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Abstract There are various cases of animal movement where behaviour broadly
switches between two modes of operation, corresponding to a long-distance move-
ment state and a resting or local movement state. Here, a mathematical description
of this process is formulated, adapted from Friedrich et al. (Phys Rev E, 74:041103,
2006b). The approach allows the specification any running or waiting time distribution
along with any angular and speed distributions. The resulting system of integro-partial
differential equations is tumultuous, and therefore, it is necessary to both simplify and
derive summary statistics.An expression for themean squared displacement is derived,
which shows good agreement with experimental data from the bacterium Escherichia
coli and the gull Larus fuscus. Finally, a large time diffusive approximation is con-
sidered via a Cattaneo approximation (Hillen in Discrete Continuous Dyn Syst Ser B,
5:299–318, 2003). This leads to the novel result that the effective diffusion constant is
dependent on the mean and variance of the running time distribution but only on the
mean of the waiting time distribution.
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1 Introduction

In nature, organisms whose sizes differ by many orders of magnitude have been
observed to switch between different modes of movement. For instance, the bac-
terium Escherichia coli changes the orientation of one or more of its flagella between
clockwise and anticlockwise to achieve a run-and-tumble-like motion (Berg 1983;
Berg 1990). As a result, during the runs, we see migration-like movement, and during
the tumbles, we see resting or local diffusion behaviour.1 To add to this complexity, it
should be noted that the direction of successive runs is correlated. On a larger scale,
one could consider migratory movements of vertebrates where individuals often travel
large distances intermittent with stop overs to rest or forage. An example, used in this
paper, is the lesser black-backed gull (Larus fuscus). Individuals of this species that
breed in the Netherlands migrate southwards during Autumn. Even though the scales
involved in these two processes differ by many orders of magnitude, one can use a
similar mathematical framework to model the observed motion.

The use of mathematical models to describe the motion of a variety of biological
organisms, including bumblebees (Kareiva and Shigesada 1983), plants (Cain 1990)
and zebra (Brooks and Harris 2008), has been the subject of much research interest
for several decades. Early approaches were predominantly centred on the position
jump model of motion (Brenner et al. 1998; Skellam 1951), where agents undergo
instantaneous changes of position according to a distribution kernel interspersed with
waiting periods of stochastic length. The position jump framework suffers from the
limitation that correlations in the direction of successive runs are difficult to capture;
this directional persistence is present in many types of movement (Marsh and Jones
1988). Furthermore, the diffusive nature of the position jump framework results in
an unbounded distribution of movement speeds between successive steps. A related
framework that is more realistic for modelling the motion of organisms is the velocity
jump (VJ) model (Othmer et al. 1988), in which organisms travel with a randomly
distributed speed and angle for a finite duration before undergoing a stochastic reori-
entation event. The VJ process is also referred to in the literature as a continuous
non-Markovian correlated random walk.

In most formulations of the VJ process, there is an assumption that events occur as
a Poisson process, which is manifested as a constant rate parameter in the resulting
differential equation. In the position jump framework, non-exponentially distributed
wait times and non-Gaussian kernel processes have been formulated, leading to frac-
tional diffusion equations (Klafter 1987; Metzler and Klafter 2000). Recently, it has
become clear how to extend the VJ framework to allow for more general distributions
of interest (Friedrich et al. 2006a, b).

1 The reason for observing diffusive-like behaviour is due to the bacterium’s small size—which is on the
length scale of micrometres.
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In many VJ models, it is assumed that resting states are largely negligible (Erban
and Othmer 2004, 2005); this can be attributed to a focus on organisms with only
momentary resting states, which has the benefit of alleviating some mathematical
complexity whilst not changing the result significantly (Erban and Othmer 2004).
However, in the work by Othmer et al. (1988), Erban and Othmer (2007) and Hillen
(2003), it was shown that resting states can be included and are sometimes required in
order to obtain adequate fits to experimental data (Othmer et al. 1988). Our goal in this
paper is to extend the work by Friedrich et al. (2006b) to incorporate stationary resting
states of finite duration, drawn from an arbitrary probability distribution—which their
model did not allow for—following the formalism of Othmer et al. (1988).

The mathematical complexity of Friedrich’s model is such that finding solutions
analytically or numerically is, in general, impractical. In the original paper, simplifica-
tions were made, which led to a fractional Kramers–Fokker–Planck equation, which
has a known analytic solution (Friedrich et al. 2006b). However, Friedrich’smodel was
postulated to describe non-Gaussian kinetics in a weakly damped system; in contrast,
we are considering a system inwhich biological agents generate their ownmomentum,
which is related to self-propelled particle models (for example, Hagen et al. 2011). In
the absence of such obvious simplifications for our system, we instead exploit meth-
ods to extract summary statistics from the governing equations, which may in turn be
compared with experimental data.

After presenting the model, we derive the mean squared displacement (MSD).
Using high-quality data describing the movement of E. coli and L. fuscus, we show
that theMSDfor themodel and experimental data aligns. Similar comparisons between
Markovian correlated random walks and experimental data can be found here (Bovet
and Benhamou 1988; Casellas et al. 2008; Gautrais et al. 2009). A novel aspect of our
approach is that, provided the behaviour being modelled is well described by the run
and stopmodes ofmotion, the parameters can be extracted on amicroscopic scale prior
to any numerical solution, and then, macroscopic behaviour can be derived without
optimising or trying to fit data a posteriori.

Since the dynamics of the experimental data and those of the generalised VJ model
achieve a close match, we explore numerically tractable simplifications to the equa-
tions. Most notably, we investigate the Cattaneo approximation, following the work
by Hillen (2003, 2004).

Finally, it should be noted that the model presented does not take into account
interactions between biological agents or with the environment. Whilst such effects
are beyond the scope of the current study, it should be possible to extend the theory
to incorporate these phenomena. In particular, the VJ process has roots in kinetic the-
ory, which describes attractive and repulsive forces between atoms; models have been
developed for biological agents to act comparably (Carrillo et al. 2009; Degond et al.
2004; Naldi et al. 2010). Interactions between agents and the surrounding environ-
ment have also been modelled for static environments and for dynamic signalling via
diffusing chemical gradients (Chauviere et al. 2010; Erban and Othmer 2004; Erban
and Othmer 2005).
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2 Two-State Generalised Velocity Jump Process

Consider a biological agent that switches stochastically between running and resting
behaviour. During a running phase, the organism travels with constant velocity; during
a resting phase, it remains stationary. Upon resuming a run following a rest, a new
velocity is selected randomly. This motion is governed by three primary stochastic
effects. We specify these by probability density functions (pdfs), as given below.

1. Waiting time: The time spent during a resting phase, denoted ω, is governed by
the pdf fω(t), where

∫ ∞
0 fω(t)dt = 1.

2. Running time: The time spent during a running phase, denoted τ , is governed by
the pdf fτ (t), where

∫ ∞
0 fτ (t)dt = 1.

3. Reorientation: We allow velocities from one run to another to be correlated
between rests. We denote the velocity during the running phase immediately
before a rest by v′ and the velocity in the post-rest running phase by v, where
v′, v ∈ V , for velocity space V ⊂ Rn in n spatial dimensions. The velocity v is
dependent on v′ and is newly selected upon re-entering a running phase, governed
by the joint pdf T (v, v′). We assume that this reorientation pdf is separable, so
that T (v, v′) = g(θ, θ ′)h(s, s′)/sn−1 where θ is a vector of length (n − 1) con-
taining angles and s = ||v|| is the speed. In two dimensions, the turning kernel
is decomposed as follows:
a. The angle distribution: g(θ, θ ′) requires the normalisation

∫ 2π
0 g(θ, θ ′)dθ =

1.
b. The speed distribution: h(s, s′) requires the normalisation

∫ ∞
0 h(s, s′)ds = 1.

To further reinforce the process we are describing, we give a simple Gillespie
algorithm (Gillespie 1977) for generating a sample path up until time Tend > 0.
It should be noted that the sample path will need to be truncated as the algorithm
generates positions beyond Tend.

Algorithm 1: Algorithm to generate a single generalised VJ sample path.
Data: Initialise time t = 0, starting position at x(t = 0) = x0 and starting

velocity at v(t = 0) = v0.
Choose state of particle, for instance, assume particle has just initiated a running
state.
while t < Tend do

Sample time spent running τ ∼ fτ (t).
Update position: x(t + τ) ← x(t) + τv(t).
Sample time spent waiting ω ∼ fω(t).
Update position: x(t + τ + ω) ← x(t + τ).
Sample new velocity for next running phase: v(t + τ + ω) ∼ T (·, v(t)).
Update time t ← t + τ + ω.

By considering the density of particles in a running state and the density of particles
in a resting state, we can write down coupled differential equations for these states.
The derivation is lengthy and similar in spirit to Friedrich et al. (2006b); hence, we
provide only the main result here; full details are given in Appendix 1. We define
p = p(t, x, v) to be the density of particles at position x ∈ � ⊂ Rn , with velocity
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v ∈ V ⊂ Rn at time t ∈ R+ and r = r(t, x, v), the density of those particles
resting at (t, x) ∈ R+ × �, having just finished a jump of velocity v ∈ V . Note that
this encodes an orientation to the resting state. Our analysis leads to the following
equations

(
∂

∂t
+ v · ∇x

)

p(t, x, v) = −
∫ t

0
�τ (t − s)p(s, x − (t − s)v, v)ds (1)

+
∫ t

0
�ω(t − s)

∫

V
T (v, v′)r(s, x, v′)dv′ds,

and

∂

∂t
r(t, x, v) = −

∫ t

0
�ω(t − s)r(s, x, v)ds +

∫ t

0
�τ (t − s)p(s, x − (t − s)v, v)ds,

(2)
where the delay kernels, �i for i = τ, ω, are defined in Laplace space by

�̄i (λ) = λ f̄i (λ)

1 − f̄i (λ)
for i = τ, ω. (3)

where f̄i is the Laplace transform of the pdf for the running and waiting time, respec-
tively. When the waiting time is chosen as exponential,2 this is consistent with work
by Othmer et al. (1988) and Rosser (2012).

Finding closed forms of �i (t) is non-trivial for most choices of distribution fi (t).
In Appendix 2, we examine the small time behaviour of � and identify the sizes of
potential impulses at t = 0. For the remaining non-singular behaviour, in the cases
where we know the Laplace transform of fi (t), we then have an analytic expression
for �̄(λ), which can be inverted numerically using either a Talbot inversion or an Euler
inversion (Abate 1995; Murli and Rizzardi 1990).

3 Mean Squared Displacement

Equations (1–2) give us a system of delay integro-partial differential equations with
(2n+1) degrees of freedom.With this level of complexity, a full analytic or numerical
solution is impractical without first making simplifications.We therefore consider how
to estimate the second spatial moment, i.e. the MSD (Othmer et al. 1988).

2 This can be seen simply for exponential distribution with mean χ−1,

fi (t)=χi e
−χi t , 	⇒ f̄i (λ)= χi

λ + χi
, 	⇒ �̄i (λ)=χi , 	⇒ �i (t) = χi δ(t), for i = τ, ω,

(4)

where δ is the Dirac delta function.
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For the test function ϕ = ϕ(x, v) and arbitrary density ρ = ρ(t, x, v),

Qρ(ϕ, t) =
∫

V

∫

�

ϕ(x, v)ρ(t, x, v)dxdv. (5)

This gives the expected value of ϕ over the space V ×� at time t, weighted by density
ρ. By using test functions ϕ = 1, ||x||2 , v · x, ||v||2, we associate Nρ(t) = Qρ(1, t)
as the number of particles in state ρ and D2

ρ(t) = Qρ(||x||2 , t), Bρ(t) = Qρ(v · x, t)

and V 2
ρ (t) = Qρ(||v||2 , t) as the mean squared displacement, the mean velocity-

displacement and the mean squared velocity weighted by ρ, respectively. We can then
obtain a closed system of integro-differential equations for these quantities. In order
to make progress, we must first make some assumptions on the turning kernel T. By
considering that the mean post-turn velocity has the same orientation as the previous
velocity, we define the index of persistence ψd via the relation

v̄(v′) =
∫

V
vT (v, v′)dv = ψdv

′. (6)

Informally, this means that turning angles between consecutive velocities have zero
mean. We also require that the average mean squared speed is a constant

S2T (v′) = S2T =
∫

V
||v||2 T (v, v′)dv, (7)

this corresponds to a memoryless turning kernel in speed, i.e. h(s, s′) = h(s). Finally,
for unconstrained motion where � = Rn , we see that delays in space correspond to
inclusion of other moments, that is,

∫

V

∫

�

||x||2 ρ(t, x − cv, v)dxdv =
∫

V

∫

�

||x + cv||2 ρ(t, x, v)dxdv, (8)

=
∫

V

∫

�

(
||x||2 + 2c(v · x)

+ c2 ||v||2
)

ρ(t, x, v)dxdv, (9)

= D2
ρ(t) + 2cBρ(t) + c2V 2

ρ (t), (10)

and similarly

∫

V

∫

�

(v · x)ρ(t, x − cv, v)dxdv =
∫

V

∫

�

(v · x + cv)ρ(t, x, v)dxdv, (11)

= Bρ(t) + cV 2
ρ (t). (12)

For conservation of mass, Np(t) + Nr (t) = N0, we see that

dNp(t)

dt
= −dNr (t)

dt
= −

∫ t

0
�τ (t − s)Np(s)ds+

∫ t

0
�ω(t − s)Nr (s)ds. (13)
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Equally, we obtain a system of equations for the MSD

dD2
p(t)

dt
− 2Bp(t) = −

∫ t

0
�τ (t − s)

[
D2

p(s) + 2(t − s)Bp(s) + (t−s)2V 2
p (s)

]
ds,

+
∫ t

0
�ω(t−s)D2

r (s)ds = −dD2
r (t)

dt
. (14)

For the mean velocity-displacement, we see that

dBp(t)

dt
= V 2

p (t) −
∫ t

0
�τ (t − s)

[
Bp(s) + (t − s)V 2

p (s)
]
ds, (15)

+ψd

∫ t

0
�ω(t − s)Br (s)ds,

and

dBr (t)

dt
= −

∫ t

0
�ω(t−s)Br (s)ds+

∫ t

0
�τ (t−s)

[
Bp(s) + (t − s)V 2

p (s)
]
ds. (16)

Finally, for the second velocity moment:

dV 2
p (t)

dt
= −

∫ t

0
�τ (t − s)V 2

p (s)ds + S2T

∫ t

0
�ω(t − s)Nr (s)ds, (17)

dV 2
r (t)

dt
= −

∫ t

0
�ω(t − s)V 2

r (s)ds +
∫ t

0
�τ (t − s)V 2

p (s)ds. (18)

Equations (13–18) above correspond to a system of 8 equations, or 7 unique equa-
tions once we impose conservation of mass. In the next section, we solve these
equations numerically, the integrals are calculated using the trapezoidal rule and a
Crank–Nicholson scheme is applied for the remaining differential operators. Both of
these methods are second-order accurate.

4 Comparison Between Theory and Experiment

In this study, we consider experimental data relating to the bacterium E. coli and the
lesser black-backed gull L. fuscus. Both of these exhibit somewhat similar behaviour,
however, at scales many orders of magnitude apart.

4.1 E. coli

There is a large collection of work relating to studying the run-and-tumble motion as
exhibited in many flagellated bacteria (Berg and Brown 1972; Frymier et al. 1995;
Rosser et al. 2013; Wu et al. 2006). A case of particular interest to many is E. coli,
perhaps due to the fact that its internal signalling pathways are less complex than those
of other chemotactic bacteria (Porter et al. 2008). Most available literature points to
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1220 J. P. Taylor-King et al.

Fig. 1 Fit between experimentally observed values of angle changes from run-to-run (blue) and the prob-
ability density function for the von Mises distribution (red) (Color figure online)

both the running and resting times being exponentially distributed (Berg 1990). The
rate parameter changes adaptively in response to the surrounding environment, giving
rise to the phenomenon of chemotaxis either towards nutrients or away from toxins
(Erban and Othmer 2004; Erban and Othmer 2005).

In our case, however, we consider E. coli swimming freely in the absence of any
chemical gradient. The data set used here has previously been described in studies
by Rosser et al. (2013, 2014). In brief, the data were obtained by performing video
microscopy on samples of free-swimming E. coli, from which tracks were extracted
using a kernel-based filter (Wood et al. 2012). The tracks were subsequently analysed
using a hidden Markov model (HMM) to infer the state (running or resting) attributed
to the motion between each pair of observations in a track (Rosser et al. 2013). From
the annotated tracks, it is possible to extract the angle changes observed between
running phases and parameters for the exponential running and waiting pdfs along
with speed distributions.

4.1.1 Results

In Fig. 1, we see that from run-to-run, the distribution of angles is well described by
the von Mises distribution (red line), which is a close approximation to the wrapped
normal distribution with a more analytically tractable functional form. The von Mises
pdf is given by

�(θ |μ, κ) = eκ cos(θ−μ)

2π I0(κ)
, for κ > 0, μ ∈ R, (19)

where κ controls the width of the distribution, μ denotes the mean angle and I0(·) is
the modified Bessel function of order zero. By assuming g(θ, θ ′) = �(θ − θ ′), i.e.
symmetry around the previous direction, we can specify μ = 0 and find κ through
maximum likelihood estimation. It has been shown that for a two-dimensional von
Mises distribution (n = 2) the index of persistence is given by ψd = I1(κ)/I0(κ). We
find that ψd = 0.46 for our E. coli data set.
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Fig. 2 Comparison between systemof equations (13–18) andE. coli data. The red dot-dashed line shows the
theoretical value of (D2

p+D2
r )/N0 and the blue solid line indicates the experimentally derived averageMSD

calculated from the bacterium’s initial position. From the data, we determined that τ ∼ Exp(2.30), ω ∼
Exp(11.98). For the system of differential equations, we specify Np(0) = 66, Nr (0) = 1802, ψd = 0.46
and S2T = 9.26 (μm)2/s. The initial state for all other differential equations is set to zero, except for

V 2
p (0) = S2T N2

p(0) (Color figure online)

It should be noted that from the literature, E. coli is thought to have a bi-modal
distribution around the previous direction (Berg and Brown 1972), the validity of this
is hard to confirm as previous datawere hand-annotated, and it is challenging to specify
the state of the bacterium when diffusion effects are also in place. Whilst we had more
data available to us and used automated tracking methods, it could well be that our
method heavily biases walks towards normally distributed reorientation.

Through the HMM analysis technique outlined in Rosser et al. (2013, 2014),
estimates for the exponential parameters were found to be τ ∼ Exp(2.30) and
ω ∼ Exp(11.98). The mean squared speed whilst running was calculated to be
S2T = 9.26 (μm)2/s. In Fig. 2, we plot the MSD over time. Initial conditions
Np(0), Nr (0) were found by counting up the number of E. coli labelled to be in
each state when t = 0. We clearly see that over the average of 1868 paths, we get
a very good match between theory and experiment. We note that the videos were
taken from a fixed position, where bacteria would swim in and out of the shot. By
considering the average speeds of E. coli along with the size of the viewing window,
one can stipulate that by only considering the MSD before 4 s, we can achieve a good
estimate. Note that we lose a small amount of data over time as bacterium swim out
of the observation window, at later times this ruins the validity of the MSD curve.

4.2 Lesser Black-Backed Gull

In this section, we consider Lesser black-backed gulls that breed on Texel (the Nether-
lands). During their non-breeding period (August–April), these birds interchange
between localised movements (or resting) and long-distance movements (migration)

123



1222 J. P. Taylor-King et al.

Fig. 3 Sample path from bird data (Color figure online)

(Bouten et al. 2013; Klaassen et al. 2012). During the resting mode, birds travel up
to 50km but return to a central place every day, whereas during the migration mode
birds do not return to the central place and can travel several hundreds of kilometres
per day. One point of interest is that whilst the resting periods can last months on end,
the migrations may only last for a few days on end. See Fig. 3 for a section of a sample
path centred around London.

4.2.1 Identification of States

The bird tracking data were collected by the UvA-BiTS system (Bouten et al. 2013)
and contain tracks gathered from 10 birds over the months July until January in the
years 2012 and 2013. Approximately every few hours,3 a recording is taken of a global
time stamp along with the bird’s current latitude and longitude coordinates.

To identify the state of a given bird, we create a signal centred around a time point of
interest which we threshold to determine whether the bird is either undergoing local
or migratory behaviour. By considering all GPS coordinates in a 24h window, we
calculate the diameter of the convex hull4 (or diameter of a minimum bounding circle)
of the set by using the Haversine formula.5 This signal is sampled 10 times a day. If
the value of this signal is low, points are clustered together (local resting behaviour);
otherwise, they are spread apart (migratory behaviour). At the cost of including some

3 Although some devices are configured differently to the extent that a recording is taken every 15 min.
4 The maximum distance between any two points in the set.
5 The Haversine formula is an equation for great-circle distances between a pair of points on a sphere. By
considering the radius of the sphere (i.e. the approximate radius of the Earth) and a pair of latitude–longitude
coordinates, one can calculate the distance between them.
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erroneous exceptionally short rests, we can set a low threshold value of 52km; the
presence of short rests is then fixed by discarding any resting phases shorter than
2days. In comparison, the running periods can virtually be of any length as there have
been instances of a bird flying exceptionally long distances over a week.

In Fig. 3, the trajectories plotted appear curved in places,with the apparent curvature
persisting for short distances. The process of sampling from the trajectory ten times per
day removes any such fine-scale effects. In addition to reducing the noise in the data (in
the form of GPS tracking ‘jitter’), the process of downsampling tracksmakes the result
more amenable to modelling with the VJ framework. A caveat of this approach is that
angle changes between trajectory segments will not be measured to a high degree of
accuracy (a discussion of this issue is found in Rosser et al. 2013). Sensitivity analysis,
showing changes to our predicted MSDwith respect to changes in parameters is given
in the supplementary material.

4.2.2 Results

As we only had the data for 10 birds available, we divided their sample paths up
into 28-day intervals after approximating distributions of interest, leading to calcu-
lation of the MSD over 62 sample paths. In contrast to the E. coli data set, we see
that running and waiting times are not exponentially distributed. The distribution
of running and waiting times was approximated by inverse Gaussian distributions
τ ∼ IG(1.26, 1.22) and ω ∼ IG(10.79, 7.42); these distributions are highly flexi-
ble and are a convenient choice numerically as they have an exact analytic Laplace
transform. The speed distribution gave an estimate for the mean squared running
speed as S2T = 1.03 × 105 (km)2/day and, again using a von Mises angular dis-
tribution, we find ψd = 0.42. As before, initial conditions Np(0), Nr (0) were
found by counting up the number of L. fuscus labelled to be in each state when
t = 0.

In Fig. 4, we plot the MSD in kilometres squared against time in days. As there
were fewer sample paths available, the empirical MSD curve is not very smooth, and
as a result, the agreement with the theoretical curve is less good than in the bacterial
case. However as the majority of the gulls were in a resting state to begin with, we
do capture the initial delay before a linear growth stage. As the gulls are frequently
resting as opposed to migrating, we see the data for the gulls (in blue) undergoing
a style of step function where a small number of gulls undergoing fast movement
quickly changes the MSD for the whole population. As the number of sample paths
increases, this effect will smooth out.

4.3 Finishing Remarks

At time t = 0, we need to give the numbers of particles in the running and resting
phases, respectively. Tofind these initial conditions fromexperimental data, our sample
paths had their state assigned to them (running or resting) for all times t over which
the sample path was valid. We then looked at the beginning of each sample path and

123



1224 J. P. Taylor-King et al.

Fig. 4 Comparison between system of Eqs. (13–18) and Larus fuscus data. The red dot-dashed line shows
the theoretical value of (D2

p + D2
r )/N0 and the blue solid line indicates the experimentally derived average

MSDcalculated from the bird’s initial position. From the data, it was extracted that τ ∼ IG(1.26, 1.22), ω ∼
IG(10.79, 7.42). For the system of differential equations, we specify Np(0) = 6, Nr (0) = 56, ψd = 0.42
and S2T = 1.03 × 105 (km)2/day. The initial state for all other differential equations is set to zero, except

for V 2
p (0) = S2T N2

p(0) (Color figure online)

chose the initial state to be the state at t = 0 regardless of whether the particle had
just started a run or rest, or was midway through one.

We note that the assumption that particles have just started a run or rest at t = 0
introduces errors in the estimation of fτ (t) and fω(t), since the duration of the first
phase is systematically underestimated with this approach. However, the errors are
expected to be small as relatively few erroneous data are introduced by this means. A
quantification of the error could be carried out systematically with a simulation study,
but this is beyond the scope of this paper. If tracks of a longer duration are available,
one may instead truncate the beginning of each track up to the beginning of the first
running/resting phase.

Finally, we note that, when dealing with integro-differential equations in time, it is
maybe natural to specify an initial history function, rather than an initial condition. In
our case, this would correspond to the number of particles having just started a run or
a rest for all times t < 0; numerically, this is impractical.

With both examples, as time passes, we see that D2
p(t)+ D2

r (t) ∼ t for large t . It is
well known that linearMSD corresponds to the solution of the diffusion equation, or at
least diffusive-like behaviour. This motivates us to seek a diffusion approximation for
large time in Sect. 5. Othmer demonstrated that, for exponentially distributed running
and waiting times, the small time behaviour of theMSD is quadratic before relaxing to
linear behaviour (Othmer et al. 1988). This is indeed the behaviour observed in Fig. 2
for E. coli. However, the small time behaviour is not yet known for general waiting
kernels. Whilst this is beyond the scope of the present work, we note from Fig. 4 that
the behaviour is more complex in the case of L. fuscus.
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For position jump processes with repositioning/waiting kernels with infinite higher-
order moments (i.e. Lévy flights), fractional diffusion equations are required to model
the behaviour of sample paths (Metzler and Klafter 2000). In the case where running
and waiting distributions do not have finite moments, we expect there to be a large
time asymptotic regime where our VJ equations can be approximated via a fractional
diffusion equation.

5 Large Time Diffusion Approximation

We now construct a large time effective diffusion equation. By first considering
Eqs. (1–2), we transform into Laplace space, where large values of t correspond
to small values of the Laplace variable λ. We then carry out a Taylor expansion of the
delay kernels to remove the convolutions in time (see Eqs. 54–55 in Appendix 1 for
details).

Converting back to the time domain, one obtains

(1 + �̄′
τ (0))

(
∂

∂t
+ v · ∇x

)

p = −�̄τ (0)p +
∫

V
T (v, v′)

(

�̄ω(0)r(t, x, v′)

+ �̄′
ω(0)

∂

∂t
r(t, x, v′)

)

dv′, (20)

and
(1 + �̄′

ω(0))
∂

∂t
r = −�̄ω(0)r + �̄τ (0)p + �̄′

τ (0)

(
∂

∂t
+ v · ∇x

)

p (21)

There are now two further steps to obtain an effective diffusion equation. First,
by considering successively greater monomial moments in the velocity space, one
obtains a system of k-equations where the equation for the time evolution of moment
k corresponds to the flux of moment k + 1. It therefore becomes necessary to ‘close’
the system of equations to create something mathematically tractable. We use the
Cattaneo approximation for this purpose (Hillen 2003, 2004). Once a closed system
of equations has been found, we then carry out an asymptotic expansion where we
investigate the parabolic regime to obtain a single equation for the evolution of the
density of particles at large time.

Note that it would be possible to carry out a similar process for smaller time behav-
iour by Taylor expanding the spatial delays in the convolution integrals. Asymptotic
analysis would then have to be carried out to simplify the remaining convolution.

5.1 Moment Equations

We can multiply Eqs. (20–21) by monomials in v and integrate over the velocity space
to obtain equations for the velocity moments

m0
ρ =

∫

V
ρ(t, x, v)dv, m1

ρ =
∫

V
vρ(t, x, v)dv, M2

ρ =
∫

V
vvT ρ(t, x, v)dv.

(22)
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The equations relating the terms m0
p,m

0
r ,m

1
p,m

1
r , M

2
p are given below. For initial

integration over the velocity space, we see

(1 + �̄′
τ (0))

(
∂m0

p

∂t
+ ∇x · m1

p

)

= −�̄τ (0)m
0
p + �̄ω(0)m0

r + �̄′
ω(0)

∂m0
r

∂t
, (23)

and

(1 + �̄′
ω(0))

∂m0
r

∂t
= −�̄ω(0)m0

r + �̄τ (0)m
0
p + �̄′

τ (0)

(
∂m0

p

∂t
+ ∇x · m1

p

)

, (24)

When summing Eqs. (23) and (24), we see that mass flux is caused by the movement
of particles in the running state only, i.e.

∂

∂t

(
m0

p + m0
r

)
+ ∇x · m1

p = 0.

For multiplication by v and integrating, we obtain equations

(1 + �̄′
τ (0))

(
∂m1

p

∂t
+ ∇x · M2

p

)

= −�̄τ (0)m1
p + ψd�̄ω(0)m1

r + ψd�̄
′
ω(0)

∂m1
r

∂t
,

(25)

and

(1 + �̄′
ω(0))

∂m1
r

∂t
= −�̄ω(0)m1

r + �̄τ (0)m1
p + �̄′

τ (0)

(
∂m1

p

∂t
+ ∇x · M2

p

)

. (26)

We would now like to approximate the M2
p term to close the system.

5.2 Cattaneo Approximation Step

We make use of the Cattaneo approximation to the VJ equation as studied by Hillen
(2003, 2004). For the case where the speed distribution is independent of the previous
running step, i.e. h(s, s′) = h(s), we approximate M2

p by the second moment of
some function umin = umin(t, x, v), such that umin has the same first two moments
as p = p(t, x, v) and is minimised in the L2(V ) norm weighted by h(s)/sn−1.
This is essentially minimising oscillations in the velocity space whilst simultaneously
weighting down speeds which would be unlikely to occur (Hillen 2003).

We introduce Lagrangian multipliers �0 = �0(t, x) and �1 = �1(t, x) and then
define

H(u) := 1

2

∫

V

u2

h(s)/sn−1 dv−�0
(∫

V
udv−m0

p

)

−�1 ·
(∫

V
vudv − m1

p

)

. (27)
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By the Euler–Lagrange equation (Gregory 2006), we can minimise H(u) to find that

u(t, x, v) = �0(t, x)h(s)

sn−1 + (�1(t, x) · v)h(s)

sn−1 . (28)

We now use the constraints to find �0 and �1. For m0
p, we have

m0
p =

∫

V
udv = �0

∫

V
h(s)/sn−1dv = �0Area(Sn−1), (29)

where Sn = {x ∈ Rn+1 : ||x|| = 1} is the n-sphere centred at the origin. Notice also
that the

∫
V vh(s)/sn−1dv = 0 by symmetry. For the first moment, we calculate

m1
p =

∫

V
vudv = �1 ·

∫

V
vvT h(s)/sn−1dv = S2TVol(V

n)�1, (30)

where Vn is the closure of Sn−1, i.e. the ball around the origin. Therefore, we can
stipulate the form for umin as

umin(t, x, v) = m0
p(t, x)h(s)

sn−1Area(Sn−1)
+ (m1

p(t, x) · v)h(s)

S2T s
n−1Vol(Vn)

. (31)

We now approximate the second moment of p by the second moment of umin.

M2(umin) =
∫

V
vvT umin(t, x, v)dv = S2T

Vol(Vn)

Area(Sn−1)
Inm

0
p(t, x) = S2T

n
Inm

0
p(t, x).

(32)

So in the above equations, we simply approximate ∇x · M2
p ≈ S2T

n ∇xm0
p.

5.3 Effective Diffusion Constant

Finally, we rescale our equations using the parabolic regime (Erban and Othmer 2004)

t = t̂/ε2, x = x̂/ε, (33)

for arbitrary small parameter ε > 0. By putting our variables into vectors u =
(m0

p,m
0
r )

T and v = (m1
p,m

1
r )

T , we drop the hats over the rescaled variables and
rewrite our equations as

ε2
∂

∂t
Au + εF∇x · v = Cu, ε2

∂

∂t
Bv + ε

S2T
n

F∇xu = Dv, (34)
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where∇xu = [∇xm0
p,∇xm0

p]T and∇x ·v = [∇x ·m1
p,∇x ·m1

p]T . Our time derivative
matrices are given by

A =
[
1 + �̄′

τ (0) −�̄′
ω(0)

−�̄′
τ (0) 1 + �̄′

ω(0)

]

, B =
[
1 + �̄′

τ (0) −ψd�̄
′
ω(0)

−�̄′
τ (0) 1 + �̄′

ω(0)

]

, (35)

our flux matrix is given as

F =
[
1 + �̄′

τ (0) 0
−�̄′

τ (0) 0

]

. (36)

Finally, our source terms are

C =
[−�̄τ (0) �̄ω(0)

�̄τ (0) −�̄ω(0)

]

, D =
[−�̄τ (0) ψd�̄ω(0)

�̄τ (0) −�̄ω(0)

]

. (37)

By using the regular asymptotic expansion

u = u0 + εu1 + ε2u2 + · · · , v = v0 + εv1 + ε2v2 + · · · (38)

for u j = (m0
p( j),m

0
r( j))

T and v j = (m1
p( j),m

1
r( j))

T , we obtain the set of equations

ε0 : Cu0 = 0, Dv0 = 0,
ε1 : F∇x · v0 = Cu1, F∇xu0 = Dv1,

ε2 : ∂
∂t Au

0 + F∇x · v1 = Cu2,
∂
∂t Bv0 + S2T

n F∇xu1 = Dv2.

(39)

Providing ψd �= 1, solving these in order gives rise to the differential equation for
total density m0 = m0

p(0) + m0
r(0)

∂

∂t
m0 = Deff∇2

xm
0, (40)

for

Deff = S2T
n

1

�̄τ (0)

�̄ω(0)

�̄ω(0) + �̄τ (0)

1 + �̄′
τ (0)(1 − ψd)

1 − ψd
. (41)

We now wish to find the values of �̄τ (0), �̄ω(0) and �̄′
τ (0). For probability distri-

butions defined over the positive numbers with pdf f (t), we see that the Laplace
transform can be Taylor expanded as

f̄ (λ) = 1 − 〈t〉λ + 1

2
〈t2〉λ2 − · · · (42)
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for small λ. Therefore, by putting these terms into the expression �̄(λ) given by
equation (3), provided that the first two moments are finite, we see that

�̄i (0) = lim
λ→0

�̄i (λ) = 1

μi
, �̄′

i (0) = lim
λ→0

�̄′
i (λ) = 1

2

(
σ 2
i

μ2
i

− 1

)

, for i = τ, ω,

(43)
for mean μi and variance σ 2

i of distribution i = τ, ω, therefore

Deff = S2T
n

μ2
τ

μτ + μω

[
1

1 − ψd
+ 1

2

(
σ 2

τ

μ2
τ

− 1

)]

. (44)

It is noteworthy that the variance of the running time distribution contributes to the
diffusion constant, whilst it is independent of the variance of the waiting time dis-
tribution. Therefore, up to a first-order approximation, the diffusion constant is only
dependent on the mean of the waiting time distribution. Furthermore, when the run-
ning time distribution is exponentially distributed, the correction �̄′

τ (0) is identically
zero. So we can view our diffusion constant as the contribution from the exponential
component of the running time distribution, plus an additional (non-Markovian) term
for non-exponential running times.

When referring back to the experimental data, it can be seen that by the end of
the 4 s, the E. coli has entered into the diffusive regime with D ≈ 12.5 (μm)2/s. The
L. fuscus, however, is yet to reach this state; we can predict that when it does, the
corresponding value of the diffusion constant will be D ≈ 4.7 × 104 (km)2/day, the
solution of the MSD equations for greater time periods suggests that this is true.

5.4 Numerical Example

We now carry out a comparison between the underlying differential equation and
Gillespie simulation. In Fig. 5, we see a comparison between slices of the solution to
the diffusion equation on the R2 plane (n = 2) for a delta function initial condition6

compared with data simulated using the algorithm given in Sect. 2.
For the Gillespie simulations, all sample paths are initialised at the origin with fixed

speed equal to unity and uniformly random orientation. Therefore, all plots will have
the parameters S2T = 1, ψd = 0, and we specify μτ = μω = 1. Plots are shown at
t = 100.

The solid black line shows the solution to the diffusion equation for Deff = 1/4
along the line y = 0. In red asterisks (∗), we see the mean over 3 × 105 Gillespie
simulations of the VJ process where both the running and waiting times are sampled
from an exponential distribution, with the means of these distributions as stated. This
process then has an effective diffusion constant of Deff = 1/4. Using a dashed black
line, we plot the solution to the diffusion equation for Deff = 1. In green crosses
(×), a VJ process where the running time is τ ∼ Gamma(1/7, 7) distributed, giving
μτ = 1 and σ 2

τ = 7, the diffusion constant is therefore Deff = 1. The waiting time

6 This takes the form of a bivariate Gaussian.
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Fig. 5 Cross-sectional comparisons along the line y = 0 between the diffusion equation and Gillespie
simulations of the VJ process. In the (solid) black line, we see the Gaussian solution to the heat equation
with diffusion constant Deff = 1/4, in the (dashed) black line, we see the same solution but for diffusion
constant Deff = 1. For the Deff = 1/4 Gillespie simulations, red asterisks (∗) denote the case where
τ ∼ Exp(1) and ω ∼ Exp(1), and blue plusses (+) show the case τ ∼ Gamma(1/5, 5/2) and ω ∼ Exp(1).
Green crosses (×) show the Gillespie simulation for τ ∼ Gamma(1/7, 7) and ω ∼ Gamma(1/14, 14)
which corresponds to Deff = 1 (Color figure online)

is ω ∼ Gamma(1/14, 14) distributed; the high variance of the waiting time is chosen
such that the simulation relaxes towards the diffusion approximation quickly. For the
above simulations, half the sample paths are initialised in a run and half are initialised in
a rest. The gamma and exponential distributions are chosen to illustrate the importance
of the non-Markovian term. This is indicated in Fig. 5 by the difference between the
two simulations mentioned, which differ only in this correction term.

Another point of interest is that one can model distributions other than expo-
nential with different means and still achieve the same effective diffusion constant
through careful selection of variance. An example is shown in Fig. 5 where the dif-
fusion constant Deff = 1/4 is recovered by changing the running distribution to
τ ∼ Gamma(1/5, 5/2) (blue plusses). This then gives a mean run time of μτ = 1/2
and variance σ 2

τ = 5/4 and compares well to the result for exponentially distributed
τ (red asterisks). For this simulation, 2/3 of the sample paths were initialised in a
run and the remainder in a resting state so that the system was again encouraged
to relax quickly. Viewing these cross sections, one should notice that the fit for the
Deff = 1/4 case is clearly much better than the fit for Deff = 1. Considering equation
(44), we suspect that these differences are due to the fact that the running distribu-
tion τ ∼ Gamma(1/5, 5/2) is closer to an exponential distribution, with a smaller
non-Markovian contribution to the diffusion constant than the running distribution
τ ∼ Gamma(1/7, 7).

Full heat map figures of the results are given in the supplementary material.

123



From Birds to Bacteria: Generalised Velocity Jump Processes... 1231

6 Discussion and Conclusion

In this study, we have used a single modelling framework to describe two highly
distinct biological movement processes, occurring in bacteria and birds. In spite of
the significant mechanistic differences between the two species, their phenomeno-
logical similarities nonetheless persist over length scales of 10 orders of magnitude.
We recover the correct behaviour including the non-local delay effects due to non-
exponential waiting times. This formulation could be considered a particularly
phenomenological approach as it outlines a way for observables to directly parame-
terisemovement equations. This is counter to some previous literaturewhere quantities
such as diffusion constants were left to the reader to identify (McKenzie et al. 2009).

A notable advantage of the modelling framework proposed here is the straight-
forward interpretation of the distributions and parameters involved, all of which have
naturally intuitivemeanings. There is, to our knowledge, no unified approach to extract
such quantities of interest from biological movement data. This was demonstrated in
Sect. 4, in which different approaches were taken to obtain the required parameters.
Nonetheless, such methods are the focus of much current research effort (Gautestad
et al. 2013; Patterson et al. 2008), and we therefore believe that approaches such as
ours will become increasingly relevant in the future.

Furthermore, since we carry out a priori estimation of the model parameters by
independent analysis, no optimisation routines are required, which avoids introducing
concerns about parameter identifiability and overfitting. The very good agreement
between theory and experiment demonstrated in Figs. 2 and 4 therefore provides
compelling evidence for the applicability of the model developed in this study. A
full sensitivity analysis of the model parameters is beyond the scope of this article;
however, we demonstrate the effect of independently varying the individual parameters
in the supplementary material.

Finally, we demonstrated the novel result that for the underlying stochastic process
of interest, the variance of the running time contributes to the large time diffusion
constant. This raises the key question: When does the parabolic regime emerge? Our
results also act as a warning against using the exponentially distributed running times
as an approximation for other distributions, as whilst their mean values may align, the
underlying dynamics can change drastically as shown in Fig. 5.

Regarding the accuracy of this generalised VJ framework, it should be realised that
the underlyingmodels for the examples given could be improved bymaking the model
more specific to the agent of interest. Below we discuss some possible alterations to
the model, which might contribute to greater model realism, albeit whilst incurring a
loss of generality.

6.1 Extensions to Model

For E. coli, the bacterium is always subject to diffusion; in theory, this should add
to its MSD whilst resting and may also affect running phases via rotational diffusion
(Rosser et al. 2014). If one wanted to incorporate a small fix to the resting state, it
would be simple to add a diffusion term in space to Eq. (2). However, for a more
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comprehensive solution to the problem, to retain the correlation effects with turning
kernel T, the Eq. (1) would have a rotational diffusion term added, which is achieved
via a Laplacian in the velocity space (Chandrasekhar 1943). Furthermore, equation
(2) would have to have to retain its defunct velocity field for orientation in addition to
another velocity variable to allow for movement due to diffusion.

For the L. fuscus, there are many physical and ecological phenomena, which could
to be built into the model; these range from the day–night cycles, in which the bird is
reluctant to fly long distances through the night, to geographical effects, where the bird
may follow the coastline for navigation. One could also consider environment factors,
such as wind influence and availability of food resources. In the work by Chauviere
et al. (2010), the authors consider the migration of cells along an extra-cellular matrix.
Using a similar formulation to ours, but only considering exponentially distributed
waiting times, cells are modelled to preferentially guide themselves along these extra-
cellular fibres. A related process is apparent in homing pigeons, which navigate using
visible geographical boundaries (Mann et al. 2014). In a similar spirit, the model
presented here could be modified so that gulls preferentially align their trajectory with
geographical markers.
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Appendix 1: Derivation of Two-State Generalised Velocity Jump Process

We can motivate the set of Eqs. (1–2) by considering the temporary variables:

η = η(t, x, v) := The density of particles at position x dx, with velocity v dv at
time t dt , having just started a jump.

ν = ν(t, x, v) := The density of particles at position x dx, having just finished a
jump of velocity v dv at time t dt and just started a rest.

This leads to densities:

p = p(t, x, v) := The density of particles at position x dx, with velocity v dv at
time t dt , being in a running state. We should note that we can relate p to η via the
equation

p(t, x, v) =
∫ t

0
Fτ (t − s)η(s, x − (t − s)v, v)ds

=
∫ t

0
Fτ (t − s)e−(t−s)v·∇xη(s, x, v)ds, (45)
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for Fτ (t) = ∫ ∞
t fτ (s)ds being the probability that a jump lasts longer than t ,

clearly Fτ (0) = 1.
r = r(t, x, v) := The density of particles at position x dx, having just finishing a
jump of velocity v dv at time t dt in a resting state. Equally, there is the relation
between r and ν, this is

r(t, x, v) =
∫ t

0
Fω(t − s)ν(s, x, v)ds, (46)

for Fω(t) = ∫ ∞
t fω(s)ds being the probability that a rest lasts longer than t , again

Fω(0) = 1.

By assuming that at time t = 0, all particles are initiated into the beginning of a run
with distribution p0(x, v), we can relate η to previous times by the relationship

η(t, x, v) − p0(x, v)δ(t) =
∫

V

∫ t

0
T (v, v′) fω(t − s)ν(s, x, v′)dsdv′. (47)

Again by assuming that particles initiated into the beginning of a rest with distribution
r0(x, v), there is the recursive relation for ν

ν(t, x, v) − r0(x, v)δ(t) =
∫ t

0
fτ (t − s)η(s, x − (t − s)v, v)ds

=
∫ t

0
fτ (t − s)e−(t−s)v·∇xη(s, x, v)ds. (48)

Taking the Laplace transform in time of Eqs. (45) and (46), we find

p̄(λ, x, v) = F̄τ (λ + v · ∇x)η̄(λ, x, v), (49)

r̄(λ, x, v) = F̄ω(λ)ν̄(λ, x, v). (50)

Equally, taking the Laplace transform of (47) and (48), we see

η̄(λ, x, v) − p0(x, v) =
∫

V
T (v, v′) f̄ω(λ)ν̄(λ, x, v′)dv′, (51)

ν̄(λ, x, v) − r0(x, v) = f̄τ (λ + v · ∇x)η̄(λ, x, v). (52)

Noting that in Laplace space

F̄i (λ) = 1 − f̄i (λ)/λ, for i = τ, ω, (53)

by eliminating η and ν, we derive paired differential equations in Laplace space

(λ + v · ∇x) p̄(λ, x, v) − p0(x, v) = −�̄τ (λ + v · ∇x) p̄(λ, x, v) (54)

+�̄ω(λ)

∫

V
T (v, v′)r̄(λ, x, v′)dv′,
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and

λr̄(λ, x, v) − r0(x, v) = −�̄ω(λ)r̄(λ, x, v) + �̄τ (λ + v · ∇x) p̄(λ, x, v),

(55)

where, as stated previously7

�̄i (λ) = λ f̄i (λ)

1 − f̄i (λ)
= 1 − λF̄i (λ)

F̄i (λ)
, for i = τ, ω. (56)

Reverting back to the temporal variable t, we obtain Eqs. (1–2).

Appendix 2: Properties of Delay Kernel �

The integro-differential equations for mean squared displacement, or indeed any other
differential equation above, can now be easily solved by a variety of methods for
numerical integration. However, in the case where one of the waiting times is expo-
nentially distributed, � has been shown to become a multiple of the delta function at
the origin. It can be seen that many other distributions also have a numerical impulse at
the origin, numerically integrating over an impulse is often difficult if not impossible
so we carry out asymptotic analysis to evaluate the magnitude of said impulse.

To investigate the small time behaviour of �(t), we shall consider the small time
behaviour of f (t) and then transform to Laplace space to consider large λ behaviour
and subsequently switch back.

By assuming the expansion of f (t) to be of the form

f (t) ∼ f0 + f1t
α + . . . as t → 0. (57)

then subsequently in Laplace space

f̄ (λ) ∼ f0
λ

+ f1�(α + 1)

λα+1 + . . . for α > −1, as λ → ∞. (58)

Using the relation (3) and considering the minimal contribution of the denominator,
we find

�̄(λ) ∼ f0 + f1�(α + 1)

λα
+ . . . for α > −1, as λ → ∞. (59)

In the case where α > 0, we can subsequently invert to find

�(t) ∼ f0δ(t) + f1αt
α−1 + . . . for α > 0, as t → 0. (60)

7 We should be able to see the differential equation

dF

dt
= −

∫ t

0
�(s)F(t − s)ds,

must be satisfied by �—whether this is useful or not is another question!
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From the above analysis, it should be clear we can expect an impulse at the origin for
the case when f0 = f (0) �= 0 or f1 �= 0 with α ∈ (0, 1). By integrating between 0
and ε, we see that

∫ ε

0
�(t)dt ∼

∫ ε

0

[
f0δ(t) + f1αt

α−1 + . . .
]
dt ∼ f0 + f1ε

α for α > 0, as ε → 0.

(61)
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