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A B S T R A C T   

Automatic classification of cough data can play a vital role in early detection of Covid-19. Lots of Covid-19 
symptoms are somehow related to the human respiratory system, which affect sound production organs. As a 
result, anomalies in cough sound is expected to be discovered in Covid-19 patients as a sign of infection. This 
drives the research towards detection of potential Covid-19 cases with inspecting cough sound. While there are 
several well-performing deep networks, which are capable of classifying sound with a high accuracy, they are not 
suitable for using in early detection of Covid-19 as they are huge and power/memory hungry. Actually, cough 
recognition algorithms need to be implemented in hand-held or wearable devices in order to generate early 
Covid-19 warning without the need to refer individuals to health centers. Therefore, accurate and at the same 
time lightweight classifiers are needed, in practice. So, there is a need to either compress the complicated models 
or design light-weight models from the beginning which are suitable for implementation on embedded devices. 
In this paper, we follow the second approach. We investigate a new lightweight deep learning model to 
distinguish Covid and Non-Covid cough data. This model not only achieves the state of the art on the well-known 
and publicly available Virufy dataset, but also is shown to be a good candidate for implementation in low-power 
devices suitable for hand-held applications.   

1. Introduction 

[1] Millions of Covid-19 cases caused by the corona virus have been 
confirmed since beginning of this pandemic. Infected people are iden-
tified in more than 200 countries around the world, at the time of 
writing this article. The Covid-19 epidemic has a wide range of effects on 
the population, from asymptomatic disease to sever life-threatening 
medical conditions. 

According to the World Health Organization (WHO), dry cough, 
feeling of pressure at chest, fever, fatigue, confusion, loss of appetite, 
and breath shortness are the main symptoms of Covid-19. Heavy drop-
lets that contain Covid-19 virus are spread in the environment, when an 
infected person sneezes or coughs. Even breathing and talking to 
someone close to an corona-positive person, can cause infection. 

Having an easy-to-use tool for accurate and fast screening and 
detecting the virus and making early warnings is critical to slow down 
the epidemic spread. An automated approach to detecting and moni-
toring the presence of Covid-19 or its symptoms can be developed using 
deep learning models. 

Deep learning models have shown significant success in different 
recognition tasks, especially in image and speech processing domains. 
Moreover, they have been recently successfully in use in different 
medical applications. For example, deep learning methods have been 
successfully utilized for post-stroke pneumonia prediction [2]. Deep 
CNNs have also been used for segmentation and classification of mam-
mograms [3] and measurement of blood pressure [4]. 

Thus there is a great potential for using deep models in cough 
recognition for Covid-19 detection. Authors in [5] were among the first 
ones to leverage learning methods in Covid-19 related applications. CNN 
based analysis of X-ray or CT images of lungs for have been the main 
deep learning tool for prediction of Covid-19 [6–9]. Also, it is shown in 
[10] that learning approaches based on speech and other audio mo-
dalities have many possible applications in medical applications. 

Sound has been in use as a health indicator for many years. Physi-
cians have used stethoscopes to detect and recognize abnormalities in 
body by listening to sounds from different parts of an individual, such as 
heart or lung. Deep learning, has also achieved notable success in 
automatic audio recognition and interpretation with application to 
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various diseases such as asthma [11], and wheezing [12] levering sound 
data wearable devices or smart phones. There are many open source 
datasets like AudioSet [13] and Freesound [14] which have been gath-
ered to speed up research in this domain. 

Cough sound is amongst the most important health related sounds 
and can be used as an indicator of many respiratory diseases. Triaging 
patients based on their cough sounds can be interesting for hospitals and 
health-care systems as it is pretty simple and significantly reduces 
burden on the health centers. 

Disease detection based on analyzing cough sounds has been in use 
for several years. For example, authors in [15,16] detected tuberculosis 
(TB) from cough sounds, accurately, and Larson et al. [17] could track 
the recovery process of TB patients solely using cough detection. Similar 
efforts but for detection of Covid-19 have recently attracted a significant 
attention which are reviewed in Section 2. 

The first step before cough classification is cough detection, in which 
cough sound is distinguished from other audio signals like breathing or 
speech. Although cough detection is not the subject of this work, we 
review some important cough detection algorithms. In [18], Mel Fre-
quency Cepstral Coefficients (MFCCs) are used as features to detect 
coughs. Non-negative Matrix Factorization (NMF) is used by the authors 
of [19] for cough detection, to improve the results obtained with MFCC. 
Short Time Fourier Transform (STFT) and MFCC are used in [20] as the 
input features to convolutional Neural Networks (CNNs), and Long- 
Short Term Memory (LSTM) networks to further improve cough detec-
tion performance. As a similar effort, spectrogram feature and CNN ar-
chitecture are combined to detect cough by the authors of [21]. Cough 
detection using MFCC features and random forest classifier is also 
explored in [22]. 

Covid-19 alters the cough sound in a unique way, which resembles 
the application of cough sound recognition in Covid-19 detection. The 
work by He et al. confirms that Covid-19 makes an undeniable effect on 
the respiratory system [23,24]. Actually, the respiratory system is the 
main organ to produce cough sounds, as the air flows from lungs to the 
mouth and nasal cavities to make cough sounds. As a result, respiratory 
diseases will affect the cough sound. As a familiar example, The reader 
may have observed the of flu on changing the sound of coughing. 
Following this intuition, the primary focus of this paper is on Covid-19 
classification based on cough sounds. 

Cough recognition from cough sounds is not as straightforward as it 
seems. Unfortunately, a lot of bacterial or viral respiratory infections or 
even some non-respiratory illnesses may result in coughs and it is hard to 
distinguish Covid-19 solely from cough [25–27]. 

Actually, an untrained human may not distinguish coughs caused by 
COVID-19 from coughs caused by other diseases. However, an experi-
enced physician can discriminate these two types of cough. This is 
possible because the nature and location of infection caused by Covid-19 
and the way Covid-19 affects the respiratory system are different from 
other diseases, leading to completely distinct cough sounds [24]. Actu-
ally, CT scan images show that Covid-19 infection in lungs has a higher 
amount of peripheral distribution, ground-glass opacity, and vascular 
thickening [28]. 

Imran et al. [24] perform an initial study on Covid-19 recognition 
based on cough data. They train a combination of deep and shallow 
models on the cough data under examination. Authors of [29] investi-
gate the same problem, where a binary prediction model is trained on 
unconstrained worldwide coughs and breathing sounds. 

In [30] speech recordings from Covid-19 patients are processed to 
automatically categorize the patients. Another dataset comprised of 
breath sound, cough sound, and voice has been released to integrate 
voice into recognition of Covid-19 [31]. 

ResNet-18 [32] pre-trained on ImageNet is used as the backbone 
network for Covid-19 recognition, in [33], The authors also add two 
fully connected layers to perform transfer learning and use the network 
for cough recognition. 

The main contribution of this paper is employing a unique 

combination of quadratic kernels with the idea of separable kernels in 
deep neural networks to simultaneously boost the recognition accuracy 
and keep the computational costs at a low level. We construct a new 
convolution layer with this idea a use it in a lightweight structure to 
reveal its efficiency. 

The rest of the paper is organized in the following way. Cough fea-
tures, quadratic-form kernels, and kernel separation are described in 
Section 2. The proposed work is discussed in Section 3 and experimental 
results are presented in Section 4. The paper is concluded with Section 5. 

2. Materials and methods 

2.1. Cough Features 

Although the raw cough sound could be fed to a deep neural network 
to be classified, as being either Covid or Non-Covid, employing hand- 
designed feature extraction may help the overall recognition rate. 
There are different types of information which could be extracted from 
raw cough sounds. 

In the literature, the features of log energy, zero-crossing rate, kur-
tosis, spectral centroid and spectral roll-off are frequently extracted from 
cough sounds. The advantage of using these features is to extract 
meaningful information from complicated cough sound which usually 
results in a better classification of them. 

Moreover, using features like these instead of raw cough signals 
enables the designers to achieve reasonable recognition results with 
relatively simpler ML models. Especially, in case of CNNs first few layers 
automatically and implicitly extract low level features. So, sophisticated 
hand-crafted features can eliminate the need to these layers (low level 
feature extractors), hence reducing the total number of layers. Although, 
using the above features might not be well compatible with the spirit of 
deep learning (end-to-end classification), they are widely used for the 
above mentioned advantages. 

However, in this study only MFCCs were preferred. As MFCCs are 
comprehensive features converting 1D cough signal into 2D temporal- 
frequency signal and have shown a great success in audio and speech 
processing tasks, we choose them as the input features to our lightweight 
deep model. Naturally, combination of several of these features as early 
fusion could improve the recognition results in expense of more 
computational burden. As we aim to use the recognition model on 
embedded hand-held devices, and want to explore the potential of 
quadratic kernels in cough detection as a proof of concept, we only use 
MFCC. 

2.2. Quadratic-form kernels 

The core idea behind the network layer based on the quadratic form 
expansion [34] is that it generalizes the linear convolution by taking into 
account the cross correlation between the input elements within the 
receptive field of the layer kernel. In other words, in addition to ordinary 
convolution between the input and the weight, a second-order convo-
lution between the input and an expanded weight tensor is computed 
which improves the final performance in terms of classification accu-
racy. The layer based on quadratic form expansion is therefore expressed 
as: 

YQ = XH⊛WQ2 ⊛X+X⊛WQ1 + bQ (1)  

in which X ∈ RH×W×C is the input to the layer, WQ1 ∈ RN×d×d×C and 
WQ2 ∈ RN×d2×d2×C are the ordinary and quadratic weight tensors, in 
which N is the number of filters in the convolutional layer, d is the filter 
height (width), C is the input depth, and H and W are the height and 
width of the input to the layer, respectively. bQ ∈ RN is the bias vector, 
and ()H is the Hermitian operator. 

Eq. (1) is the same as regular convolution, except for the added 
quadratic term XH⊛WQ2 ⊛X. This quadratic term improves the 
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recognition accuracy, as will be shown in the Section 4, mainly due to 
modeling second-order dependencies of the input features. 

For the regular part of the convolution, i. e, the linear convolution 
part in Eq. (1), we compute several products like {xij ∗ wQ1 ij ,∀i,j ∈ 1,2,… 
,d}. In other words, we only compute the first order products, in regular 
convolution. This is while in quadratic kernel convolution part in Eq. 
(1), we also compute terms like {xij ∗ wQ2 ij ∗ wQ2km ∗ xkl,∀i,j,k,l ∈ 1,2,
…,d2}, i. e. quadratic terms. This increases the computational cost from 
proportional to d2 to something proportional to d4. 

As it will be shown in the next part, applying kernel separation on 
quadratic kernel reduces its computational complexity from O(d4) to 
O(d2). This is because kernel separation can reduce the time complexity 
of a convolution with power 1/2 in terms of kernel size. 

2.3. Kernel separation 

Employing quadratic kernels to add more nonlinearity to the CNN 
and account for cross correlation between different input pixels at 
different network layers comes with more computational cost. As stated 
in previous part, the computational cost of convolutional layers with 
quadratic kernel would be proportional to d4, where d is the height 
(width) of convolution kernel. This is while in regular convolution, the 
computational cost is proportional to d2. To mitigate this shortcoming, 
we use kernel separation to reduce computational cost and make it 
proportional to d2. 

The complexity of convolving a 3D input volume with size H × W ×

C (where C is the depth of the volume) with N 3D filters of size d × d × C 
is O(CNd2HW) [35]. Approximation of such convolution filters with 
separable filters is proposed in [36]. We can think of a 4D convolutional 
filter Ω ∈ RN×d×d×C for a convolutional layer as a combination of N 3D 
filters as {Ωn,n = 1,2,…N} which can be decomposed as: 

Ω̂
c
n =

∑K

k=1
Hk

n(V
c
k)

T (2)  

where K controls the rank of horizontal filter H ∈ RN×1×d×K and vertical 
filter V ∈ RK×d×1×C and ()T denotes transposition. 

The computational gain for this approximation is that overall 
complexity of a convolutional layer decreases from those mentioned 
earlier for regular convolution, i. e. from O(CNd2HW), to 
O(dK(N+C)HW) [35]. This makes the time complexity proportional to 
d rather than d2. A direct result is that if the original complexity was 
O(d4) (as the case for the quadratic convolution), the complexity after 
kernel separation would be O(d2). More exactly, if the original 
complexity was O(CNd4HW), the complexity after kernel separation 
would be O(d2K(N + C)HW), which is obtained by replacing d with d2 in 
the above mentioned terms for computational complexity. 

3. Proposed lightweight model for cough recognition 

3.1. Proposed separable quadratic layer 

The concept of quadratic convolution has not yet been applied to 
cough detection or recognition problem. We are the first who use the 
method in computationally constraint environments in order to boost 
the recognition accuracy of cough recognition. Considering cross cor-
relation between pixels of each 2D feature map input to the convolu-
tional layer, we account for covariance of the input map values to boost 
the recognition performance. Additionally, we use kernel separation to 
reduce computational costs, making the cough recognition system 
suitable for embedded applications. 

The flow diagram of the proposed layer is shown in Fig. 1. The 3D 
data volume as the input to each network layer is fed to both regular and 
quadratic-form convolution. Regular max pooling with 2 × 2 filters and 

stride = 2, and ReLU activation are then applied to the output. Note that 
the placement of pooling and activation are changed in the proposed 
pipeline to further reduce computations. Actually, it is evident that the 
result of first applying max pooling with 2 × 2 filters and stride = 2 and 
then applying ReLU is equivalent to first applying ReLU and then 
applying the aforementioned max pooling. However, the former needs 
less computational resources, as we need 75 percent less element-wise 
ReLU computations compared to the latter case. 

3.2. Network structure 

Since this research aims at developing a lightweight model for cough 
recognition, we use a simple deep structure like to LeNet-1 [37]. Indeed, 
more complex models dominate the employed model in terms of final 
classification performance. However, this is quite enough for a proof of 
concept, and the proposed layer could be promptly used in more com-
plex networks with no headache. The network has two convolutional 
layers followed by a single fully connected layer, with each convolu-
tional layers being a combination of regular and quadratic convolution 
filters and the quadratic convolution being implemented as separable 
kernels. 

For the CNN model, we used a simple structure for cough recognition 
from the beginning. The choice of this structure instead of a more 
complex one not only makes the design proper for computationally 
constrained applications, but also lowers the chance of overfitting. To 
battle overfitting in the training loop, we used dropout with 50% rate to 
make the network more robust to overfitting the training data. More-
over, we used ℓ1 regularization in loss function with penalty parameter 
λ=0.02 to avoid the weights memorize the noise in training cough 
samples. Dropout rate, regularization penalty value, and other hyper- 
parameters are all selected by 5-fold cross validation. 

Additionally, early stopping was employed to monitor the classifi-
cation error on validation set and stop training when the error does not 
decrease over validation set for five consecutive epochs. 

Also, to deal with such a small-sized dataset we employed data 
augmentation on training set. To this end, we used audiomentations Py-
thon library available on Github1. Original cough sounds were 
augmented with adding Gaussian noise with two different signal to noise 
ratio (SNR) values, shifting the waveforms temporally to the left and to 
the right by at most 0.5 s, and changing the pitch randomly by at most 
20% of the maximum frequency of the raw cough signal. We also added 
an augmentation in frequency-temporal domain by adding time and 
frequency masks to the spectrogram, i. e., zeroing out a small vertical 
and a small horizontal bar of the spectrogram with random position. 

The proposed layer and the resulting network are implemented in 
PyTorch v1.4.0. The code for this paper will also be made freely avail-
able, upon publication of the paper. Dropout is also used to prevent over- 
fitting. As mentioned earlier, max-pooling is placed before applying 
activation function to reduce computations. 

Fig. 2 shows the resulting feature maps in different network layers. 
The network is comprised of two proposed separable quadratic con-
volutional layers, and a fully-connected layer with two neurons. The 
height and width of activations after the pooling operation in each 
proposed layer is halved. The dimensions of different activations are 
mentioned shown beside the corresponding dimensions. 

4. Experiments 

4.1. Dataset 

The proposed model is evaluated on Virufy dataset [38]. Virufy is a 
small-sized dataset and is among the benchmarks for Covid-19 cough 
detection and recognition. 

1 https://github.com/iver56/audiomentations 
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There are 121 single cough sounds in Virufy, 73 of which have a 
negative PCR test and 48 are reported to have positive PCR test result. 
Each sample is approximately 1 s long. 70%, 15%, and 15% split for 
training, validation, and test sets, respectively, corresponds to 51,11,11, 
negative cough samples and 34, 7, 7, positive cough samples for 
training, validation, and test sets, respectively. 

Since the dataset is small, a single test set may cause a huge bias in 
performance prediction of the proposed model. Actually the small 
randomly selected test set may contain very hard or very easy cough 
samples (a hard sample means a sample which is very hard to classify 
because it is not very similar to other samples of the same class. 

Similarly, an easy sample means a sample which is very easy to 
classify because it is very similar to other samples of the same class). So, 
to obtain a fair assessment of the proposed method, we use the method 
of repeated random split and randomly split the whole dataset 4 times. 
Each time we did a standard 5-fold cross validation and tuned the hyper- 
parameters and computed true positive, true negative, false positive and 
false negative over the test set. Averaging the above values for 4 rounds 
gave us the mean true positive, mean true negative, mean false positive, 
and mean false negative. 

Then we constructed the confusion matrix by these mean values and 
normalized them column-wise to show the normalized confusion matrix. 

To ensure the balance between Covid and Non-Covid cough samples 

in training, test and validation sets, we used stratified sampling by 
employing StratifiedShuffleSplit function from Python sklearn library. 

For our evaluations, the accuracy of the proposed method against the 
baseline algorithms is evaluated based on five popular metrics: accu-
racy, recall, precision, specificity, and F1-score. 

4.2. Data pre-processing 

The 1D input cough samples are converted to a 2D MFCCs before 
being fed to the lightweight network. Each input cough waveform is 
segmented into 30 ms windows which have an overlap of 10 ms. 

The selected values for window width and window overlap are 
widely used in the literature for cough, sound, and speech recognition 
applications. The choice is mainly based on the work of Paliwal et al. 
[39], who showed that a window size of 15–35 ms is optimum in speech 
recognition tasks. The overlap is usually taken something between 30% 
to 60% of the window size. The same parameters are also used in cough 
sound recognition applications, like in [40], in breath and snore sound 
recognition like in [41], and sound source separation like in [42]. 

However, to better assess the effect of window size we added four 
pairs of [window size, window overlap] = [[20,6], [25,8,30,10,35,12]] 
milliseconds to the cross-validation loop for selection of best hyper- 
parameters based on validation accuracy. The accuracy of using pairs 

Fig. 1. Flow diagram of the proposed cough detection quadratic layer: MFCCs are fed as the input to the first layer of this kind. The approximate separate kernels are 
applied to the input, and the resulting feature maps are concatenated. Afterwards, linear and quadratic convolutions are summed together. Max pooling is used before 
and activation function to further reduce computations. 

Fig. 2. Feature maps of the full network comprised of two separable quadratic layers. MFCCs are fed as the input to the first layer and the classification results appear 
at the feature map of the fully-connected layer. 
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[30,10] was the same as that of [35,12] but was about 2.5% and 4.5% 
better than the pairs [25,8,20,6], respectively. 

Then, Mel-frequency cepstral coefficients (MFCCs) are extracted 
from samples of each window. Since the configuration is aimed to be 
used in computationally constrained environments, only 20 cepstral 
coefficients are kept at each window. This is while more audio pro-
cessing methods leveraging MFCC use 40 or even more coefficients to 
boost the performance, e. g., [43,44]. However, it is believed that 15 
cepstral coefficients is enough for preserving the essential information in 
the raw waveform and increasing the number beyond this will improve 
the performance marginally. This is also confirmed in our experiments. 

The resulting single channel 2D MFCC ∈ RNMFCC×Nwindows is finally 
normalized using Z-score, where NMFCC is the number of MFCC co-
efficients and Nwindows is the number of hamming windows over the raw 
cough waveform. 

4.3. Hyper-parameters 

We use 100 epochs in our simulations, and employ early-stopping on 
validation data to avoid over-fitting. The mini-batch size is set to 10, and 
the kernel size for the ordinary convolution is set to 3× 3. This implies a 
9 × 9 kernel for the quadratic convolution, before applying idea of 
separable kernels. 

Padding size, stride, and dilation are equal to unity. The number of 
filters in convolutional layers are 20, and the fully connected layers has 
only 2 neurons corresponding to the number of classes. Drop-out with 
50% rate is also used to further prevent over-fitting. Adam optimizer 
with learning rate equal to 0.01 is used for network training. 

The hyper-parameters of the network are chosen from a dictionary of 
possible values by means of 5-fold cross validation. For each hyper- 
parameter we take some potential values. Then, we split the training 
set randomly into 5 subsets, and take one as validation and the others as 
the new training set. We train models with those potential hyper- 
parameters over the new training set and compute the accuracy over 
the validation set. 

Each combination of hyper-parameters (each model) results in a 
validation accuracy. Then we select another fold as validation and the 
other folds as the new training set and repeat the above procedure to 
compute validation accuracy for each combination of hyper-parameters. 

After 5 times, each fold has been used as the validation set once. 
Assuming N possible combinations of model hyper-parameters, we reach 
to 5 × N accuracy values. Taking the average of the values over folds we 
reach to N mean accuracy values. We select the combinations of hyper- 
parameters which result in the highest mean accuracy. 

Actually, an exhaustive grid search selects the best hyper-parameters 
and at the same time the performance of the model on unseen samples is 
predicted. 

A nested cross validation has been also used for accuracy prediction. 
Nested cross validation has the added benefit of reducing the bias in 
prediction of performance, since it uses separate validation set (valida-
tion set which is not used in the inner standard cross validation) for 
computing accuracy. However, as the results were not different with 
those of the standard cross validation, it was not used in our 
experiments. 

The resulting hyper-parameters of the above mentioned procedure 
for the proposed and compared conventional classifiers are given in 
Sections 3.2 and 4.5.3, respectively. 

4.4. Evaluation metrics 

In this section, the evaluation metrics which are used to quantify the 
efficiency of the proposed approach are introduced. Confusion matrix as 
well as accuracy, precision (class-wise and macro average), recall, 
specification, and F1-Score are employed. The four last metrics are 
computed class-wise using macro averaging. 

In the following true positive (TP) refers to samples for which both 

actual label and model prediction are positive (Covid-19 case). True 
negative (TN) refers to samples for which both actual label and model 
prediction are negative (Non-Covid-19 case). False positive (FP) out-
comes are those which are erroneously predicted by the model to be 
positive (the actual label is negative). Finally, False negative (FN) out-
comes are those that are erroneously predicted by the model to be 
negative (the actual label is positive).  

• Confusion matrix: It represents all TP, TN, FP, and FN values as a 
single 2 × 2 matrix. To be more illustrative, it can show the 
normalized values of TP, TN, FP, and FN.  

• Accuracy: It is the ratio of correct predictions to the total number of 
predictions 

Accuracy =
TP + TN

TP + TN + FP + FN
(3)    

• Recall (Sensitivity): It is the fraction of Covid-19 samples which are 
successfully retrieved by the model 

Recall =
TP

TP + FN
(4)    

• Specificity: It is the fraction of Non-Covid-19 samples which are 
successfully retrieved by the model 

Specificity =
TN

TN + FP
(5)    

• Precision: It is the fraction of correctly predicted Covid-19 samples 
to the total number of samples which are predicted as being Covid-19 
by the model 

Precision =
TP

TP + FP
(6)    

• F1-Score: It shows the harmonic mean of precision and recall values 

F1 − Score = 2 ×
Recall × Precision
Recall + Precision

(7)   

4.5. Experimental results 

4.5.1. Covid/non-covid classification 
Fig. 3 shows the accuracy versus training epochs on training and 

validation sets for the network composed of the proposed separable 
quadratic convolutional layers. As could be inferred from Fig. 3 the 
proposed method convergence to a high accuracy on both training and 
validation subsets. 

Fig. 3. Accuracy curves on training and validation sets, over Virufy dataset.  
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Figs. 4 and 5 show the confusion matrices for the regular model 
(having regular convolutional layers) and the proposed model over the 
test set, respectively. As shown, the values of the diagonal elements in 
the confusion matrix for the proposed method are higher and the off- 
diagonal entries are less. This roughly implies the superiority of the 
proposed method. 

Since the dataset is small, we used repeated train/test split to achieve 
the fairest assessment of the current work and comparison to results of 
the state-of-the-art. This repeated splitting is common in applications 
with few data samples. 

Actually, we repeated train/test four times and averaged over the TP, 
TN, FP, and FN results. There are 11 Non-Covid and 7 Covid (totally 18) 
test samples. However after this repeated splitting four times, we actu-
ally have 11× 4 = 44 Non-Covid and 7× 4 = 28 Covid (totally 72) test 
samples. The obtained numbers for TP, TN, FP, and FN are given in 
confusion matrices 4 and 5 (the normalized values are given inside 
parenthesis). 

Table 1 shows the precision, recall, and F-score of the proposed 
model on Virufy dataset for both regular and quadratic separable 
convolution. As depicted, the network comprised of the proposed layer 
outperforms the network with regular convolutions in terms of all shown 
evaluation metrics. 

4.5.2. Subject dependency of the model 
Generally, K-fold cross validation could be employed to assess the 

robustness of a ML algorithm. 5-fold cross validation is used through the 
whole experiments to determine model hyper-parameters, and accord-
ing to our experiments, the variance between accuracy values obtained 
from different folds was relatively low. 

The special case of K-fold cross validation for which the number of 
folds is equal to the number of training samples (Leave-one out cross 
validation) or LOOCV also gives an illustration of model robustness. 
Generally LOOCV is the most computation intensive type of cross vali-
dation, but in the case of a small dataset, like that in our application, the 
computational burden of LOOCV is not annoying. 

Each fold in LOOCV corresponds to a subject, hence showing subject 
dependency of the model. After performing LOOCV on Virufy dataset, 
mean and standard deviation of accuracy over single samples of vali-
dation set are 95.5% and 0.2%, respectively. So, according to the ex-
periments of LOOCV the variance of the proposed method is relatively 
low, suggesting a good robustness to different subjects. 

Additionally, to overcome the bias in prediction of performance of 
the model on test set a nested cross validation could be employed in 
which firstly the training set is divided into training and validation sets, 
and cross validation is applied on the new training set only and validated 
on validation set. So, there is a nested loop in which the outer loop di-
vides the training set into a smaller training set and a validation set, in 
each iteration, and the inner loop does a normal cross validation on the 
smaller training set (which is again divided into new training and 

validation sets). As the results of the nested cross validation and the 
normal cross validation were not different, we used standard cross 
validation in decision for early stopping of the training. 

4.5.3. Comparison with conventional classifiers 
To compare the performance of the proposed approach with those of 

conventional classifiers, the MFCC features are vectorized and fed to 
SVM (with linear and RBF kernel), random forest, kNN, MLP, and lo-
gistic regression classifiers and the results are given in Table 2. 

As Table 2 shows the conventional classifiers show different levels of 
performance. Although SVM with RBF kernel has the best accuracy 
among the compared conventional classifiers, it does not outperform the 
proposed separable quadratic network. The hyper-parameters of these 
classifiers are also determined with 5-fold cross validation. A dictionary 
of hyper-parameters for these classifiers are used and 5-fold cross vali-
dation is used to select the ones with the best resulting average accuracy 
over validation set on different folds. 

For kNN the values of k = 1, k = 3, k = 5, and k = 7 were used as 
possible number of neighbors. After cross validation k = 3 resulted in 
best accuracy. 

For linear kernel SVM, the possible values of penalty (C) are 
considered to be 0.01, 0.1, 1, 10, and 100, for which C = 10 resulted in 
the best accuracy. 

For SVM with RBF kernel, the possible values of penalty (C) are 
selected from of C = 0.01, 0.1, 1, 10, 100 and the parameter of the 
exponential kernel (γ) is set to its default value in Python sklearn library, 
which is γ = 1

numberoffeatures×var where the numberoffeatures is equivalent to 

Fig. 4. Confusion matrix for the LeNet-1 with regular convolutional layers, 
over test set of Virufy dataset. 

Fig. 5. Confusion matrix for the LeNet-1 with proposed separable quadratic 
convolutional layers, over test set of Virufy dataset. 

Table 1 
Performance comparison of the proposed with ordinary convolutional layer over 
test set of Virufy dataset.  

Method Accuracy Recall 
(Sensitivity) 

Specificity Precision F1- 
score 

Ordinary 95.0 90.0 100.0 100.0 94.7 
Separable 
quadratic 

97.5 95.2 100.0 100.0 97.6  

Table 2 
Performance comparison of the proposed with conven-
tional classifiers with MFCC features, over Virufy dataset.  

Classifier Accuracy 

KNN 78.4 
Linear SVM 89.8 
RBF SVM 93.2 

Random Forest 76.1 
MLP 84.1 

Logistic Regression 80.7 
Separable quadratic 97.5  
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the product of NMFCC by Nwindows and var denotes the variance of the 
training samples. Again, C = 10 resulted in the best accuracy for RBF 
kernel SVM. 

For random forest, the number of trees in the forest is selected from 
the set 10, 50, 100, 200, and 100 resulted in the best accuracy. 

For ANN, we applied a two layer MLP to the dataset with Nwindows ×

NMFCC input layer and a hidden layer of the same size with tangent hy-
perbolic activation along with an output softmax layer. The regulari-
zation parameter (α) was selected from the set 0.001,0.01,0.1,1 for 
which 0.01 performed the best. 

Finally, for the logistic regression the penalty parameter for the 
default ℓ2 norm regularization is chosen from the values 0.01, 0.1, 1, 10, 
for which 0.1 performed the best. 

These conventional classifiers with tuned hyper-parameters are then 
trained over the whole training set and tested over the test set with 
repeated splitting. 

The reason why a CNN is used for classification, even the dataset is 
small, is that the input features to the network are in the form of images 
(spectrograms). So, an ANN would need to extremely higher number of 
parameters than a CNN which uses weight sharing. For example at the 
input layer it needs Nwindows × NMFCC. This also holds for other conven-
tional classifiers. Conversion of spectrograms to 1D vectors suitable to be 
fed to SVM or other conventional classifiers will result in some sort of 
curse of dimensionality (i. e. few number of training samples with huge 
number of features), which degrades the generalization capability of the 
classifier. 

Moreover, highly non-linear behavior of Covid/Non-Covid classifi-
cation problem could be better dealt with the nonlinear quadratic kernel 
and the non-linear ReLU activation. We think this is also the reason why 
SVM with RBF kernel outperforms other conventional classifiers in this 
application. 

4.5.4. Computational complexity 
As discussed in Section 2, the computational complexity for regular 

convolution is O(CNd2HW), while that is O(d2K(N+C)HW) for 
quadratic convolution combined with kernel separation. For our ex-
periments d = 3, N = 20, and C is either 1 or 20 (the depth of input 
MFCC is 1, while the depth of input to the second convolutional layer is 
20). H and W are 20 and 10, respectively. K is the number of separable 
kernels. Substituting the values in the above mentioned complexity 
equation, the complexity of the regular convolution would be O(1 ×

20 × 33 × 20 × 10) or O(36, 000) for the first convolutional layer and 
O(20 × 20 × 33 × 20 × 10) or O(720,000) for the second convolutional 
layer. The numbers for the separable quadratic kernel in first and second 
convolutional layers would be O(32 × K × (20+1) × 20 × 10) or O(37,
800× K), and O(32 × K × (20+20) × 20 × 10) or O(72,000× K). This 
shows that for deeper layers (layers except the first one), choosing the 
number of separable kernels to be below 10 not only improves the 
recognition results, but also adds an additional computational cost 
which is less than the original cost. The preceding statement is evident 
by comparing O(720,000) for the regular convolution cost with O(72,
000 × K) for separable quadratic term. 

The above complexity terms show both time and space complexity 
(power/memory consumption). To better illustrate the complexity of 
the proposed approach, we show the complexity in terms of deployment 
time of a test sample for the employed CNN with conventional and 
proposed layers on a server with Nvidia GeForce GTX 1080 graphics 
card. 

Fig. 6 illustrates the complexity of the proposed network based on 
the deployment time. So, the deployment time for a single cough sample 
is computed by averaging the deployment time over the whole test set 
versus the number of separable kernels (K). 

As can be seen, the deployment times of the proposed model lower 
than that of an ordinary convolutional network for K<8. This is while we 
took K = 5 in our experiments, since increasing K beyond 5 didn’t 

improve the overall accuracy of the model. This also shows proficiency 
of the proposed layer which not only improves the accuracy but also 
reduces the computations. 

4.5.5. Comparison to the state-of-the-art 
Since the research in field of Covid-19 detection by cough sound 

recognition has just recently been launched actively, the related datasets 
are pretty new. 

Table 3 shows the comparison of the proposed work with those of the 
state of the art. The first three compared methods have used Virufy as 
one of the datasets in their experiments. Since these methods have not 
used only Virufy for reporting the results, we re-implemented their 
pipeline to compute the accuracy over the Virufy and achieve a fair 
comparison to our work. 

The authors of [24] use a combination of MFCC features with a CNN 
with four convolutional and two fully connected layers. In [29] a com-
bination of VGGish features and MFCC is fed to a logistic regression (LR) 
classifier to distinguish Covid/Non-Covid samples. In [31] MFCCs, 
spectral roll-off, spectral centroid, mean square energy,and some other 
simple features are concatenated to represent each 500 ms of cough 
signals resulting in a 28-D feature vector. A random forest (RF) classifier 
with 30 trees then was trained on the training set. 

Also, since there are not too many published results on Virufy 
dataset, we implemented two more state-of-the-art approaches on 
Covid-19 cough recognition and applied them on Virufy, by ourselves. 
These last two methods in Table 3 were not tested on Virufy dataset in 
the original work. 

These last two methods are based on applying a CNN pre-trained on 
Audioset [13] called VGGish [45], which is available on GitHub2. It 
takes spectrogram as the input and acts as a feature extractor providing a 
128D vector at the output of last fully connected layer. It is far more 
complicated than that of our proposed network having more 

Fig. 6. Comparison of the convolutional, and proposed networks in terms of 
deployment time over Virufy dataset. 

Table 3 
Performance comparison of the proposed method with those of the state-of-the- 
art, in terms of accuracy, over test set of Virufy dataset.  

Method Accuracy    

MFCC  + RF [31] 76.1    
VGGsih/MFCC  + LR [29] 81.8    

MFCC  + CNN [24] 94.3    
VGGish  + SVM [29] 90.9    
VGGish  + GRU [46] 89.8    
Ordinary Convolution 95.0    

Separable quadratic Convolution 97.5     

2 https://github.com/tensorflow/models/tree/master/research/audioset/ 
vggish 
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convolutional and fully connected layers, but is widely used in audio 
recognition applications. The output 128D vector of VGGish is then fed 
to SVM with RBF kernel as described in [29]. The output 128D vector 
was also fed to a gated recurrent unit (GRU) as described in [46], fol-
lowed by a softmax layer. For both methods cross validation for hyper- 
parameter tuning was applied. The results of these two last methods are 
shown at the last two rows of Table 3. 

As inferred from Table 3, the proposed method is quite competitive 
with the state of the art ones. This is worth mentioning that the proposed 
method uses a very lightweight network (a structure similar to basic 
LeNet-1), while compared methods uses much more complex networks 
for cough classification, e. g. the cough recognition network in [24] is 
comprised of four convolutional and two fully connected layers. 

The main reason why the proposed method outperforms the state-of- 
the-art ones is the presence of quadratic kernel which takes into account 
the cross correlation of the spectrogram. The separability helps to reduce 
the computational costs. Also, the fine tuning of hyper-parameters using 
cross validation and preparations to avoid overfitting are other factors 
for better behavior of the proposed method. 

5. Conclusion 

Employing a quadratic extension of the ordinary convolutional layer 
combined with the idea of kernel separation led to an efficient and ac-
curate layer which is highly attractive for computationally constrained 
environments, where the resource limitations will not allow to use 
complex highly deep networks. High recall, precision, and F-score, along 
with pretty low order of computational complexity reveals that the 
proposed method could be promising for implementation in hand-held 
devices like cell-phones to recognize cough sounds and generate early 
Covid-19 warnings. Future work will involve using the proposed layer 
jointly with network compression techniques, and also employing it in 
few shot learning cough recognition problems, where training cough 
sound examples are scarce. 
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