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Background: To identify radiomic subtypes of clear cell renal cell carcinoma (ccRCC) patients with distinct clinical 

significance and molecular characteristics reflective of the heterogeneity of ccRCC. 

Methods: Quantitative radiomic features of ccRCC were extracted from preoperative CT images of 160 ccRCC 

patients. Unsupervised consensus cluster analysis was performed to identify robust radiomic subtypes based on 

these features. The Kaplan–Meier method and chi-square test were used to assess the different clinicopathological 

characteristics and gene mutations among the radiomic subtypes. Subtype-specific marker genes were identified, 

and gene set enrichment analyses were performed to reveal the specific molecular characteristics of each sub- 

type. Moreover, a gene expression-based classifier of radiomic subtypes was developed using the random forest 

algorithm and tested in another independent cohort ( n = 101). 

Results: Radiomic profiling revealed three ccRCC subtypes with distinct clinicopathological features and prog- 

noses. VHL, MUC16, FBN2 , and FLG were found to have different mutation frequencies in these radiomic subtypes. 

In addition, transcriptome analysis revealed that the dysregulation of cell cycle-related pathways may be respon- 

sible for the distinct clinical significance of the obtained subtypes. The prognostic value of the radiomic subtypes 

was further validated in another independent cohort (log-rank P = 0.015). 

Conclusion: In the present multi-scale radiogenomic analysis of ccRCC, radiomics played a central role. Radiomic 

subtypes could help discern genomic alterations and non-invasively stratify ccRCC patients. 
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Clear cell renal cell carcinoma (ccRCC) is the most common sub-
ype of kidney cancer, with over 400,000 cases worldwide annually and
early 175,000 deaths per year [ 1 , 2 ]. Although several treatment ap-
roaches, including radical nephrectomy and ablation, have improved
he clinical outcome, the 5-year relative survival rate of ccRCC patients
emains poor. With the advancement in high-throughput genomic tech-
ology, ccRCC is no longer considered a single uniform entity. Instead,
cRCC is now recognized as an extremely complex cancer with intra-
umor and inter-tumor heterogeneity, which limits individualized treat-
ent and heterogeneous clinical outcomes [3-5] . While the traditional
athological stage is a strong survival indicator, it is insufficient to char-

cterize individual clinical outcomes and molecular characteristics. In 
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he era of precision medicine, effective risk stratification and the estima-
ion of specific molecular characteristics of an individual could spur per-
onalized treatment and help improve the understanding of the molec-
lar mechanisms underlying ccRCC. 

Decades ago, several molecular subtyping approaches for ccRCC
ased on multi-omics data, including genomic, transcriptomic, and pro-
eomic data, have been proposed to classify the patients’ characteristics
nd predict their prognosis and response to treatment [6-8] . However,
hese molecular classifiers are limited by the requirement of postopera-
ive pathological or biopsy tissues. Therefore, a non-invasive and repro-
ucible approach is urgently required to evaluate the detailed molecu-
ar characteristics and estimate the prognosis of patients. Radiomics is a
ewly emerging algorithm that analyzes high-throughput imaging fea-
ures extracted from medical images [9] . The emergence of radiomics
on function; CT, Computer Tomography; GSEA, gene set enrichment analysis; 
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Fig. 1. Flowchart showing the patient selection and radiomic image analysis process 

TCGA-KIRC: The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma, CECT: contrast-enhanced computed tomography, 2D: two-dimensional. 
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Table 1 

Characteristics of the Study Population. 

Characteristic Cohort 1( n = 160) Cohort 2( n = 101) 

Age (years) 

< 60 79 41 

≥ 60 81 60 

Gender 

Male 105 77 

Female 55 24 

Histological grade 

G1 1 13 

G2 62 59 

G3 70 22 

G4 27 5 

NA 0 2 

Pathological stage 

Stage I 85 66 

Stage II 14 10 

Stage III 40 13 

Stage IV 21 12 

u  

w

T

 

m  

u  

t  

t  

R
 

H  

i  

t  

m  

1  

t  

s

as enabled the non-invasive assessment of molecular characteristics of
umors. Integrated analysis of medical images and multi-omics molec-
lar data helps link our understanding of macroscopic medical images
o microscopic molecular counterparts that contribute to patient risk
tratification [10] . A previous study identified subtypes of glioblastoma
sing quantitative perfusion magnetic resonance imaging; patients be-
onging different subtypes were found to have distinct prognoses and
reatment responses [11] . Another study found that quantitative imag-
ng phenotypes could be effective for breast cancer stratification [12] .
hese findings highlight the importance of radiomics in tumor stratifi-
ation. 

In the present study, we aimed to develop a novel ccRCC classifier
sing quantitative radiomic profiles. By integrating clinicopathological
nd multi-omics molecular data, we aimed to elucidate the radiomic
ubtypes associated with distinct clinical outcomes and molecular char-
cteristics. Our findings could provide a novel approach for determining
atients’ clinical prognosis and for providing personalized, precision-
ased clinical care. 

aterials and methods 

ata source and inclusion criteria 

All data were from public datasets and study were approved by our
nstitutional review board. Informed consent was not required in the
resent study because the analyses were based on public and freely
vailable datasets for scientific purposes. Two publicly accessible ccRCC
ohorts were retrospectively analyzed in the present study. In cohort
, The Cancer Genome Atlas (TCGA) Kidney Renal Clear Cell Carci-
oma collection consisting of the imaging data of 267 ccRCC patients
as downloaded from The Cancer Imaging Archive database [ 13 , 14 ].
orresponding clinical follow-up data and clinicopathological charac-
eristics were acquired from the Pan-Cancer analysis project by TCGA
15] . In cohort 2, microarray-based gene expression data and clinical
ata of 101 ccRCC patients were downloaded from the ArrayExpress
atabase ( https://www.ebi.ac.uk/arrayexpress/ ; accession ID: E-MTAB-
980) [16] . 

The inclusion criteria of the patients in cohort 1 are summarized in
ig. 1 . The inclusion criteria were as follows: (a) patients with patho-
ogically diagnosed ccRCC, (b) those who preoperatively underwent un-
nhanced CT with slice thickness ≤ 5 mm (c), those who preoperatively
2 
nderwent unenhanced CT and contrast-enhanced CT (CECT), (d) those
ith solitary tumors, and (e) those with well-preserved imaging data. 

umor segmentation and radiomic feature extraction 

The largest tumor slice in the cross-section map was subjected to tu-
or segmentation. The region of interest (ROI) was manually segmented
sing ITK-SNAP software (version 3.8) [17] . During tumor segmenta-
ion, available CECT images were also used to recognize and determine
he tumor boundaries in all the patients. The manual segmentation of
OI was performed by a single radiologist. 

Radiomic features were extracted using Intelligence Foundry (GE
ealthcare, version 1.3). In total, 122 radiomic features were extracted,

ncluding 18 first-order features, 23 gray-level co-occurrence matrix fea-
ures, 16 gray-level run-length matrix features, 16 gray-level size-zone
atrix features, five neighboring gray-tone difference matrix features,
3 gray-level dependence matrix features, 18 shape features, and 13
extural phenotype features. All 122 radiomic features fully respecting
tandard Image Biomarker Standardization Initiative. 

https://www.ebi.ac.uk/arrayexpress/
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Fig. 2. Consensus clustering for radiomic stratification of ccRCC patients 

(A) Heatmap of extracted radiomic features reveals a certain heterogeneity of medical images of ccRCC patients. 

(B) The cumulative distribution function (CDF) plot shows the probability distribution for each k. 

(C) The delta plot shows the relative change between k and k − 1 under the CDF curve. 

(D) Consensus matrix silhouette plots ( k = 2–4) are displayed. 

3 
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Fig. 3. Radiomic stratification of ccRCC and the clinicopathological and genomic correlations 

(A) Kaplan–Meier curves for overall survival and progression-free interval based on radiomic stratification (log-rank test). 

(B) The distribution of age, gender, stage, and grade in tumors with different radiomic stratifications. 

(C) Genes with mutation rates greater than 5% are ranked on the left side in the waterfall plot, where the mutational burden for each sample is calculated above the 

legend. 
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adiomic subgrouping analysis 

Consensus clustering, an unsupervised subtype discovery method,
as performed to identify the intrinsic radiomic subtypes of the ccRCC
atients using the “CancerSubtypes ” R package [18] . In particular, parti-
4 
ioning around medoid (a type of consensus clustering) was performed
ith the Euclidean distance metric to generate the subtypes. In total,
0% of the patients were randomly sampled each time to obtain the
andomly sampled data set. The process was repeated 1000 times to ob-
ain the conservative matrix result. Subtype numbers from two to six
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Table 2 

Mutation frequency in different radiomic subtypes. 

Gene C1 (mutation/wild) C2 (mutation/wild) C3 (mutation/wild) P value 

VHL 12/22 24/14 21/14 0.038 a 

PBRM1 11/23 13/25 13/22 0.915 a 

TTN 4/30 5/33 3/32 0.864 b 

BAP1 5/29 3/35 1/34 0.207 b 

KDM5C 1/33 6/32 1/34 0.103 b 

MTOR 5/29 2/36 1/34 0.166 b 

AKAP9 2/32 3/35 2/33 > 0.99 b 

MUC16 0/34 6/32 1/34 0.017 b 

ADGRV1 1/33 3/35 2/33 0.870 b 

PTEN 3/31 1/37 2/33 0.439 b 

SETD2 0/34 4/34 2/33 0.185 b 

ANK3 0/34 1/37 4/31 0.078 b 

ATM 3/31 1/37 1/34 0.443 b 

FBN2 0/34 0/38 5/30 0.006 b 

FLG 5/29 0/38 0/35 0.003 b 

LYST 2/32 2/36 1/34 0.866 b 

RP1 1/33 3/35 1/34 0.617 b 

SPEN 3/31 2/36 0/35 0.233 b 

a : Chi-square test;. 
b : Fisher test. 
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ere analyzed. The optimal cluster number was determined according
o the following factors: the relative change between k and k - 1 under
he cumulative distribution function (CDF) curve, significance of sepa-
ation of the consensus clusters in the heatmap, and average silhouette
istance of the consensus clusters. 

olecular characteristic identification 

Masked somatic mutation data, which were processed with VarScan2
oftware, were downloaded using “TCGAbiolinks ” package in R software
19] . Mutation Annotation Format (MAF) files were then processed us-
ng the “maftools ” R package, which provides analysis and visualization
odels for MAF files from large-scale sequencing studies [20] . Similarly,
asked copy number alteration data were downloaded using “TCGAbi-

links ” package in R software [19] . GISTIC_2.0 was used to detect signif-
cant amplification or deletion regions in the genomes [21] . Following
his, the burden of copy number gain or loss was calculated on the basis
f the total number of genes with a change in copy number at the focal
nd arm levels. 

Genome-wide RNA sequencing data generated using the Illumina
iSeq 2000 RNA Sequencing platform were also acquired from the Pan-
ancer project by TCGA [22] . Based on RSEM-normalized gene-level
ata, the differential expression of one subtype versus all other sub-
ypes was identified using the “limma ” package in R software. Follow-
ng this, upregulated genes in each radiomic subtype were used to esti-
ate specific activated molecular pathways using gene set enrichment

nalysis (GSEA). GSEA was performed using the GSEA software (ver-
ion 3.0) [23] using the GSEA pre-ranked function. The goal of GSEA is
o determine whether differentially expressed genes are randomly dis-
ributed or primarily found at the top or bottom of specific pathway.
ased on the results of differentially expression analysis, enrich score
or each pathway was calculated, significantly enriched pathways were
anked based on enrich scores. Top 10 enriched pathways with largest
nrich scores were identified as the pathway alterations characteristics
or each subtype, respectively. Annotated pathways were based on Ky-
to Encyclopedia of Genes and Genomes (version 7.1) annotated path-
ays downloaded from the Molecular Signatures Database [23] . The top
0 significantly enriched pathways were used for heatmap visualization.

adiomic subtype validation 

In order to examine the risk stratification performance of our ra-
iomic subtypes in ccRCC patients with longer follow-up times, cohort
 was used to validate the clinical significance of radiomic subtypes.
5 
irst, the marker genes for radiomic subtypes were analyzed using dif-
erentially expressed genes in cohort 1. Based on these marker genes,
he least absolute shrinkage and selection operator (LASSO) algorithm
as further used to select the core genes that could be used to identify

he subtypes. LASSO algorithm selection was performed using the “glm-
et ” R package (version 2.0–18) [24] . Finally, a classifier was developed
sing the random forest algorithm and was used to predict the radiomic
ubtypes in the validation cohort. When developing the classifier model,
ve-fold cross validation was adopted to get the best parameters. The
andom forest algorithm was used to develop and validate the classifier
sing the “rpart ” R package (version 4.1–15). 

tatistical analysis 

The overall survival (OS) and progression-free interval (PFI) of
cRCC patients belonging to distinct radiomic subtypes were compared.
he endpoint of OS was death from any cause, while that of PFI was
he occurrence of a new tumor event, including disease progression, lo-
al recurrence, distant metastasis, or a new primary tumor event, or the
ccurrence of death due to cancer without a new tumor event [15] . Sur-
ival differences among the patients were estimated by Kaplan–Meier
K–M) curves using the log-rank test. The associations between subtypes
nd clinical factors were assessed using the chi-squared test. The chi-
quared test or Fisher’s exact test was performed to identify significant
ifferences in the distribution of each mutation among the subtypes. In
ddition, univariate Cox analysis was performed to assess the survival
f specific upregulated genes in each subtype. A P value < 0.05 was con-
idered statistically significant. All statistical analyses were performed
sing R software (version 3.6.0). 

esults 

emographic and clinical characteristics 

In total, 160 and 101 ccRCC patients were included in cohorts 1 and
, respectively. Demographic and clinical characteristics of the patients
re provided in Table 1 . 

adiomic subtypes in the discovery cohort 

A total of 122 radiomic features were extracted from ROIs ( Fig. 2 A).
ased on consensus clustering of the radiomic features, a three-cluster
olution was identified as the optimal solution: (1) The consensus CDF
nd delta plot exhibited little relative change between k = 3 and k = 4
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Fig. 4. Relationships between gene mutation and patients’ OS 

(A) VHL; (B) FLG; (C) MUC16; (D) FBN2. 
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 Fig. 2 B and 2 C). (2) The consensus matrix heatmap revealed three clus-
ers with significant interconnectivity ( Fig. 2 D). (3) The average silhou-
tte distance for k = 3 (0.81) was greater than that for k = 2 (0.71) or
 = 4 (0.75) and did not have significant negative values. Accordingly,
he 160 ccRCC patients could be divided into three subtypes: 52 patients
32.5%) in cluster 1 (C1), 53 patients (33.1%) in cluster 2 (C2), and 55
atients (34.4%) in cluster 3 (C3). 

istinctive clinical characteristics of radiomic subtypes 

Differences in clinical characteristics and clinical outcomes among
he three subtypes were then explored. K–M curves indicated that the
1 subtype had significantly lower OS ( P = 0.027) and PFI ( P = 0.002)
6 
han the C2 and C3 subtypes ( Fig. 3 A). Furthermore, the distribution
f different clinical factors among the subtypes was not random. Sig-
ificant differences were observed among the subtypes with regard to
ender (chi-square value = 11.75, P = 0.003) and pathological stage
chi-square value = 13.01, P = 0.001). No association was noted be-
ween the subtypes and age (chi-square value = 4.03, P = 0.133) and
istological grade (chi-square value = 3.953, P = 0.139) ( Fig. 3 B). 

olecular characteristics of each subtype 

In addition to assessing the differences in clinical characteristics
mong the three subtypes, the differences in molecular characteristics
mong them were assessed in the present study. All the patients had
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Fig. 5. Distinct enriched pathways and genes between subtypes 

(A) GSEA reveals distinct enriched gene sets between the radiomic subtypes. In the heatmap, rows represent the enriched gene sets, while columns represent the 

enrichment scores for each subtype. 

(B) The top 10 upregulated genes in each subtype and their survival significance estimated by univariate Cox analysis. 
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NA-seq and masked copy number alteration data, while 107 out of
60 patients had gene mutation data. The association of the clusters
ith the gene mutation data is shown in Fig. 3 C; 18 genes had mutation

ates over 5%. The tumors classified into different subtypes had spe-
ific gene mutation events. VHL was the most frequently mutated gene;
t was observed in 53% of the patients (57/107). Next, the frequency
f each gene mutation was compared among the subtypes. While VHL

ad a high mutation rate in all the subtypes, VHL mutations were less
requently observed in the C1 subtype than in the C2 and C3 subtypes
 Table 2 ). In addition, FLG, MUC16 , and FBN2 mutations were specif-
cally observed in the C1, C2, and C3 subtypes, respectively ( Table 2 ).
ased on TCGA-KIRC cohort, K-M analysis also revealed that VHL, FLG
nd MUC16 mutation status did not show survival differences ( Fig. 4 A-
) while patients with FBN2 mutation have superior OS ( Fig. 4 D). 

A total of 20,531 genes were used to differentially expression anal-
sis. By further using GSEA, which revealed that the tumors belonging
o the C1 subtype were characterized by significantly activated protea-
ome, cell cycle, and p53 signaling pathway genes ( Fig. 5 A). Univariate
ox analysis of the top 10 upregulated genes also suggested that most
pregulated genes in the C1 subtype were risk factors, while most upreg-
lated genes in the C3 subtype were protective factors. However, most
f the top 10 upregulated genes in the C2 subtype had no significant
urvival significance ( Fig. 5 B). 

The copy number burden of each sample was also calculated. Fig. 6 A
hows the copy number frequency distribution across all chromosomes
n the three radiomic subtypes. A higher burden of copy number loss was
oted in the C1 subtype than in the C2 and C3 subtypes at the focal and
rm levels, respectively ( Fig. 6 B). Next, the deletions of chromosomal
egions in the C1 subtype were observed ( Fig. 6 C). 

adiomic subtype validation 

Based on the criteria of |log2FC| > 1 and P < 0.05, 25 upregulated
nd 37 downregulated genes were identified in the C1 subtype, 23 up-
egulated and three downregulated genes were identified in the C2 sub-
ype, and eight upregulated and 22 downregulated genes were identi-
7 
ed in the C3 subtype. After removing duplicated genes, 89 genes were
nally included in cohort 1 as cluster markers for further classifier de-
elopment ( Fig. 7 A). By LASSO analysis, 21 core genes were further se-
ected for model construction using the random forest algorithm. Based
n the developed classifier, the patients in cohort 2 were also classified
nto C1–C3 radiomic subtypes. In cohort 1, the patients belonging to
he C1 subtype were found to have a significantly lower survival rate
nd a higher risk of postoperative death than those belonging to the
2 and C3 subtypes ( Fig. 2 A). This result was further validated in co-
ort 2, an external clinically annotated ccRCC cohort ( Fig. 7 B). More
mportantly, the distribution of different clinicopathological features in
adiomic subtypes was found to be similar in training and validation
ohort ( Fig. 7 C). 

iscussion 

Molecular subtypes based on a multi-omics view of ccRCC have
roadened the understanding of the heterogeneity of ccRCC [ 25 , 26 ].
owever, because of the difficulties involved in performing a biopsy and

equencing assay for each patient, non-invasive approaches are needed
o classify patients with distinct clinical outcomes and molecular charac-
eristics. The global radiomic information obtained in the present study
rovides novel insights into the clinicopathological and molecular char-
cteristics of ccRCC. Integrated radiomic characterization and genomic
ata revealed clinically relevant subtypes and non-invasively acquired
enomic data for specific subtypes. Our integrated analysis revealed that
adiomic profiles are heterogenous, having the potential for risk strati-
cation. By consensus clustering, the patients were classified into three
istinct subtypes. Interestingly, the patients belonging to the three sub-
ypes had distinct clinical outcomes. 

Radiogenomics serves as a bridge that connects non-invasive ra-
iomic phenotypes with genomic alteration data [27] . Feng Z et al. re-
orted that the use of CT features is a potential and feasible approach for
redicting BAP1 mutations in ccRCC patients [28] . Moreover, a study in-
olving 233 ccRCC patients identified associations between some CT fea-
ures, such as well-defined tumor margins and nodular tumor enhance-
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Fig. 6. Copy number alterations across radiomic subtypes 

(A) Copy number profiles for the C1, C2, and C3 subtypes. Dark red represents gain, while midnight blue represents loss. Gene segments are placed according to 

their location on chromosomes, ranging from chromosome 1 to chromosome 22. 

(B) The distribution of focal and broad copy number alterations among the radiomic subtypes. 

Ns represents not significant ( P > 0.05). ∗ represents P ≤ 0.05. 

(C) A detailed cytoband with focal deletion (right) in the C1 subtype generated using GISTIC_2.0 software. 
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ent, and the presence of mutations in several genes ( VHL, PBRM1,

ETD2, KDM5C , and BAP1 ) [29] . These studies have revealed the ability
f radiomics to access internal tumor data. With the rapid advances in
ext-generation sequencing and increased public multi-omics data, it is
ow possible to perform integrated analysis of radiomic phenotypes and
enomic data. The present findings indicate that medical imaging phe-
otypes may help infer dysregulated gene mutation statuses or molecu-
ar pathways. 

Genetically, ccRCC is characterized by a high proportion of VHL mu-
ations, which play a central role in the current understanding of the
undamental principles of ccRCC development [30] . VHL loss often leads
o the unregulated accumulation of hypoxia-inducible factor 1, result-
ng in activated metabolism and angiogenesis [31] . Accordingly, it is a
easonable phenomenon that the features of medical images could, in a
ertain way, reflect VHL mutations. A previous study revealed that VHL

utations are significantly associated with ill-defined tumor margins,
8 
ulticystic tumors, nodular tumor enhancement, and the intratumoral
asculature [29] . In the present study, the proportion of VHL mutations
as found to differ in different subtypes; in particular, it was low in the
1 subtype. However, a recent meta-analysis suggested that VHL muta-
ions are not significantly associated with the survival of ccRCC patients
32] In addition, FLG, MUC16 , and FBN2 mutations specifically occurred
n the C1, C2, and C3 subtypes, respectively. FLG have been reported
hat significantly mutated or amplified in some types of cancer [ 33 , 34 ].
owever, the molecular function of FLG in ccRCC did not be fully stud-

ed. Future in vivo and/or in vitro analysis were required to validate its
olecular characteristics in ccRCC. MUC16, also known as the CA125

ntigen, is the third most frequently mutated gene in TCGA database
35] . Several previous studies have revealed that MUC16 mutation is
losely related to prognosis of many types of cancer [ 36 , 37 ]. Similarly,
UC16 is frequently mutated in papillary renal cell carcinoma [38] .

BN2 is key components of human microfibrils and could regulate TGF-
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Fig. 7. Radiomic subtype validation using another independent cohort 

(A) The heatmap of marker genes in the validation cohort displays a similar expression pattern to that in the training cohort. 

(B) Kaplan–Meier curves for radiomic subtype classification based on gene expression data. 

(C) The distribution of age, gender, stage, and grade in tumors belonging to different radiomic subtypes. 
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 signaling. FBN2 was very frequently hypermethylated in ccRCC and
he gene demonstrated a relatively high somatic mutation rate [39] . Hy-
ermethylation of FBN2 has been previously reported in renal cell carci-
oma and knockdown for FBN2 also lead to an anchorage-independent
rowth advantage [40] . We found that FBN2 mutation is related to the
rognosis of ccRCC. FBN2 mutation also related with patients’ OS, it may
resent as potential biomarker for ccRCC. However, mRNA expression
evels of these genes are relatively low in ccRCC, molecular mechanisms
re need further exploration. 

In addition to gene mutation, transcriptome data analysis revealed
ome interesting findings. Surprisingly, in the C1 subtype, upregulated
enes were mainly detected in the proteasome, cell cycle, and p53 sig-
aling pathways, indicating that sustained proliferation was a response
o poor survival in this subgroup. Notably, C1-specific upregulated genes
nd C3-specific upregulated genes were found to have a distinct prog-
ostic value. Previous studies have reported that some genes are acti-
9 
ated and involved in the development and progression of ccRCC. For
xample, TOX3 inhibits ccRCC cell migration and invasion via the tran-
criptional regulation of SNAI1 [41] . Moreover, SLC10A2 expression
s an independent prognostic indicator of OS of ccRCC patients and is
ownregulated in tyrosine kinase inhibitor-resistant samples [42] . Based
n our findings and previous findings, these marker genes may have
oderate potential for acting as biomarkers for monitoring ccRCC prog-
osis. 

The limitations of the present study include its retrospective nature.
owever, we have used two independent cohorts to validate the results.
uture prospective research will be needed in a larger cohort of ccRCC
atients in order to assess the generalizability of our stratification. An-
ther limitation is the use of two-dimensional tumor segmentation for
adiomic feature extraction. Three-dimensional segmentation may be
ore suitable for tumor texture extraction. To overcome this limitation,
e sincerely hope that automated segmentation will be the gold stan-
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ard instead of manual segmentation for ccRCC in the future. Moreover,
e did not analyze CECT data because TCGA cohort was collected from
ultiple hospitals and the CECT clinical protocols were inconsistent. 

In conclusion, the present comprehensive radiomic characterization
f ccRCC provides comprehensive and integrated insights and is more
uitable for clinical application. Our findings revealed that radiomic
ata could be a potential non-invasive tool for the risk stratification
f ccRCC patients. Radiogenomic analysis suggested that the activation
f cell cycle-related pathways is the molecular mechanism responsible
or the poor clinical outcome in the C1 subtype. The classifier model
as validated using another cohort, which could be useful in clinical
ecision making. These findings may serve as the basis for further in-
epth studies to assess the radiomic subtypes in a reliable manner for
isk stratification and precision medicine. 
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