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Group A Streptococcus is a globally significant human pathogen. The extensive variability
of the GAS genome, virulence phenotypes and clinical outcomes, render it an excellent
candidate for the application of genotype-phenotype association studies in the era of
whole-genome sequencing. We have catalogued the distribution and diversity of the
transcription regulators of GAS, and employed phylogenetics, concordance metrics and
machine learning (ML) to test for associations. In this review, we communicate the lessons
learnt in the context of the recent bacteria genotype-phenotype association studies of
others that have utilised both genome-wide association studies (GWAS) and ML. We
envisage a promising future for the application GWAS in bacteria genotype-phenotype
association studies and foresee the increasing use of ML. However, progress in this field is
hindered by several outstanding bottlenecks. These include the shortcomings that are
observed when GWAS techniques that have been fine-tuned on human genomes, are
applied to bacterial genomes. Furthermore, there is a deficit of easy-to-use end-to-end
workflows, and a lag in the collection of detailed phenotype and clinical genomic
metadata. We propose a novel quality control protocol for the collection of high-quality
GAS virulence phenotype coupled to clinical outcome data. Finally, we incorporate this
protocol into a workflow for testing genotype-phenotype associations using ML and
‘linked’ patient-microbe genome sets that better represent the infection event.

Keywords: Streptococcus pyogenes, machine learning, random forest, virulence, phenotype metadata
INTRODUCTION

Streptococcus pyogenes (group A Streptococcus: GAS) is a globally important, strictly human bacterial
pathogen. Diseases caused by GAS are diverse in both severity and clinical outcome, and GAS
infection impacts a range of tissues (Walker et al., 2014). The GAS genome comprises an arsenal of
virulence factors, among the most preeminent of which is emm, which encodes the surface-exposed
M protein (Walker et al., 2014). The nucleotide sequence of emm is the basis of the emm pattern
genotyping system, and the strain-defining emm genotype (Bessen et al., 2018). The GAS genome is
susceptible to recombination of endogenous and exogenous DNA (Feil et al., 2001). Collectively, this
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is important, because GAS kills over half a million people each
year (Hand et al., 2020). Moreover, therapeutic options are a
priority because no vaccine for GAS has been licenced (Vekemans
et al., 2019), and hitherto GAS has shown exquisite susceptibility
to penicillin, but recently several strains have shown resistance
(Musser et al., 2020).

Comparative genomics, in the form of genome-wide
association studies (GWAS) and machine learning (ML), has
recently been successfully applied to large GAS genome datasets.
Kachroo et al. have reported on a study of a population of the
invasive emm28 GAS strain, which is over-represented in
puerperal sepsis disease (Kachroo et al., 2019). The integrated
design of this work encompassed genome, transcriptome, and
virulence association testing using both ML and GWAS of 2101
genomes. The key finding of this study was that a single
nucleotide deletion in the intergenic region (IGR) upstream of
R28 was observed to significantly alter the global transcription
profile and consequently the virulence of a subpopulation of
isolates. In another study, Davies et al. used GWAS of 2083 GAS
genomes in the successful assessment of vaccine candidate
coverage encompassing 28 antigens (Davies et al., 2019).

Lees et al. conducted a GWAS of 5892 genomes of
Streptococcus pneumoniae, a human pathogen capable of
causing life-threatening invasive diseases (Lees et al., 2019).
Importantly the genomes of the microbe and the patient
human were simultaneously sampled and sequenced,
constituting a set of genomes that is ‘linked’ and better
represents the infection event. The proportional contribution
of variation in the host and pathogen genomes to the infectious
manifestation was attributed. This analysis demonstrated that
the human genome accounted for about 50% of the susceptibility
to meningitis, but only about 30% of the severity. By contrast, the
bacterial genome explained 70% of the invasive potential, but
had little effect on the severity. In other words, the serotypic
strain of the bacteria was insufficient to explain invasive
potential. Additionally, susceptibility to meningitis and
invasive disease were observed to be associated with variation
in a human gene (CCDC33) and nine pneumococcal genes
(including some encoding adhesins, an endonuclease, and a
putative carboxypeptidase). Studies of a similar design have
used the nomenclature ‘joint’ (Lees et al., 2019), ‘co-genomic’
(Ebert and Fields, 2020), ‘plant-pathogen’ (Bartoli and Roux,
2017), and ‘genome-to-genome’ (human and HIV virus) (Bartha
et al., 2013), highlighting the breadth of applicability of this
burgeoning field.

We recently characterised the distribution and diversity of the
nucleotide sequences of the two-component systems (TCSs) and
stand-alone transcription regulators (TRs) in 944 GAS genomes,
and then explored phenotype associations using phylogeny and
concordance metrics (Buckley et al., 2018; Buckley et al., 2020).
Subsequently, we applied the ML random forest (RF) algorithm
to the allelic variation of the TRs to predict six metadata traits of
the genomes (Buckley et al., 2021). These were emm type, emm
subtype, country and tissue of the sample, propensity to cause
invasive disease, and clinical outcome. We observed phylogeny-
based association between the TR alleles and GAS strain (emm
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
type), and were able to predict emm type using ML with 97%
accuracy. However, no strong phylogeny-based associations were
observed between the individual TR loci and infectious
manifestation. Additionally, ML was used to predict emm
subtype, country and invasiveness, but we were unable to
usefully predict tissue tropism and clinical outcome.
Significantly, three biological models were developed
explaining rare recombination in the important genes of the
mga regulon, that are detailed below.

The microbiology community is progressing towards
accurate, real-time prediction of life-threatening infectious
bacterial diseases and antibiotic resistance, using in silico
techniques that exploit the increasing tractability and cost-
efficiency, and decreasing lead-time of whole-genome
sequencing (WGS). However, the field currently lacks easy-to-
use, universally-applicable, end-to-end workflows (San et al.,
2020). Furthermore, inconsistent with the increasing
abundance of high-quality bacterial genomes, the field is
hindered by a lack of accompanying virulence phenotype
metadata that is of a standardised high quality. The aim of this
review is to communicate the lessons learnt while applying ML to
comparative genomics genotype-phenotype studies by
contextualising our key outcomes within the framework of
recent Streptococcal virulence studies.
IN SILICO WGS-DERIVED BACTERIAL
COMPARATIVE GENOMICS TECHNIQUES

In this era of next-generation sequencing, a multitude of in silico
tools are being developed that leverage the high resolution of the
abundance of WGS data that is being generated. Foundational to
these tools are comparative genomic techniques that are
informing our understanding of bacterial evolutionary history
and epidemiology. A central hypothesis of comparative genomics
is that variation in nucleotide sequences (effectively the
genotype) correlates with the resultant phenotype (Chibucos
et al., 2014). Two technologies at the forefront of comparative
genomics are the GWAS and ML. Fundamental to these
technologies are two contrasting strategies. While GWAS is an
unbiased, whole-genome approach, ML strives to ‘pick winners’
in the form of candidate genes that are based on
informed assumptions.

Lesson 1: The Selection of Candidate
Genes and the Pre-processing of
Comparative Genomics Data
GAS TRs and TCSs are controllers of the initiation of
transcription, in that they affect gene expression profiles and
are key constituents of transcription regulatory networks. We
hypothesised that variation in the alleles of these loci may
correlate with virulence phenotypes. We curated a database of
944 GAS genomes with strain, geotemporal and phenotype
metadata (where available), and compiled catalogues describing
the allelic variability of 14 TCSs and 53 TRs. We also developed a
novel allele-typing tool that was based on the ‘sort’ and ‘find
December 2021 | Volume 11 | Article 809560
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unique’ algorithms. Consequently, we were able to identify many
different recombination events, and that the most prevalent form
of variation in these loci was the single-nucleotide polymorphism
(SNP). Our curated database serves as a template for the use of
GAS WGS-derived techniques in the selection of a candidate set
of genes for comparative genomics studies.
PHYLOGENETIC DELINEATION

Phylogenetic delineation is central to the understanding of the
evolutionary history and epidemiology of bacteria. In spite of the
importance of emm as a GAS virulence factor, the quintessence of
the emm type as the strain-defining, gold standard of GAS
genotyping is under increasing scrutiny (Bessen et al., 2018;
Davies et al., 2019). However, given that the vast majority of GAS
epidemiological studies over the past century utilise the emm-based
phylogenetic delineation, a vast emm-based knowledge prevails.

Lesson 2: Bacterial Phylogenetic
Delineation Needs a ‘WGS’ Redo
We observed a strain-dependent variability in the IGRs and
coding sequences of GAS TCSs and TRs using phylogenetics and
concordance, and proposed a set of core TRs as candidates for a
novel GAS typing system. These subsequently informed the
design of our ML workflow, in which we were able to predict
the GAS strain (emm type) with 97% accuracy and establish that
mga2 and lrp were the most mathematically powerful predictors
of strain (Buckley et al., 2021). Overall this finding was important
because it revealed a backward-compatibility between our TR-
based typing system and the vast emm-based knowledge set.

Notably, mga2 and lrp are also biologically-significant TRs.
mga is encoded adjacent to emm, regulates up to 10% of the
genes of the GAS genome, and directly regulates the
transcription of emm. lrp is encoded divergently adjacent to
the streptokinase gene (ska) (Buckley et al., 2020), likely
influencing its transcription. Where GAS streptokinase is
capable of activating human plasminogen, which is a protein
that dissolves blood clots, but not plasminogens of other
mammalian species (Boyle and Lottenberg, 1997). Accordingly,
although the molecular mechanism is to be determined,
streptokinase is considered an important determinant in the
human host specificity of GAS (Sun et al., 2004).

We discovered examples of rare recombination of the mga
regulon including mga2-switching, emm-switching, and
chimeric emm-enn events and were also able to develop
evolutionary models to explain them (Buckley et al., 2020;
Buckley et al., 2021). Furthermore, we identified the deletion of
a transporter gene (maeP) that stands as a biomarker for the
invasive emm subtype 89.0 (Buckley et al., 2018). Collectively,
these findings were significant because it has been suggested
(Lees et al., 2019) that an ability to detect rare genotype
anomalies enhances the discovery of rare clinically-relevant
phenotypes. We were also able to predict the country of origin
using this approach, suggesting a geography-dependent
evolution of GAS TRs (Buckley et al., 2021).
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Throughout our studies, we have come to appreciate the
virtues of the TR-based typing system over the emm-based
systems for interpreting GAS phylogenetic delineation. The
main advantages are: i) the absence of surface-exposure with
the resulting lack of immunogenicity and positive selection
pressure from host immunity; ii) multiple constituent genes
that offer genomically-dispersed loci and an inherent
redundancy, compared to the single ‘point of failure’ of the
emm locus; iii) a range of recombinogenicities from which to
select (Buckley et al., 2020); iv) a general absence of paralogues
like mrp and enn encoded adjacent to emm that complicates the
identification of emm; v) backwards compatibility to emm-based
knowledge, and vi) the ability to detect rare mga anomalies, all
whilst sharing the genotype-dependency and WGS-amenability
of the emm-based systems. Placing this in context, we can see
that the M protein was chosen as the original basis of
phylogenetic delineation partly because it availed itself to the
technology of the day, i.e. serotyping. We contend that the WGS
era calls for the exploration of novel WGS-amenable typing
systems, of which our TR-based system is one. Moreover, we
contend that one typing system should not necessarily be
assumed to be appropriate for both functions of phylogenetic
delineation and interpretation of the biology of epidemiology.
BACTERIAL VIRULENCE

The global burden of infectious bacterial disease is significant.
Whilst the terms ‘virulence’ and ‘pathogen’ have a foundational
and pragmatic utility that endures, there is mounting evidence
suggesting that these terms have fallen short as tools in the lofty
ambition of fully elucidating microbial pathogenesis. Historical
methods in this field used a framework that was pathogen-
centric, reductionist, not dynamic, discretely binary in its
classification, and limited by contemporary technology.
Accordingly, there has been a shift of focus and an expansion
of the scope of attention, so that in the WGS era we are
advancing our approach to contextualise the host-microbe
interactions into a dynamic continuum that accommodates a
shift of an individual microbe from a harmful pathogen, to an
opportunist, and even a commensal (Wiles and Guillemin,
2019). Where commensalism is a relationship between two
organisms in which one benefits and the other derives neither
benefit nor harm. All while accounting for the immunity and
microbiome of the host, and abiotic environmental factors.

Lesson 3: High-Quality Virulence
Phenotype Metadata Is Crucial
By using pySEER to identify over-represented k-mers in the
isolates displaying a propensity to cause invasive disease, Davies
et al. had previously ascribed a binary phenotype classification to
the genomes of our dataset (Davies et al., 2019). Where k-mers
refers to the sets of complete and overlapping subsequences (k
nucleotides in length) that are extractable from biological
sequence (Ren et al., 2018). Using this information, ML and
the variation in the TR alleles, we were able to predict
December 2021 | Volume 11 | Article 809560
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invasiveness with high accuracy, and notably to 83% accuracy
using only mga2 and lrp. The prediction power of this approach
suggests tractable utility as a WGS-derived tool for pre-emptively
inferring potentially life-threatening invasive GAS isolates in the
clinical setting.

We were not able to usefully predict tissue preference using
phylogenetics, concordance, or ML and the TR-based typing
system. This was somewhat unexpected given that variation in
the mga and rofA/nra TRs, and the emm pattern-associated
landmarks of the mga regulon are known to correlate strongly
with tissue tropism. Whilst we remain optimistic for the future
application of comparative genomics, our methods and dataset
were unable to elucidate the complexity of the GAS virulence
phenotype. This was not unexpected given the complexity of
GAS disease. However, the inability to predict these phenotypes
is likely explained, at least in part, by the presence of the
undefined or inaccurate values in the ‘tissue tropism’ and
‘clinical outcome’ fields of the input dataset. Recommendations
to address these shortcoming are included below.
RANDOM FOREST (RF) MACHINE
LEARNING (ML) ALGORITHM

The RF ML algorithm is based on an ensemble of decision trees
that are randomly generated from a set of input (or predictor)
features, and the output of which is a majority vote of the trees
that reduces the risk of an inaccurate prediction caused by any
individual trees. In a supervised method, the rules for attaining
the correct answer (label) are ‘learnt by example’, therein
converting data into information. The RF is a robust and
scalable method whose advantages include the ability to
determine the importance of the predictor variable at
predicting the correct answer. This is important because it
allows for the elimination of statistically-dependent variables,
reducing the dimensions of the input dataset and the
computational resource usage. All of which is completed with
highly interpretability.

Lesson 4: Machine learning: Getting It
Wrong Can Be So Right!
The RF algorithm was applied to the TR-based typing system to
predict the selected strain-related, virulence phenotype, and
geotemporal metadata. We were able to predict strain and
geography with high accuracy, but were unable to predict
virulence phenotype. By investigating the causes of inaccuracy
in examples of where the predicted strain differed from the
published strain, we were able to discover several rare anomalies
in the mga regulon (Buckley et al., 2021). We identified a novel
cell-wall spanning domain (SF5) which is described as a chimera
of SF3 and SF1, that redefines the GAS emm pattern typing
system. We also defined two categories of chimeric emm-enn
events, where the resultant emm subtype is retained or changed,
that we named ‘likewise’ and ‘contrariwise’, respectively. Finally,
we proposed a model for the time-dependent excision of genes of
the mga regulon.
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Importantly, we have shown a utility for the RF algorithm in
the interpretation of the phylogenetic delineation of GAS, while
reducing the dimensions of the dataset and maintaining
interpretability. Further, we have used ML to interpret the
biology of GAS and propose new evolutionary models by
establishing a workflow which serves as a template for testing
hitherto untested GAS genomic traits. However, it should be
noted that as part of dimension reduction the statistically
dependent variables are excluded. Therefore, it is important to
remember that whilst predictor variables correlate with the
response variable (the answer), they are not necessarily causal.
Conversely, an excluded variable could be causal or
partially causal.
BACTERIAL GENOME-WIDE
ASSOCIATION STUDIES (GWAS)

GWAS is a comparative genomics technique that uses a suite of
statistical models to test for associations or ‘statistical
dependencies’ between variations in the DNA (genotype) of
many genomes and the corresponding phenotype metadata,
that may indicate causal relationships (Collins and Didelot,
2018). It is an unbiased methodology that can be performed
on the whole-genome data without selecting candidate genes.
While the traditional GWAS method that delineates phylogeny
based on SNPs has yielded success in both human and bacterial
genomes, an alternative method of increasing popularity uses
k-mers.

Because they reproduce clonally, there are several
considerations that hinder the application of GWAS
techniques to bacteria that are not as relevant in human
GWAS studies. The first of these is strong population structure
or population stratification. Care must be taken to control for
population structure to avoid identifying non-causal (spurious)
relationships generated by: linkage disequilibrium with
legitimately causal variants, environmental variables that are
not controlled, and sampling errors induced by stratification
(Earle et al., 2016). Current GWAS methods perform poorly in
the presence of high linkage disequilibrium and population
stratification in strongly clonal populations (Saber and Shapiro,
2020; Chen and Shapiro, 2021). This is important because it
suggests that bacterial GWAS studies may improve with the
application of novel methods that incorporate dimension
reduction (Kwok et al., 2021) possibly using ML.

The recently published review by (Allen et al., 2021)
articulates a utility for ML-based technologies in the synergistic
complementation of the more established ‘statistical model’-
based GWAS for the inference of bacterial virulence
phenotypes. This study collated a list of considerations relevant
to the design of ML and GWAS studies, and devised a general
approach for identifying virulence genes using these comparative
genomics techniques. The key steps included: pathogen
collection, virulence measuring, WGS, identification of
sequence variants, virulence association testing, and system
confirmation or validation. Based on our findings, we envisage
December 2021 | Volume 11 | Article 809560
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an increasing role of ML as an accompanying technology to
GWAS comparative genomics, which is also generally agreed in
the field (Lees et al., 2020; San et al., 2020; Allen et al., 2021).
DISCUSSION

Quality Control Protocol for GAS Virulence
Phenotype Data
We propose a quality control protocol for the collection of the
virulence phenotype and clinical outcome data of GAS infection,
with the benefit of qualifying a reportable metric. Our system
allows for the continued analysis of existing data, while
simultaneously incentivising the progressive production and
consumption of higher- quality genomic metadata. At the time
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
of sampling of the bacterial isolate for subsequent sequencing, we
recommend that clinicians assign a classification for all of
the following categories (from Table 1 where appropriate):
i) anatomical site of the sample; ii) tissue sampled; iii) clinical
presentation; iv) end-point clinical outcome (where different
from the presentation); and v) the classification of invasive,
non-invasive, or non-suppurative sequela disease.

By way of qualification of the quality control rating of the
metadata collected, if no metadata is collected the rating is red. If
each of i) to v) above has a non-null entry using Table 1, where
applicable, the rating is green. All other circumstances are rated
amber, using a simple traffic-light system that is readily
interpreted (Figure 1). Moreover, where possible we urge the
collection of human patient risk factor data. A non-
comprehensive list of which is also included in Table 1.
TABLE 1 | Compilation of the expected classifications of tissues sampled, clinical presentation, and human patient risk factors in group A Streptococcus infection for
use in a quality control protocol for the collation of high-quality virulence phenotype metadata.

Genomic
metadata
categories

Expected classifications

Tissue
sampled1

Epithelial swab, blood, sputum, urine, saliva, synovial fluid, soft tissue, cerebrospinal fluid

Clinical
presentation1

Throat carriage, scarlet fever, streptococcal toxic shock syndrome, type II necrotizing fasciitis, pharyngitis, superficial soft tissue infection, deep soft tissue
infection, cellulitis, meningitis, pneumonia, bacteraemia, arthritis, puerperal sepsis, genital infection, iGAS, acute phlegmonous gastritis, rheumatic fever,
rheumatic heart disease, post-streptococcal glomerulonephritis, paediatric autoimmune neuropsychiatric disorders associated with Streptococcus
(PANDAS)

Human
patient risk
factors2

Blood antigen group (Vyas et al., 2020); serology that is indicative of prior GAS infection (anti-SLO or anti-DNase B antibodies); ethnicity; chronic liver
disease; long-term alcohol abuse; homelessness, household crowding or relevant socioeconomic condition (Siemens and Lütticken, 2021); scabies as
risk factor for pyoderma; immunity-suppressing pharmaceuticals; human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS);
family history of GAS-related disease; and twin status (monozygotic or dizygotic).
1Expected classifications are adapted from the Davies GAS atlas (Davies et al., 2019), 2Compliance with human ethics standards is required.
FIGURE 1 | Workflow for the application of machine learning in comparative genomics genotype-phenotype association studies. ‘Linked’ samples of microbe, host,
and microbiome (optional) are simultaneously collected and sequenced. Recommended virulence phenotype metadata is also collated and assessed for quality. The
DNA sequences of target genes (for example, transcription regulators) are extracted and the alleles are typed. Machine learning algorithms are applied to the allele
types (predictor variables) in the prediction of response variables (for example, invasive virulence phenotype). The machine learning models are validated by
comparison of observed and predicted phenotype data. The most important predictor variables are selected as the basis of dimension reduction, as required.
Legend: WGS, whole-genome sequencing; mNGS, metagenomic next generation sequencing.
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Applications
Figure 1 depicts a workflow for the application of ML to ‘linked’
genome sets in the prediction of genotype-phenotype
associations. We also envisage the introduction of microbiome
metagenomics data in the future.
CONCLUSIONS

The future application of comparative genomics in GAS
genotype-virulence phenotype association studies is highly
promising, and a key tool is the unbiased GWAS.
Furthermore, we recommend the synergistic utility of ML with
GWAS as a tool for dimension reduction and appraisal of
‘candidate genes’, all with high interpretability. We have
suggested that the quality and abundance of bacterial
phenotype data lags behind that of the accompanying genome
data, and proposed a quality control protocol that incentivises
the eventual improvement of the quality of GAS virulence
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
phenotype data collection. Finally, we envisage the inevitable
widespread use of ‘linked’ genome sets in eukaryotic host-
microbe interaction studies and have developed a work flow
for the application of ML to these sets.
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