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ABSTRACT: In situ optical spectroscopy, spectropotentiometry, and
multivariate analysis were applied to the Np(IV) nitrate system to better
understand speciation and quantify HNO3 concentration. Thin-layer
spectropotentiometry, or spectroelectrochemistry, was leveraged to isolate
and stabilize Np(IV) without compromising the solution conditions and
generate representative Vis-NIR absorption spectra from 0.5 to 10 M
HNO3 and benchmark the corresponding Np(IV) molar absorptivity
coefficients. Spectra were described with principal component analysis
(PCA) to identify the purest Np(IV) absorbance spectra among other
oxidation states [e.g., Np(V/VI)] at each acid concentration and then to
identify the primary sources of variance within each Np(IV) spectrum with
respect to Np(IV) nitrate complexes. Then, partial least-squares regression
(PLSR) and support vector regression (SVR) models were built to predict HNO3 concentration from the Np(IV) spectral data. The
nonlinear SVR model outperformed the linear PLSR model for the HNO3 concentration predictions. Finally, the inclusion of spectra
collected in edge and center point HNO3 concentrations in the calibration set was determined to be crucial for producing models
with strong predictive capabilities. The multivariate approach used in this study makes it possible to quantify HNO3 concentration
solely based on Np(IV) absorption spectra, which is essential to quantifying processing streams in various online monitoring
applications.

■ INTRODUCTION
Radiochemical separations, such as those used for the
purification of the heat source 238Pu, typically involve
separating actinides in acidic solutions under harsh radioactive
environments. Numerous factors influence the efficiency and
outcome of these separations, such as metal ion concentration,
actinide oxidation state, acid concentration, and temperature.
Online monitoring of these processes via optical spectroscopy
can provide rapid, in situ information to inform key processing
decisions.1−3 Techniques such as absorption spectroscopy
provide information about many of the factors that influence
processing. Absorption spectroscopy, or spectrophotometry, is
a powerful technique that can detect the presence of certain
elements, elucidate electronic structure, describe coordination
environment, and provide information about concentrations of
species. This technique is especially relevant to the nuclear
field because many of the actinide elements that are
encountered in radioisotope processing provide unique
absorbance spectra that can be used for identification and
quantification in feed and product solutions.4

Spectrophotometry is particularly useful for studying early
actinides such as Np. The element Np is capable of adopting
multiple oxidation states that frequently coexist in solution and
are highly dependent on solution conditions.5 The most-
studied oxidation states of Np are Np(IV), (V), and (VI), and
each has characteristic electronic transitions that allow for

qualitative identification and quantitative determination
through univariate methods such as Beer’s law in simple
systems. However, when the spectrum of an oxidation state is
highly sensitive to the coordination environment of the Np
cation, spectral features can overlap, shift, or change
significantly, making it challenging to identify the different
species in a system.6,7

This is the case for Np(IV) in HNO3, which is an
exceptionally complex system because of changes in spectral
features corresponding to the formation of various Np nitrato
complexes with increasing HNO3 concentration.

8−10 Nitrate
groups coordinate the Np ion and displace coordinated water
ligands as acid concentration increases; however, the speciation
of Np(IV)�particularly at low to intermediate HNO3
concentrations�remains uncertain despite numerous reports
in the literature.11

In this study, we established a thin-layer spectroelectro-
chemistry approach to stabilize Np(IV) species near ∼0.1 M
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Np and collected absorption spectra over a wide range from
0.5 to 10 M HNO3 to address experimental data vacancies and
inconsistencies in the literature.9−11 Emphasis was placed on
collecting spectra in low HNO3 acid concentrations (>4 M)
and establishing molar absorptivity coefficients. The Np(IV)
was stabilized by applying a controlled potential to each sample
to preserve the targeted solution conditions. Corresponding
molar absorptivity coefficients were calculated for the most
significant absorbance bands in each spectrum. To explore
Np(IV) nitrate speciation at given concentrations, principal
component analysis (PCA) was applied as a data reduction
technique. PCA is typically applied to data sets to help describe
variance within the data by reducing it into orthogonal
principal components (PCs).7 Supervised regression models
including linear partial least-squares regression (PLSR) and
nonlinear support vector regression (SVR) models were also
optimized for the quantification of HNO3. More information
on these chemometric techniques has been provided else-
where.4,12,13 The Np(IV) absorption spectra collected in this
study were used in combination with previous literature to
guide chemometric analyses and produce models that provide
insight into Np(IV) speciation over this HNO3 concentration
range as well as quantify HNO3 in unknown samples.

■ EXPERIMENTAL SECTION
Caution. The isotope 237Np (t1/2 = 2.14 × 106 years) is an

α-emitting radionuclide. All work was conducted in facilities
equipped to handle this radioisotope. Sample preparation and
measurements were performed in a negative-pressure glovebox.
Chemicals. The Np nitrate solid was obtained in-house

from the Oak Ridge National Laboratory. Milli-Q purity water
(18.2 MΩ cm−1 at 25 °C) and concentrated HNO3 (Merck,
65% for analysis) were used to prepare all solutions and
samples.
Sample Preparation. The Np stock was prepared by

dissolving a Np nitrate solid from Oak Ridge National
Laboratory in 0.01 M HNO3. To strip the 233Pa daughter
and 239Pu impurities, a Dowex-50 cation exchange column
(Sigma-Aldrich, Dowex-50×8, hydrogen form, 100−200 mesh)
was used. To reduce Np to the pentavalent oxidation state,
H2O2 was added to the Np solution. Then, the solution was
loaded onto the column and the Np was eluted with 0.5 M
HNO3. The concentrations of the resulting Np stock solutions
were determined via α-spectroscopy (Canberra Alpha
Spectrometer Model 7401) and inductively coupled plasma
mass spectrometry (ICP-MS) (iCAP Q ICP-MS, Thermo
Fischer Scientific). These stock solutions were used to prepare
all calibration and validation samples (0.08−0.17 M Np)
through dilution with appropriate volumes of concentrated
HNO3 and Milli-Q water.
The compositions of the samples examined in this study are

summarized in Table 1. Select sample compositions (denoted
with an asterisk in Table 1) underwent acid−base titration to
confirm [H+] and alpha spectroscopy to determine total Np
concentration. The ultraviolet (UV) region of the absorption
spectra was monitored for characteristic HNO2 peaks during
spectral data collection.14 Each sample was subsequently stored
in a 2.0 mL plastic microcentrifuge tube. The measurements
were performed within a reasonable time frame after sample
prep to ensure that nitrite production was not an issue. Nitrite
was not observed in any of the samples until after reducing
potentials were applied.14

Spectrophotometry. UV−visible (UV−vis) spectra were
collected with a QEPro spectrophotometer (Ocean Insight),
and near-infrared (NIR) spectra were collected by using a
NIRQuest (Ocean Insight) spectrophotometer. A stabilized
W−halogen lamp (ThorLabs) was used as the light source.
UV−vis spectra were collected from 320 to 1115 nm every
0.80 nm, and NIR spectra were collected from 892 to 1700 nm
every 1.59 nm. Spectra were averaged accordingly to optimize
the signal-to-noise ratio and were collected continuously
throughout the experiment. Spectrochemical measurements
were conducted using a 1.75 mm path length cuvette with a
screen-printed Pt honeycomb working electrode (Pine
Research), Ag/AgCl micro reference electrode (Pine Re-
search), and an SP-300 BioLogic potentiostat. Electrochemical
scans gradually reduced Np in solution from Np(VI/V) to
Np(IV). For most samples, this reduction took place at an
applied potential of approximately 0.05 V vs Ag/AgCl.
Small volumes (320 μL) of sample were pipetted into the

cuvette and spectra were checked for any anomalous signals. A
general strategy was used to increase the potential to oxidize
the Np to the hexavalent oxidation state. Once the cell current
stabilized, the potential was systematically decreased with the
goal of stabilizing Np(IV) and collecting absorption spectra.
For the samples prepared at higher acidities (>4 M HNO3),
solvent interference was encountered, likely because of H2
evolution, and a modified method was used to skip certain
potential ranges and avoid this issue.10,11 For HNO3
concentrations of 4 M and higher, the potential range from
approximately 0.5−0.1 V (vs Ag/Ag/Cl) was avoided to
prevent side reactions from occurring and disrupting the
spectroscopic signal.
Multivariate Data Analysis. Multivariate analyses were

conducted on spectra that were baseline corrected by
subtracting the minimum absorbance value (between 630
and 1030 nm for the UV−vis spectra and between 900 and
1030 nm for the NIR data) and the mean-centered.
PCA served multiple purposes in this study. First, it was

used as a data reduction technique to identify sources of
variance in the signal matrices (the spectra) for each of the
calibration set samples (Np S1−S9). The use of PCA on Np
absorbance spectra for data reduction has been reported
previously.15 This method allowed for the selection of the
Np(IV) end point UV−vis and NIR spectra from large data
sets for each sample (see Figure S2). Then, two data sets were
assembled consisting of only the Np(IV) end point UV−vis

Table 1. Np Sample Target Compositions

sample Np (g L−1) HNO3 (M)

Np S1 0.08 0.5
Np S2a 0.08 1.0
Np S3 0.08 2.5
Np S4a 0.08 4.0
Np S5 0.08 5.0
Np S6a 0.08 6.0
Np S7 0.08 7.0
Np S8a 0.08 8.0
Np S9 0.08 10.0
Np S10 0.02 3.5
Np S11 0.04 2.0
Np S12 0.17 5.5
Np S13 0.17 1.0

aUnderwent acid−base titration to confirm [H+].
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and NIR spectra for each of the calibration set samples. PCA
models were built and used for data exploration of these
spectra, with the goal of gaining insight into Np(IV)
speciation. When PCA models were built, only a baseline
correction was applied to the spectral data.
PLSR is a supervised factor analysis method that has been

used with great success for many decades to find the structure
in X (e.g., spectra) that is most predictive for Y (e.g.,
concentration matrix).12,16 PLSR models were built with the
optimal number of latent variables (LVs) corresponding to the
model with the last significant decrease in the root-mean-
square error (RMSE) of the cross-validation (CV). PLS-1
models were generated with one Y variable for HNO3
concentrations. Both k-fold (k = 5) and leave-one-out CV
strategies were evaluated.
SVR is a type of support vector machine that can be applied

to regression problems. SVR minimizes RMSE using linear and
nonlinear kernels.13,17,18 SVR handles outliers well and is less
prone to overfitting compared with PLSR. SVR models require
careful parameter selection and often need larger data sets than
PLSR. In this study, a linear SVR parameter did not perform
well with this data set. A third-order polynomial was sufficient
to build robust models and maintain the computation time.
The software created a heat map of the RMSE versus the two
hyperparameters (γ and ε). Blue regions indicate strong
performance and red regions indicate poor RMSE metrics.
Moderate ε and γ values near the center of the heat maps were
selected to minimize overfitting and underfitting. PCA, PLSR,
and SVR models were built and tested by using the software
package Vektor Direktor (2.0) from the KAX Group. The
Unscrambler X software version 10.4 (Camo Analytics AS,
Oslo, Norway) was used for multivariate curve resolution.
Model performance was evaluated by using calibration, CV,

and prediction metrics. The primary statistics used to evaluate
the model performance were the RMSE of the calibration
(RMSEC), the RMSE of the cross-validation (RMSECV), and
RMSE of the prediction (RMSEP). RMSEs were calculated
using eq 1:

= = y y

n
RMSE

( )i
n

i i1
2

(1)

where ŷi is the predicted concentration, yi is the measured
concentration, and n is the number of samples. All RMSE
values were converted to percent values for easier comparisons
by dividing the RMSEP by the average model values using eq
2:

= ×
y

RMSEP%
RMSEP

100%
med (2)

where ymed represents the average of each analyte concen-
tration range. RMSE values are in units of analyte
concentration, and lower RMSEP values indicate better
model performance.

■ RESULTS AND DISCUSSION
Np Absorbance Spectra. Spectral data sets were

generated from the spectroelectrochemical experiments of
the samples listed in Table 1. The electrochemical stabilization
of the majority of the tetravalent Np oxidation state was
achievable for these samples. Representative spectra high-
lighting the characteristic spectral features of Np(IV) are given
in Figure 1, with full spectra given in the Supporting
Information (SI) (Figure S1). These spectra were selected
from other larger spectral data sets generated during
spectroelectrochemical scans using PCA. PCA was used for
data reduction and guided the selection of the Np(IV) end
point spectra in Figure 1 using the PCA scores plot (see Figure
S2). Our data are generally consistent with those reported
previously,8−10 although it is worth noting that spectra from
the literature have typically focused on rather narrow acid
ranges and used different methods (chemical and electro-
chemical) to stabilize Np(IV) in solution. Differences in the
absorbance spectra of Np(IV) stemming from chemical or
electrochemical stabilization have not been well-studied.
Spectral features in Figure 1 change significantly with

increasing HNO3 concentration, as has been reported in the
literature.8−10 Nitrate is a coordinating ligand, and extended X-
ray absorption fine structure (EXAFS) studies of Np in nitrate
media have suggested that nitrate groups gradually replace
coordinated water molecules as nitrate concentration in-
creases.5,11 This change in the coordination environment of
the Np(IV) cation in solution is reflected in its absorbance
spectra with increasing HNO3 concentration. Certain elec-

Figure 1. PCA-guided UV−vis (A) and NIR (B) spectra of 0.08 M Np in the Np(IV) state in 0.5−10 M HNO3.
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tronic f → f transitions are hypersensitive and change in peak
shape, intensity, and position as the coordination environment
of the actinide changes.
Studies in the literature generally focus on Np(IV) nitrate

speciation based on increasing the HNO3 concentration in
three primary groups. Friedman and Toth8 reported spectra of
Np(IV) in 0.1 to 4 N HNO3. Studies have attributed the
spectral features of Np in this acid range to “lower nitrate
Np(IV) species,” such as mono- and dinitrato species;
however, more studies are needed to confirm this assign-
ment.8,19−21 Spectra of Np(IV) from 6.0 to 15.5 M HNO3
reported by Ryan9 show continued changes in the spectral
features, with the stabilization of the hexanitrato species
beginning at approximately 7 M HNO3 and the pure
hexanitrato species observed at 14 M HNO3 and above.
Although HNO3 concentrations below 6 M were not reported
in this study, Ryan suggested that spectra of Np(IV) in 5 M
HNO3 and below can be attributed to a singular lower Np(IV)
nitrate species.
However, other spectrophotometric, complexation, and

EXAFS studies suggest that this system is more complex.
Rykov et al.22 proposed three primary regions of speciation
based on spectrophotometric data, with the hydrated Np(IV)
cation dominating at [NO3

−] < 1 M, an intermediate Np(IV)−
nitrate species dominant between 1 M < NO3

− < 8 M, and the
hexanitrato complex dominant at [NO3

−] ≥ 8 M. Speciation
diagrams also suggest more complicated speciation than the
two-species model proposed by Ryan, particularly at low to
intermediate [HNO3].
Based on the literature, the spectra in Figure 1 can be

grouped into three acid ranges: 0.5−1.0, 2.5−6.0, and 7.0−
10.0 M. For each of these spectra, the primary regions that
change the most are between approximately 650−750 nm in
UV−vis and between 900−1050 nm in NIR. Changes in the
UV−vis region, particularly near 720 nm, are consistent with
the study of Friedman and Toth; however, in the study of
Chatterjee et al., these changes were not observed.8,10 Notably,
these studies used either chemical (Friedman and Toth) or
electrochemical (Chatterjee et al.) methods to stabilize
Np(IV).
The spectrum in 0.5 M HNO3 (black trace) is largely

identical to that of Np in HClO4, which is consistent with the
presence of the Np(IV) hydrated ion because HClO4 is a
noncomplexing medium.5,22 Increasing the acid concentration

to 1.0 M HNO3 does not significantly change the
corresponding spectral features, although the primary peaks
at approximately 723 and 960 nm decrease in intensity, while
the shoulders at 698, 712, 970, and 978 nm slightly increase in
intensity. Although speciation diagrams from Lahr and Knoch
and Moskvin suggest the formation of cationic and neutral
Np(IV) nitrate species, the exact speciation of Np(IV) at this
concentration is uncertain.19,20 However, EXAFS data from
Ikeda-Ohno et al. demonstrated that as nitrate concentration
increases, nitrate groups coordinate the Np(IV) ion and
displace the coordinated water molecules.11 The changes in
spectral features over this HNO3 concentration range are likely
due to this complexation behavior, although exact peak
assignments cannot be made at this time.
For the second range of acid concentrations (2.5−6.0 M

HNO3), the feature at approximately 698 nm is the most
intense peak in the UV−vis region. In the NIR, the most
intense peak is located at 980 nm. Also, the broad shoulder
centered at approximately 938 nm increases in intensity.
Intensities of the primary spectral features decrease systemati-
cally as acid concentration increases from 4.0 to 6.0 M. Again,
formation constants suggest changes in speciation at these
concentrations, with tri- and tetranitrato Np(IV) complexes
increasing in concentration.19,20 The origin of these peaks at
approximately 720 nm is uncertain and is likely due to multiple
Np(IV) nitrate complexes, so we tentatively attribute changes
in peak intensities observed here to changes in the
concentration of [Np(NO3)n]4−n species. In the NIR, the
peak at 960 nm has been attributed to the free hydrated
Np(IV) ion.21 This assignment is consistent with our data, in
which this signal has gradually decreased in intensity as
[HNO3] increases and nitrate groups coordinate the Np(IV)
ion.
In this study, over the acid range of 7.0−10.0 M,

corresponding spectral features between 650 and 750 nm
also systematically decrease, and a new band at 874 nm
increases in intensity with increasing acid concentration. The
broad peaks near 808 and 780 nm increase with acid
concentration. Ryan observed a peak at 874 nm beginning at
7.0 M HNO3 that increases in intensity up to 15.5 M HNO3
and assigned this peak to the Np(IV) hexanitrato complex.21

The spectrum collected in 10.0 M HNO3 from this study is
consistent with this observation. In the NIR, the peak at
approximately 978 nm also broadens with increasing acidity

Figure 2. Unscaled and scaled UV−vis (A) and NIR (B) spectra of 0.17 and 0.08 M Np in 1.0 M HNO3.
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and the broad signal at 938 nm decreases until it is not
observed in the spectrum of the 10.0 M HNO3 sample. EXAFS
data suggest that at 10 M nitrate concentrations, the tetra- and
trinitrato Np complexes dominate in solution.11

Given that spectral features of tetravalent Np change with
varying [HNO3], a sample with 0.17 M Np in 1.0 M HNO3
was prepared (S13) to determine if Np(IV) spectra are also
sensitive to the Np concentration. This additional sample had
approximately two times the Np concentration as S2, and both
were prepared in 1.0 M HNO3 to allow for comparison of the
corresponding spectra. Representative spectra for these
samples are listed in Figure 2. As shown by the baseline
corrected absorbance spectra in Figure 2, the primary
difference between the spectra of these two samples is the
intensity. The spectrum of the 0.17 M Np sample (black trace)
is approximately two times more intense than the spectrum of
the 0.08 M Np (blue trace). This intensity difference matches
well with the difference in concentration between these two
samples. As shown in Figure 2, the spectra are scaled so that an
integer of approximately two is multiplied by the intensity
values of the spectra corresponding to the 0.08 M Np sample
to account for this concentration difference. Upon close
examination, the spectral features of these scaled spectra (teal
trace) are almost identical. This similarity implies that at these
Np and HNO3 concentrations, spectral features of Np(IV) are
not highly dependent upon Np concentration.15

The spectra reported here confirm the sensitivity of Np(IV)
speciation and absorbance spectra to the HNO3 concentration.
However, peak intensities and shape change rather drastically
as a function of HNO3, and this complexity cannot be
accounted for using a univariate model such as Beer’s law.4

Molar extinction coefficients have been reported for Np(IV);
however, most focus on low acid concentrations (<2 M).8,9 To
our knowledge, no study has examined changes in molar
absorptivity coefficients as a function of the HNO3
concentration over this range of HNO3 concentrations for
Np(IV) using a consistent method to stabilize this specific
oxidation state. Molar absorptivity coefficients were calculated
for the most significant spectral features associated with
Np(IV) and are listed in Table 2.
PCA of Np(IV) Absorbance Spectra. Despite numerous

studies of the Np(IV) nitrate system, uncertainty remains
regarding its speciation as a function of the HNO3
concentration. In this work, we applied PCA to gain insight
into Np nitrate speciation over the studied HNO3 concen-
tration range without using knowledge of the HNO3

concentrations to build the model since PCA is an
unsupervised model.4 First, PCA was applied to large
spectroelectrochemical data sets for each sample to reduce
the data and locate representative Np(IV) absorbance spectra
for each sample. These spectra are given in Figure 1. PCA
scores plots guided the selection of these end point spectra by
providing inflection points that reflected the gradual reduction
of Np during the electrochemical scan. A representative PCA
scores plot is given in Figure S2).15

Then, after baseline correcting of the spectra such as those
shown in Figure 1, additional PCA models were built. Scores
and loadings plots of models built from UV−vis data are given
in Figure 3A,B and from the NIR data in Figure 3C,D. The
first two principal components (PCs) describe 99.4% of the
signal variance for the UV−vis spectra (PC-1:82.58, PC-
2:16.86%). The scores and loading plots are used to
understand spectral changes in the Np(IV) nitrate system. In
Figure 3A, the scores plot shows nine color-coded points, one
for each HNO3 concentration. An inverse trend is observed
between HNO3 concentration and PC-1, with the HNO3
concentration increasing as the PC-1 value decreases.
Interestingly, a cluster of points corresponding to spectra
collected from 2.5, 4.0, 5.0, 6.0, and 7.0 M HNO3 is located
near a PC-1 value of approximately 0.5. The corresponding
loading plot for PC-1 (Figure 3B, light green trace) displays
features close to 720 nm that are similar to features in the
spectrum collected in 0.5 M HNO3. Another identifying
feature of the PC-1 loading is the negative peak at 875 nm,
which Ryan assigned to the Np hexanitrato complex.9 The
loading plot of PC-1 shows that features from multiple samples
are present, indicating that each PC cannot be interpreted as a
singular Np(IV) nitrate species. It is also likely that the ratios
of complexes that form are constantly changing with acid
concentration as no two spectra are exactly the same. This
could be the reason for the V-shaped arrangement of points
(spectra) in the PCA score plots as opposed to multiple
clusters of points that would indicate similar spectra. Both the
scores and loadings plots of PC-1 suggest that this PC largely
describes HNO3 concentration.
A V-shaped curve is observed between PC-2 and HNO3

concentrations. The PC-2 values decrease with increasing
HNO3 concentration until approximately 4.0 M. The cluster of
points corresponding to 3.0, 4.0, 5.0, 6.0, and 7.0 M HNO3 is
located at the apex of the V shape and has the highest PC-2
values. As the HNO3 concentration increases to 8.0 and 10.0
M, the PC-2 values decrease.
The loading plot for PC-2 (Figure 3B) shows that this PC

has a significant loading on the band near 724 nm. The
corresponding band in the spectral data is rather complex and
initially increases in intensity until approximately 5.0 M HNO3
and then decreases in intensity from 6.0 to 10.0 M HNO3.
Compared with PC-1, the feature in the loading plot of PC-2 at
approximately 724 nm decreases in intensity. This decrease
again mimics changes observed in the spectra in which the
intensity of the peak at approximately 724 nm decreases and
broadens with increasing HNO3 concentration.
For the NIR spectra, the first three PCs explain 99.0% of the

signal variance (PC-1:55.26, PC-2:38.80, PC-3:4.92%). The
score plot of PC-2 versus PC-1 (Figure 3C) is similar to that of
the PCA model built from the UV−vis data. As observed in the
PCA score plot of the UV−vis data, the cluster of points
corresponding to spectra collected from 4.0 to 7.0 M HNO3
lies at a PC-1 value close to approximately 0.5. A similar V-

Table 2. Spectral Profiles Were Observed in 0.08 M Np in
Varying HNO3 Concentrations

sample
molar absorptivity (M−1 cm−1) at given characteristic

electronic transitions

HNO3
concentration

700
nm

724
nm

740
nm

938
nm

960
nm

968
nm

976
nm

0.5 M 35 68 29 20 66 29 22
1.0 M 38 54 28 23 54 31 32
2.5 M 40 35 28 24 29 31 41
4.0 M 45 35 31 28 24 49
5.0 M 45 34 30 28 23 47
6.0 M 41 31 27 25 45
7.0 M 38 28 25 23 36
8.0 M 30 21 19 15 24
10.0 M 16 10 13
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shape is also observed between PC-1 and PC-2. PC-2 values
increase from 0.5 to 4.0 M, with the cluster of points
corresponding to spectra collected from 4.0 to 7.0 M HNO3
located at the apex of the V-shape and decrease in value at 10.0
M HNO3.
The loadings plots of these two PCs, given in Figure 3D,

were used to help interpret the scores plot. For PC-1, a
significant loading occurs on the broad signal at 935 nm and
the peaks at 960 and 978 nm. Points corresponding to the 0.5
and 10.0 M HNO3 spectra have the most significant loadings
on PC-1. For PC-2, a negative feature is observed at 960 nm
and a positive feature is observed at 978 nm. This loading is
characteristic of the spectra from 0.5 to 1.0 M, in which the
960 nm peak attributed to the hydrated Np(IV) ion decreases
and the peak at 978 nm increases.5,22

Both PCA models describe changes in Np(IV) speciation
with an increasing HNO3 concentration. From the score plots,
consistent, gradual change is shown in the spectra from 0.5 to
2.5 M HNO3. Spectra collected in 4.0−7.0 M HNO3 have very
similar PC-1 and PC-2 values, suggesting that these spectra,
and likely their speciation, are also similar. The points
corresponding to spectra collected from 8.0 to 10.0 M
HNO3 are not positioned closely to the rest of the data set.
This suggests significant spectral changes that likely arise from
changes in the speciation. Although the exact speciation cannot
be gleaned from these plots, this change indicates that our data
can be considered in three main groups: 0.5−2.5, 4.0−7.0, and
8.0−10 M HNO3. This grouping aligns with the study from
Rykov et al. that suggested that Np(IV) nitrate speciation falls
into three primary acid ranges.22

Some details about speciation can be interpreted from the
PCA loading plots of the most significant PCs, such as features
from multiple spectra appearing in a single loadings plot. As

such, each PC cannot be interpreted as a distinct species.
Other techniques, such as multivariate curve resolution and
PLS discriminant analysis, were applied to the data in this
study but had similar results. Multivariate curve resolution
output suggests three components; however, the solutions
were ambiguous, even when external constraints (e.g., non-
negativity) were included. The analysis provides an approx-
imation concentration and spectral components, but the
method suffers from rotational ambiguity, suggesting that the
spectral response in the Np(IV) system is more complex than
Pu(IV).6

PLSR and SVR Model Optimization. Linear PLSR and
nonlinear SVR models were built and compared to see which
can more accurately predict the HNO3 concentration. PLSR
models are built from a signal matrix and a response matrix. In
this case, the signal matrix consists of the spectra, and the
response matrix consists of the HNO3 concentrations at which
each of those spectra was collected.12 The use of PLS and SVR
to quantify analyte concentrations, such as HNO3, has been
demonstrated previously for both transition metal and actinide
nitrate systems.16,23−25 Because PLSR and SVR include a
response matrix, they are considered supervised models.4

Similar to the PCA models described previously, two regions
from the UV−vis and NIR spectra were modeled separately
and compared. Because this data set is rather complex, the
initial models included spectra from all 13 samples in the
calibration set (Vis 13 model). These models were used to test
and optimize the spectral range and preprocessing routine used
for model building and to identify a suitable CV technique.
Spectral ranges that emphasize significant spectral features that
change as a function of HNO3 give the best models. The leave-
one-out CV technique is appropriate for model CV due to the
small number of samples in the training set. Based on the

Figure 3. PCA scores and loadings plots from UV−vis (A, B) and NIR (C, D) spectra. The nine HNO3 concentrations shown in the scores plots
correspond to those shown in Table 2 in sequential order.
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RMSE plots, six LVs were included in the UV−vis-based
model, and five LVs were included in the NIR-based model.
For the UV−vis model, 99.92% of the Y-variance can be
explained by six LVs. For the NIR-based PLSR models, 99.13%
of the Y-variance can be explained by five LVs. Given the
significant number of potential Np nitrato complexes in this
system and potential interactions between them, 5 or 6 LVs
were reasonable. Fewer LVs were evaluated for both UV−vis
and NIR models; however, these models do not give
reasonable percent RMSEP values. The difference between
RMSEC and RMSECV values suggests that leaving samples
out of this training set significantly affects the performance.
Analogous SVR models were also built and evaluated. SVR is

a regression technique that uses loss functions to determine
support vectors that describe the variance in a data set.13,17,18

In this study, C-SVR was used to build and train models for the
prediction. First-, second-, and third-order polynomials and a
radial basis function were tested. The third-order polynomial
allowed for the selection of optimal ε and γ values that
produced balanced RMSEC and RMSECV values.
Comparison of Models Built with Varying Numbers

of Samples. Once calibration and CV methods were
optimized with the 13 sample models, the number of samples
included in the calibration set was decreased (Vis, 12, 11, 10, 9,
and 8 models). To determine the minimum number of samples
to include in the predictive models without compromising the
predictive ability, additional models were built with one sample
successively removed from the calibration set and put in the
validation set. Multiple models were built, and the number of
samples in this independent set increased as the number of
samples in the calibration set decreased. For example, for the
eight-sample model (Vis 8), eight samples were included in the
calibration set, and the five samples that were removed
comprised the validation set (see Table S1 for information
about calibration and validation sets for each model). To be
consistent with the initial models that included spectra of all 13
samples, the number of LVs was kept consistent for all PLSR
models to allow for a comparison of predictive ability.
PLSR and SVR models built from UV−vis and NIR data

were compared to assess which model produces more accurate
HNO3 concentration predictions. Corresponding RMSE values
are given for the UV−vis-based PLSR and SVR models in
Table 3. Analogous values for NIR-based models are given in
Table S2 and Figure S6. The parity plot for the UV−vis-based
model built using nine samples is given in Figure 4. Based on
RMSE values, the PLSR and SVR models cross-validate

comparably. However, the SVR model demonstrates better
prediction performance than the corresponding PLSR model
and gives lower percent RMSEP values. This general trend is
observed for all models reported in this study. Previous work
defined percent RMSEP values of less than 10% as
“satisfactory” and less than 5% as “strong,” making this
model fall into the latter category.23 Bias is also important to
consider when assessing the strength of a predictive model.
When the standard error of prediction (SEP) value is similar to
the RMSEP, bias on the model can be regarded as
insignificant.26 For all models, the SEP values for each of the
PLSR and SVR models are close to their corresponding
RMSEP values, indicating that the bias is insignificant. Based
on the CV parity plot in Figure 4, four samples are essential for
both model types: 0.5, 2.5, 3.5, and 10 M. The 0.5 and 10 M
samples are the bounding points of this data set, and the 2.5
and 3.5 M samples represent low to intermediate acid
concentrations, which are located close to the apex seen in
the PCA scores plots, indicating their importance for the
model to cope with changes in Np(IV) speciation. This result
suggests that these four samples are needed to be included in
the calibration set. When these samples were left out during
the CV process, it led to inflated RMSECV values even though
the models demonstrated good predictive ability.
RMSE metrics as a function of the number of samples

included in the training set of the model are given in Figure 5,

Table 3. RMSE Calibration, CV, and Prediction Metrics for Nitric Acid (0.5−10 M) for the PLSR and SVR Sub-Models Built
from Vis Data

model model type (F/ε,γ) RMSEC% RMSECV% RMSEP% SEP bias

Vis 13 PLSR1 (6) 1.5 18.5
SVR (3,19) 2.1 14

Vis 12 PLSR1 (6) 2.1 8.9 22 N/A 1.0
SVR (3,8) 2.0 16 7.5 N/A 0.36

Vis 11 PLSR1 (6) 2.1 11 15 0.56 0.29
SVR (3,11) 2.0 16 5.8 0.38 0.061

Vis 10 PLSR1 (6) 1.3 15 13 0.58 0.40
SVR (1,9) 2.2 16 5.1 0.29 0.0036

Vis 9 PLSR1 (6) 1.6 19 9.4 0.48 0.17
SVR (4,7) 2.1 18 4.7 0.21 −0.13

Vis 8 PLSR1 (6) 1.3 11 18 0.63 0.63
SVR (4,5) 2.3 18 7.6 0.39 0.11

Figure 4. Parity plots of the calibration, CV, and prediction data
points for the UV−vis nine-sample (Vis 9) SVR and PLSR models of
the Np(IV) UV−vis data.
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and NIR model results are shown in Figure S7. The RMSEC
values for the PLSR and SVR models built from UV−vis data
are comparable, and PLSR models generally have more
sporadic RMSECV values than those of the SVR models. As
mentioned previously, inflated RMSECV values are attributed
to the removal of the two bounding points, 0.5 and 10.0 M,
and two low to intermediate acid concentrations, 2.5 and 3.5
M, during CV. However, the largest difference between the
PLSR and SVR models of the UV−vis data is their predictive
ability. In comparing the percent RMSEP values of these two
model types, the PLSR models generally fall at or above the
“satisfactory” rating (>10%). For the SVR models, the percent
RMSEP values for all models fall within the “strong” to
“satisfactory” ratings. This result implies that the SVR models
have better predictive ability than the corresponding PLSR
models even though the PLSR models generally cross-validated
better than the SVR models. This result also suggests that
spectra of all HNO3 concentrations in the data set are
significant and that leaving one HNO3 concentration out
significantly affects the performance of the model. Additional
discussion of the NIR-based PLSR and SVR models is given in
the SI.
Importantly, the number and identity of the samples that

were removed from the training set and put in the validation
set greatly affected the predictive ability of the model. Models
built and calibrated using nine to ten samples appear to
produce reasonable RMSE values that are calibrated, validated,
and predicted well. Metrics of models that contained eight
samples in the calibration set and five samples in the validation
set also show good prediction capability, although not as
strong as the nine- and ten-sample models. The identities of
the samples removed from the calibration set also affect the
predictive ability. Analogous models that removed the spectra
collected in 3.5 M HNO3 from the calibration set (not shown
here) perform poorly and have higher percent RMSEP values
compared with models that retained this data point in the
calibration set. A similar effect is also observed with the
removal of the spectra collected in 2.0 M HNO3 from the
training set. This observation suggests that spectra collected in
the low to intermediate acid concentration range are
particularly important, perhaps describing significant changes
in the speciation of Np(IV) that are needed for the model to
perform well.

This work evaluated whether it is possible to build a single
predictive model to cover a large range of HNO3
concentrations. The nonlinear spectral response is best
modeled using SVR. In practice, it may be advantageous to
build local regression models with sample sets covering
narrower acid ranges or employ hierarchical or locally weighted
techniques to cover a wide range of HNO3 levels, which could
be explored in future work.

■ CONCLUSIONS
The results of this study underscore the complexity of Np(IV)
absorbance spectra as a function of the HNO3 concentration.
Spectra were collected from acidic solutions in which Np(IV)
was stabilized electrochemically. Corresponding molar absorp-
tivity coefficients were calculated for the most significant
Np(IV) absorbance bands. Spectra were used to build PCA,
PLSR, and SVR models. Data reduction using PCA was
successful in guiding the selection of Np(IV) endpoint spectra
for each acid sample and identifying spectral features of
multiple Np(IV) nitrate species that contribute to the variance
in the spectral data. Additionally, PCA scores plots suggest that
Np(IV) nitrate speciation is complex and that multiple Np
nitrate complexes and ratios of these complexes form over the
acid concentration range studied here. While spectra collected
from 4 to 7 M HNO3 have similar spectral features, clear
clusters of points are not observed in these scores plots. Acid
concentration was confirmed as the most significant contrib-
utor to variance in the data set.
To assess the best method for the predictive capability of

such a complex data set, PLSR and SVR were directly
compared. Nonlinear SVR models had better predictive
abilities than linear PLSR models for both the UV−vis and
NIR data sets, as evidenced by percent RMSEP values less than
5%. Additionally, SVR models built with UV−vis spectral data
generally had lower percent RMSEP values and better
predictive ability than the corresponding SVR models built
with NIR spectra. This study also observed that percent
RMSEC and percent RMSECV values are not necessarily good
indicators of predictive capability. The outcomes of this study
are highly relevant to nuclear processing, especially for the
potential of Np(IV) to be used as a probe for HNO3
concentration, which is a critical parameter that requires
careful control during radioisotope purification.15,27 In a

Figure 5. RMSE% values for nitric acid (0.5−10 M) as a function of the number of samples included in the calibration set for (A) PLSR models
and (B) SVR models.
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broader sense, these findings also have the capability to affect
other metal nitrate systems, such as transition metal systems.
Future work will focus on modeling spectra with dynamic
temperature and varying total Np concentration because both
are significant factors that heavily influence processing
conditions.7 The ability to correlate and predict conditions
such as actinide concentration, acid concentration, and
temperature with spectral data has the potential to affect
processing outcomes and make these procedures more
efficient.
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