variables and the
time horizon as the dependent variables to find the best-fit curves of the
respective waves. The best-fit curves will be the infection-spreading
trajectories of the COVID-19 waves in Delhi. We fitted 11 classical
regression models using IBM-SPSS version 25 (Table S2). The R2 statistics
of the regression models, as well as the respective standard errors, are
considered to yield the best-fit curve.

3. Results and discussions

3.1. Spread of COVID-19 in Delhi: first wave vs second wave

There is no clear definition of what constitutes a COVID-19 wave.
However, it is evident from past infectious diseases that the outbreak and
subsequent disease spread follows a waveform pattern with peaks and
valleys. Notably, there is a lull period of infection spread, signalling the
end of one wave but retaining the indication of the beginning of the next
wave (Wagner, 2020; Zhang et al., 2021). As shown in Figure 1a, the
spread of COVID-19 in Delhi followed a waveform pattern with peaks and
valleys. The first COVID-19 wave began in Delhi on 4 March 2020, when
the first COVID-19 case was detected in the city. The number of
SARS-CoV-2 infection cases increased rapidly, and the first peak of the
first COVID-19 wave in the city was reached on 23 June 2020, with 3947
20 to 16 February 2021) (b) second wave (17 February 2021 onwards) in Delhi.



Table 1. Comparison of COVID-19 cases in Delhi across two sample periods (April 2020 and 2021).

City Total cases of infection Highest cases reported in a
day

Lowest cases reported in a
day

Mean SD Co-efficient of variation
(%)

April 2020 April 2021 April 2020 April 2021 April 2020 April 2021 April 2020 April 2021 April 2020 April 2021 April 2020 April 2021

Delhi 3515 486903 356 28395 17 2790 113 16230 76.8 9057.3 68 55.8
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cases per day, as shown in Figure 1a. The second peak came after three
months, when approximately 4473 cases were reported on 16 September
2020. The third and the tallest peak was reached in the winter season,
with 8593 new infected cases reported on 11 November 2020. Figure 1a
also indicates that the successive peak heights had an increasing trend,
and the peak that occurred during the winter months of Delhi had the
greatest height. This finding supports the hypothesis that an easier spread
of COVID-19 is possible in winter (Chen et al., 2021). After the third
peak, the infected cases reported per day fell rapidly, and by the begin-
ning of the new year 2021, the daily new infections fell below 500.
Finally, Delhi heaved a sigh of relief when the number of infected cases
registered per day was as low as 94 on 16 February 2021, thereby
marking the end of the first wave of the pandemic. As shown in Figure 1a,
the first wave lasted nearly a year, that is, from 4 March 2020 to 16
February 2021, with three successive peaks and valleys in between.

Figure 1b depicts the characteristics of the COVID-19 s wave in Delhi.
Figure 1b shows that from 17 February to 22 March 2021 new infection
cases per day were, on average, 343. Figure 1b shows that starting from
23 March 2021, new cases jumped to a four-digit figure per day, sig-
nalling the beginning of the second wave. On 20 April 2021, the second
wave reached its first peak with a new city record of 28395 new cases in a
single day. A comparison between Figure 1a and b reveals that the second
wave of COVID-19 was harsher than the first wave with regard to the
disease spread. The local administration used measures such as herd
immunity building through vaccination and a partial to complete lock-
down to bring the new infection cases down to approximately 4000 cases
per day by mid-May 2021, as shown in Figure 1b.

Table 1 compares COVID-19 cases in Delhi across two sample periods:
April 2020 of the first wave and April 2021 of the second wave. The April
2020 data set has more variability in COVID-19 infection cases reported
per day than does April 2021, as revealed by the higher coefficient of
variation shown in Table 1. Figure 2a and b show the time-series graphs
of the daily cumulative incidence of confirmed COVID-19 cases for Delhi
over the two-sample periods on a linear scale. The linear graph of April
2020 shows a steady increase in cases during the period, and the graph of
April 2021 indicates a slow increase for the first six days, followed by
rapid growth. Figure 2c and d display the same data, that is, the daily
cumulative incidence of confirmed COVID-19 cases for Delhi in April
2020 and April 2021, respectively, on a log-linear scale. The log-linear
scale plots of Figure 2c and d show the cumulative incidence of the
pandemic in the city in a more interpretative way (Sevi et al., 2020).
First, Figure 2c and d indicate that the cumulative incidence of COVID-19
grew exponentially in Delhi in both waves. Second, the fitted line esti-
mates the doubling time of COVID-19 for both April 2020 and April
2021. The slope of the fitted line is 0.1096 log cases per day in April 2020
and 0.1553 log cases per day for April 2021. Therefore, the doubling time
for COVID-19 in April 2020 was 6.32 days and that for April 2021 was
4.46 days. This indicates that COVID-19 spread faster during the second
wave than during the first wave.

Figure 2e and f show the daily incremental incidence of COVID-19
cases for April 2020 and April 2021, respectively. It can be observed
from Figure 2e and f that April 2021 was much farther ahead of April
2020 regarding the number of infections per day, as the average cases of
16230 for April 2020 were much greater than those of only 113 for April
2020. Figure 2g and h compare the COVID-19 recovery cases per day, and
it can be seen that during April 2020, the average recovery cases per day
was 331, while in April 2021, it was much higher at 13042 cases per day.
This reflects that during the second wave, both the incidence and
4

recovery of per day COVID-19 cases were higher than those in the first
wave.

Figure 2i and j show the moving average daily deaths during April
2020 and April 2021, respectively. The mortality curves provide critical
visual information about mortality due to COVID-19 cases during the two
waves in Delhi. During April 2020, the COVID-19 mortality increased
abruptly after mid-month and then flattened to some extent. In contrast,
during April 2021, mortality started showing an almost exponential
pattern from the first week.

3.2. Distribution of air pollutants, meteorological variables and COVID-19
cases: first wave vs second wave

Table 2 provides the descriptive statistics of the criteria air pollutants,
meteorological variables, and COVID-19 cases that prevailed in Delhi
between April 2020 and April 2021. Both PM2.5 and PM10 increased by
78.1% (37.3–66.4 μg m�3) and 106.1% (95.8–197.5 μg m�3), respec-
tively, during April 2021 to April 2020. Similarly, the mean NO2 and CO
concentrations increased by approximately 229.4% and 77.1%, respec-
tively, in April 2021 compared to the corresponding month of the pre-
vious year when COVID-19 infections first started in Delhi. The increases
in PM10, PM2.5, NO2, and CO concentrations were primarily due to a
substantial increase in anthropogenic activities during the second wave
in the city (Anh€auser and Farrow, 2021; Gautam et al., 2021).

However, it is worth mentioning that the SO2 concentration of 23.6
μg m�3 during April 2020 remained almost identical (24 μg m�3) to that
of April 2021. Substantial SO2 in ambient air during the first wave and a
nearly unchanged status during the second wave reflects its lower
dependence on local sources for generation (Dutta and Jinsart, 2021b).
Table 2 also indicates that the mean O3 concentrations decreased from 62
μg m�3 in April 2020 to 48 μg m�3 in April 2021, resulting in a 22.6%
decrease. Delhi had a notable increase in ground-level O3 concentrations
during the lockdown period of April 2020, in contrast to other air pol-
lutants (Garg et al., 2021). A substantial reduction in NOx in the ambient
air due to the lockdown effect led to a lower titration of O3 by NO (Han
et al., 2011; Rathod et al., 2021). Table 2 also indicates that during April
2021, the mean temperature was marginally higher (29.3 �C) than in
April 2020 (28.4 �C). However, the RH was lower (56.1%) in April 2021
than in April 2020 (59.9 %). There was almost no change in the wind
speed, which remained at 4 m s�1 during both waves. Sahoo et al. (2021)
also reported very minor variations in wind speed during the pre-and
lockdown periods in Delhi. The maximum number of new COVID-19
cases per day during April 2020 was 356, which increased to 28395
during April 2021, indicating a faster spread of infection during the
second wave (Asrani et al., 2021).

Figure 3a–h provide the violin plots of the critical criteria pollutants
and selected meteorological variables for the city of Delhi. In the violin
plots, the rectangle in the center denotes the IQR of the data distribution,
while the central cross represents the median value, and the whiskers
show 1.5 � IQR for the rest of the data. The violin plots of PM2.5, PM10,
and NO2 indicate that median values of the respective data distributions
were lower during April 2020 than April 2021. The violin plot of SO2
suggests that the April 2020 median value (23.2 μg m�3) was marginally
lower than that for April 2021 (23.4 μg m�3), and the SO2 pollution was
more clustered around the median during April 2020, as shown by the
width of the violin, unlike in April 2021. Two meaningful inferences can
be made from the SO2 violin plots. First, during April 2020, SO2 con-
centration distributions were comparatively more stable than those of



Figure 2. Incidence of COVID-19 cases in Delhi (a) daily cumulative, April 2020 (b) daily cumulative, April 2021 (c) daily cumulative, April 2020 (log scale) (d) daily
cumulative, April 2021 (log scale) (e) daily incremental incidence, April 2020 (f) daily incremental incidence, April 2021 (g) recovery cases per day, April 2020 (h)
recovery cases per day, April 2021 (i) daily deaths, April 2020 (moving mean), (j) daily deaths April 2021 (moving mean).
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Table 2. Distribution of criteria pollutants, meteorological variables and COVID-19 cases, Delhi, April 2020 and April 2021(Sample size, N ¼ 30).

Variables Year Mean � SD Max Min Percentile IQR

25th 50th 75th

T (�C) 2020 28.4 � 2.6 32.7 23.8 26.5 0.6 30.5 4.0

2021 29.3 � 2.6 35.1 25.8 27.2 29.1 31.0 3.8

RH (%) 2020 59.9 � 13.9 85.0 25.9 49.7 59.1 71.8 22.1

2021 56.1 � 9.5 76.4 39.7 49.8 57.5 62.4 12.6

WS (m s�1) 2020 4 � 1.1 7 2 2.9 3.4 4.1 1.2

2021 4 � 1.0 6 1 3.4 3.7 4.2 0.8

PM2.5 (μg m�3) 2020 37.3 � 13.1 58.8 18.3 24.7 35.1 47.9 23.2

2021 66.4 � 32 143.3 27.8 44.1 60.4 78.1 34

PM10 (μg m�3) 2020 95.8 � 32.7 190.7 51.1 74.4 91.4 109.1 34.7

2021 197.5 � 113.2 337.7 86.7 136.2 193.4 249.4 113.2

NO2 (μg m�3) 2020 16.1 � 6 30.5 6.5 11.5 15.1 21.4 9.9

2021 53 � 17.5 92.1 23.9 39.7 53.4 66.5 26.9

SO2 (μg m�3) 2020 23.6 � 4 36.5 17.3 21.4 23.2 25.6 4.2

2021 24 � 5.8 35.6 14.1 19.7 23.4 27.9 8.2

CO (μg m�3) 2020 0.5 � 0.2 1 0.2 0.3 0.4 0.6 0.3

2021 0.9 � 0.4 1.5 0.3 0.5 0.8 1.2 0.7

O3 (μg m�3) 2020 62 � 9.9 80 39 55.7 61.9 67.4 11.7

2021 48 � 11.2 62 18 39.9 50.2 57.4 17.5

COVID-19 cases/day 2020 113 � 76.8 356 17 59.8 91.5 141.8 82

2021 16230 � 9057.3 28395 2790 7552 18384 24307 16755
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April 2021, and second, COVID-19 prevention measure differences dur-
ing the two successive waves did not significantly alter the pollutant's
concentration in the air.

Violin plots of O3 indicate that the pollutant's median value was
considerably higher during April 2020 than April 2021, with the con-
centration distribution more clustered around the median in comparison.
It is apparent from the violin plots of RH that there was a marginal dif-
ference in the median values of the variables for April 2020 and April
2021. However, a smaller IQR of RH during April 2021 indicates values
that were less spread out from the median than in April 2020. Regarding
temperature, little difference was seen in both the range and dispersion
pattern of 2021 compared with that of 2020. In general, for the April
2021 situation in Delhi, the violins of PM2.5, PM10, NO2, SO2, CO, and O3
had larger IQRs, suggesting that their values were more spread out from
the median than in April 2020.

3.3. Variations in concentrations of criteria air pollutants: first wave vs
second wave

Figure 4a–f show the concentration variations for criteria pollutants
across the two sample periods of April 2020 and April 2021 in Delhi.
Figure 4a indicates that the city's mean, minimum, and maximum PM2.5
concentrations were 37.3, 18.3, and 27.8 μg m�3, respectively during
April 2020. However, the PM2.5 mean, minimum, and maximum con-
centrations changed to 66.4, 58.8, and 142.3 μg m�3, respectively during
April 2021. The sharp reduction in the PM2.5 level during April 2020 was
made possible by the complete lockdown leading to unprecedented re-
ductions in anthropogenic activities in the city from the morning of 23
March 2020 (Dhaka et al., 2020; Mahato et al., 2020). According to
Sharma and Mandal (2017), almost 46% of PM2.5 build-up in Delhi
comes from secondary aerosols and soil dust, and the rest is constituted
by vehicle emissions, fossil fuel burning, biomass burning, and industrial
emissions during normal times. Therefore, during April 2020, when
Delhi had a stringent lockdown with a complete closure of the transport
and industrial sectors, it witnessed the lowest count of particulate matter
in the recent history of air pollution. However, during the second wave
(April 2021), Delhi did not resort to a complete lockdown, and hence the
mean PM2.5 level shot up by more than 78.1% of the first wave (April
2020).
6

Figure 4b indicates that because of the relaxed lockdown associated
with the resumption of construction and industrial production activities
during the second wave, the PM10 concentration increased more than
106.1% from April 2021 to April 2020. Figure 4c indicates that the mean
NO2 concentration increased by 229.4% in April 2021 compared to April
2020. Industrial production and traffic activities continued almost nor-
mally, and a fear of the secondwave of the COVID-19 epidemic was yet to
hit the city. Figure 4d shows that the SO2 mean concentration level was
only by 2% higher in April 2021 than in April 2020 when the city had the
strictest lockdown with the road transport sector almost under a shut-
down status. Apart from natural sources, SO2 can be generated from
burning sulphur-rich fossil fuel in the highly urbanised city environment.
Delhi has thermal power generating stations on its periphery, which act
as a source of SO2 for the city. In addition, biomass burning in the
bordering states historically reinforced the SO2 level in the city along
with some contribution from local industries (Goyal and Sidhartha, 2002;
Datta et al., 2010). Therefore, it is clear that a substantial part of the SO2
build-up must have been from non-local sources travelling from distant
places and stubble burning in the neighbouring states.

Table 2 and Figure 4e indicate the differences in O3 concentration
during April 2021 and April 2020. Delhi usually suffers from a high
ground-level O3 concentration, which is regarded as an important reason
for the rise of respiratory diseases in the city. Figure 4e reveals that the
strict lockdown during April 2020 could not provide relief to the city
dwellers. However, when the lockdown was significantly relaxed in April
2021, the mean ground-level O3 concentration decreased by 29.3% but
still had a strong presence in the ambient air. One of the important
sources of CO in Delhi is the road transport sector and its motor vehicles.
CO is also contributed by other local sources, such as the use of diesel
generators in industries, thermal power plants, and domestic or com-
mercial cooking using coal or petroleum products. The usual high level of
CO concentration in the city atmosphere is also reinforced through crop
burning in neighbouring states (Tyagi et al., 2016). Figure 4f reveals that
the mean CO concentration in Delhi during April 2021 was 77.1% higher
than that in April 2020. The large increase in CO concentration proves
two important points: first, a large portion of CO originates from the
running of motor vehicles; two, the strict lockdown of April 2020 crip-
pled road transport during April 2020 but not in April 2021.



Figure 3. Violin plots of (a) PM2.5 (μg m�3), (b) PM10 (μg m�3), (c) NO2 (μg m�3), (d) SO2 (μg m�3), (e) CO (μg m�3), (f) O3 (μg m�3), (g) Relative humidity (%), (h)
Temperature (ºC).
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3.4. Air quality index (AQI) distribution: first wave vs second wave

We calculated the AQI values of Delhi for April 2021 and April 2020
and plotted them in Figure S1a–b to understand how the AQI values
impacted the city under the two waves of the pandemic outbreak.
Figure S1a shows that the mean AQI value was 93, with a minimum of 51
and a maximum of 160 in April 2020. It can be observed from Figure S1b,
the AQI values increased substantially during April 2021, with a mean of
177, a minimum of 87, and a maximum of 318. Therefore, it is obvious
that different patterns of AQI values resulted as the constituent pollutants
changed quantitatively under the two different regimes of lockdown
measures during April 2020 and April 2021. With the change in AQI
values, the AQI classes that prevailed during April 2020 looked better
and healthy as 53.3% of the time during the month, the class II (satis-
factory) environment prevailed, and the remaining 46.67% of the time, it
was class III (moderate), as shown in Figure S2a. The distribution of AQI
classes in Delhi during April 2021 indicated the worsening air pollution
status of the city. In other words, during April 2021, 26.7% of the time,
Delhi experienced poor and very poor AQI classes. In addition, the
satisfactory class II was reduced to only 6.7% during April 2021, as
7

shown in Figure S2b. Therefore, this implies a marked difference in
Delhi's air quality status during the two waves of the COVID-19 period.

3.5. COVID-19 waves and their association with environmental
parameters

Spearman correlation tests were performed to understand the degree
of association of criteria pollutants and meteorological variables with the
cases of COVID-19 during the two waves of the pandemic in Delhi
(Table 3 and Figure 5a and b). Table 3 shows no association between PM
pollution (PM2.5 and PM10) and COVID-19 in Delhi during either
pandemic wave. As indicated in Figure S3a and b, the mean RH level of
Delhi only varied marginally across the waves; however, the COVID-19
cases per day varied widely. The Spearman correlation coefficients,
shown in Table 3, indicate a significant negative correlation between the
RH (mean¼ 60%) and daily COVID-19 new cases (r¼ �0.578; p< 0.01)
and mortality (r ¼ �0.501; p < 0.05) during the first wave. During the
second wave, when Delhi had RH only marginally lower (RH ¼ 56.1%),
COVID-19 cases showed a negative correlation without reaching a sig-
nificant level. Previous studies supported a low RH, approximately below
50%, to be positively correlated with COVID-19 cases and vice versa



Figure 4. The mean (a) PM2.5 (b) PM10 (c) NO2 (d) SO2 (e) O3 (f) CO concentrations of Delhi during April 2020 and April 2021 of COVID-19 outbreak.
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(Zoran et al., 2020). Therefore, this study outcome strengthens the hy-
pothesis that a RH above 50% has a negative relationship with the spread
of the novel coronavirus disease (Mecenas et al., 2020).

The mean temperature that prevailed during the first wave (28.38 �C)
was marginally lower than that during the second wave of the pandemic.
Table 3, Figure S3c, and d show that the temperature was strongly and
positively correlated with COVID-19 total cases (r ¼ 0.502; p < 0.05)
during the first wave. Previous studies have indicated that low temper-
atures in the range of approximately 2 �C–17 �C facilitated the virus
Table 3. Spearman correlation coefficients: Environmental factors and COVID-19 cas

Variables April 2020 1st wave

Cases per day Cumulative cases D

PM2.5 (μg m�3) �0.005 0.126 0.

PM10 (μg m�3) �0.012 0.261 0.

NO2 (μg m�3) �0.168 0.093 0.

SO2 (μg m�3) �0.267 �0.376* �
CO (μg m�3) �0.378* �0.629** �
O3 (μg m�3) 0.102 0.326 0.

Temperature (�C) �0.043 0.502** 0.

RH (%) �0.291 �0.578* �
Wind speed (ms�1) 0.202 0.182 0.

**, * signifies significance at 5% and 1%.
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spread (Guo et al., 2019; Roy, 2020). The facilitating role of temperature
in higher temperature situations (mean 28–29 �C) found in this study is a
departure from previous findings. We consider the deviation primarily
due to the confounding COVID-19 super-spreading event reported in
Delhi during March–April 2020 (Kumar et al., 2020b).

Table 3 shows that CO and COVID-19 cases had significant negative
correlations during the first wave; for new cases (r ¼ �0.378; p < 0.01),
total cases (r ¼ �0.629; p < 0.05), and deaths (r ¼ �0.679; p < 0.05).
However, for the second wave, only COVID-19 cases per day showed a
es during two waves.

April 2021 2nd wave

eaths Cases per day Cumulative cases Deaths

111 0.152 0.313 0.357

153 �0.052 0.146 0.149

004 �.389* �0.252 �0.187

0.320 �0.340 �0.165 �0.118

0.679** �.448* �0.187 �0.148

458* 0.282 .401* .383*

354 0.148 0.314 0.340

0.501** �0.235 �0.240 �0.168

254 0.223 0.136 0.186



Figure 5. Spearman correlation matrix, (a) April 2020 and (b) April 2021 generated using R program. Colour code, Blue: positive correlations, Red: negative cor-
relations, White: no correlation.
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significant negative correlation (r ¼ �0.448; p < 0.01). Previous litera-
ture supports the positive role of CO in ambient air as the driver of
COVID-19 new cases and deaths (Zhu et al., 2020). However, a recent
study of the COVID-19 spread in London showed that CO was positively
correlated with the number of new infection cases but did not reach the
significance level (Meo et al., 2021). Therefore, more studies are required
to establish the exact role of CO in ambient air in the spread of the novel
coronavirus.

Table 3, Figure S3e, and f indicate that COVID-19 cases per day had a
significant negative correlationwithNO2 only during the secondwave. This
finding is not in agreementwith the resultsof previous studies.Ogen (2020),
in a multicounty study during the onset of the first wave, hypothesised a
positive association between high and persistent NO2 exposure in the city
population and high COVID-19 fatality rates because of the ability of NO2 to
induce additional distress in the human respiratory system.

Table 3 and Figure S3e and f reveal that substantially high O3 con-
centrations in the ambient air during the first wave were positively and
significantly correlated with COVID-19 mortality (r ¼ 0.458; p < 0.05).
During the second wave, when the O3 concentration was 29.34% lower
than during the first wave, O3 still maintained a significantly positive
correlation with COVID-19 cumulative cases (r¼ 0.401; p< 0.05) as well
as mortality (r ¼ 0.383; p < 0.05). This finding is in line with those of
several previous studies. Fattorini and Regoli (2020) found a strong
positive correlation between chronic exposure to ground-level O3 con-
centration and the COVID-19 spread in 71 Italian provinces. Tripepi et al.
9

(2021) found that O3 in ambient air facilitates the spatial spread of the
infection. Lim et al. (2021) also found strong evidence of the influence of
O3 on the spread of COVID-19 in the Republic of Korea.

The negative correlation of NO2 found in this study with the COVID-
19 cases per day during the second pandemic wave indicates an indirect
role of the pollutant in influencing the spread of COVID-19 by influencing
the O3 concentration in the ambient city air. Zoran et al. (2020) found
similar findings in Milan, Italy, during the first wave of the pandemic,
with daily new COVID-19 cases positively correlated with O3 and nega-
tively correlated with NO2 concentrations.

This study found a significant negative correlation (r ¼ �0.376; p <

0.01) between COVID-19 total cases and the concentrations of SO2 in the
ambient air during the first wave (Table 3 and Figure 5a and b). Previous
studies have reported contradictory findings regarding the correlation
between the presence of SO2 in the air and COVID-19 cases. Zhu et al.
(2020), in their study of 120 Chinese cities during the first wave, found a
negative correlation between SO2 and daily COVID-19 confirmed cases.
However, another study of 303 Chinese cities could not establish any
statistically significant correlation between SO2 and COVID-19 daily
cases during the onset of the first wave (Ran et al., 2020). The findings of
this study align with the former, which indicates a possible virucidal role
of SO2 in the spread of COVID-19. However, more research needs to be
done as in this study SO2 did not significantly correlate with the
COVID-19 spread, although it had almost the same concentration during
the second wave.



Table 4. SIR model parameters and R0 values for Delhi: first wave Vs second
wave.

Delhi First wave Second
wave

Period April
2020

April 2021

Cumulative total infected cases under two waves (end of
April)

3515 27047

Maximum cases/per day under two waves (month of April) 356 25615

Contact rate, β 0.53 1.00

Recovery rate, γ 0.47 0.90

Reproductive number, R0 1.13 1.11
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Table 3, Figure S3k, and l indicate no significant association between
wind speed and the spread of COVID-19 during both pandemic waves in
the city. Several past studies have reported a positive association be-
tween wind speed and COVID-19 new cases (Mehmet, 2020; Dbouk and
Drikakis, 2020; Aidoo et al., 2021). Therefore, more studies are required
to establish the relationship between wind speed and COVID-19 spread.

3.6. The SIR model and R0: first wave vs second wave

For both the first wave (April 2020) and the second wave (April
2021), we set up and solved the systems of ordinary differential
Figure 6. Curve fitting under different models for the observed number o
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equations of the SIR model at the city level described in the methodology
section 2.3. The cumulative number of cases for the 30 days of April 2020
and April 2021 was utilised to estimate the transmission rate (β) and
recovery plus removal rate (γ) and then ascertain R0 of the SIR model. To
fit the data in the SIR model and solve three differential equations, we
used the function 'ode' from the 'deSolve' package available in the re-
pository (CRAN) for R packages and then optimised with the 'optim'
function in R. Table 4 shows the SIR model output corresponding to both
COVID-19 waves in Delhi. The R0 value was greater than 1 in both
waves, indicating that the infection rate was greater than the recovery
rate. Therefore, the infection had the potential to spread across the
population.
3.7. Pattern spread of COVID-19: first wave vs second wave

Curve fitting using the time series data of total cumulative confirmed
COVID-19 cases in Delhi for April 2020 and April 2021 sheds light on the
infection spreading trajectory of the successive waves. The curve fitting
regression analyses for 11 different models and their agreements with the
observed curve for total cumulative COVID-19 cases in Delhi for two
periods, April 2020 and April 2021, are shown in Figure 6a and b,
respectively. Table S3 summarises the parameter estimates for each of
the 11 curves for the two different time frames. For April 2020 and April
2021, the cubic model y ¼ b0 þ ðb1xÞ þ ðb2x2Þ þ ðb3x3Þ provides the best
fit with the highest R2 values of 0.992 and 0.998 and the lowest standard
f COVID-19 cumulative cases for (a) April 2020 and (b) April 2021.
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errors of 94.19 and 0.998, respectively. The results suggest that the
growth of COVID-19 cumulative cases did not take the exponential form
in both waves of the COVID-19 pandemic in Delhi. Following the expo-
nential growth model, the virus infection spread would have been larger
and faster than under the cubic growth trajectory indicated in this study.
In an exponential growth situation, the start of infection may be small;
however, it would eventually have overtaken the growth of the cubic
model by doubling with time. The spread of viral infection in real-life
situations tends to follow exponential growth. However, the cubic
growth trajectory indicated here shows the possible effect of the strict
lockdown in the first wave and vaccination plus selective lockdown
combination in the second wave, thus reducing the true virulence of the
COVID-19 pandemic in Delhi.

4. Conclusions

This study concluded that the first wave unfolded in the city with
three successive peaks and valleys, and the tallest peak was the third one,
while the first peak of the second wave was the tallest. The doubling time
for COVID-19 infected cases was shorter for the second wave than for the
first wave.

This study found that the first wave of COVID-19 new cases and deaths
were significantly and negatively correlated with the RH of Delhi. The
ambient temperature of the first wave strongly and positively correlated
with COVID-19 total cases primarily due to the COVID-19 super-spreading
event reported in Delhi during March–April 2020. The study indicated that
ambient PM2.5 and PM10 had no association with COVID-19 morbidity/
mortality during either wave. A significant negative correlation was main-
tained between NO2 and COVID-19 (cases per day) even as the NO2 con-
centration increased during the second wave. During both waves, the
ground-level O3 concentration had a significant positive association with
COVID-19 mortality. These results indicate a possible virucidal role of SO2
during the first wave. The R0 of the two successive COVID-19 waves had
onlymarginal differences,while the spreadofCOVID-19newcases followed
a cubic growth trajectory during both waves.

Despite presenting new insights about the impact of environmental
variables across two successive COVID-19 waves, our study had limita-
tions. First, this study used only limited meteorological variables. Sec-
ond, the study did not consider the effect of confounding factors such as
population density, socioeconomic factors, and virus mutation on SARS-
COV-2 virus transmission. Third, Spearman's correlation coefficients did
not show any causal relationships among the variables, although they
were robust in showing a linear relationship.
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