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Abstract
Peroxisome proliferator-activated receptors (PPARs) have been intensively studied as drug

targets to treat type 2 diabetes, lipid disorders, and metabolic syndrome. This study is part

of our ongoing efforts to map conformational changes in PPARs in solution by a combina-

tion of chemical cross-linking and mass spectrometry (MS). To our best knowledge, we per-

formed the first studies addressing solution structures of full-length PPAR-β/δ. We

monitored the conformations of the ligand-binding domain (LBD) as well as full-length

PPAR-β/δ upon binding of two agonists. (Photo-) cross-linking relied on (i) a variety of exter-

nally introduced amine- and carboxyl-reactive linkers and (ii) the incorporation of the photo-

reactive amino acid p-benzoylphenylalanine (Bpa) into PPAR-β/δ by genetic engineering.

The distances derived from cross-linking experiments allowed us to monitor conformational

changes in PPAR-β/δ upon ligand binding. The cross-linking/MS approach proved highly

advantageous to study nuclear receptors, such as PPARs, and revealed the interplay

between DBD (DNA-binding domain) and LDB in PPAR-β/δ. Our results indicate the stabili-

zation of a specific conformation through ligand binding in PPAR-β/δ LBD as well as full-

length PPAR-β/δ. Moreover, our results suggest a close distance between the N- and C-ter-
minal regions of full-length PPAR-β/δ in the presence of GW1516. Chemical cross-linking/

MS allowed us gaining detailed insights into conformational changes that are induced in

PPARs when activating ligands are present. Thus, cross-linking/MS should be added to the

arsenal of structural methods available for studying nuclear receptors.

Introduction
(Photo-) chemical cross-linking combined with mass spectrometry (MS) has evolved as an
alternative method to obtain low-resolution three-dimensional (3D) structural information of
proteins and protein complexes.[1–9] The cross-linking/MS approach allows deriving struc-
tural information by covalently connecting pairs of functional groups in the protein(s) under
investigation. This work follows up on a previous study, in which the distances bridged by
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different cross-linkers as well as an incorporated photo-reactive amino acid had served as
“molecular rulers” to map the 3D-structures of free and ligand-bound peroxisome proliferator-
activated receptor alpha (PPAR-α). Using chemical cross-linking/MS, we had been able to
monitor conformational changes in the ligand-binding domain (LBD) of PPAR-α upon ligand
binding.[8]

In the present work, we aim to monitor conformational changes in the PPAR-β/δ isoform.
For this, we applied the amine-reactive cross-linker bis(sulfosuccinimidyl)glutarate (BS2G; Fig
1A) that bridges Cα-Cα distances up to 27 Å.[10, 11] BS2G is an N-hydroxysuccinimide (NHS)
ester that connects lysines—as well as the N-terminus—in a protein, but it also possesses a ten-
dency to react with serines, threonines, and tyrosines.[12] As an additional amine-reactive
cross-linker we used the in-house synthesized urea-cross-linker (Fig 1B).[13] This linker pos-
sesses unique properties for an automated identification of cross-linked products based on its
characteristic fragmentation patterns that are created upon collision-induced dissociation
(CID)-tandem MS conditions. Also, cross-linking experiments were performed with the zero-
length cross-linker DMTMM (4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium
chloride; Fig 1C) that is able to connect amines (N-terminus and lysines) with carboxyl groups

Fig 1. Structures and reactionmechanisms of the cross-linkers used in this study. (A) Amine-reactive, isotope-labeled cross-linker BS2G-D0/D4. (B)
MS/MS-cleavable amine-reactive urea-linker; cleavable bonds are indicated in red; the fragments created under MS/MS conditions are denoted as “Bu” and
“BuUr” according to [15]. (C) Reaction mechanism of the zero-length cross-linker DMTMM, connecting carboxyl and amine groups in proteins.

doi:10.1371/journal.pone.0151412.g001
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(glutamic acid and aspartic acid). In a recent study, DMTMMwas employed as activating
reagent to couple carboxyl groups in proteins by a hydrazide cross-linker.[14]

In addition, we performed photo-cross-linking experiments by incorporating the unnatural
photo-activatable amino acid para-benzoyl-L-phenylalanine (Bpa) at specific positions into
the LBD of PPAR-β/δ.[16] The benzophenone group of Bpa is activated by UV-A light and can
potentially insert into CH, NH, SH and OH groups of all 20 proteinogenic amino acids (Fig 2);
yet, it has been shown that Bpa possesses a certain preference towards methionines.[17, 18]

PPARs are ligand-activated transcription factors that belong to the nuclear receptor protein
family. So far, three subtypes of PPARs (α, β/δ, γ) have been identified.[19–21] They are com-
posed of a DNA-binding domain (DBD) and a ligand-binding domain (LBD; for amino acid
sequence, please see S1 Fig). PPARs are activated by fatty acids and eicosanoids, but also by a
number of low-molecular weight compounds.[22–26] After activation, PPARs form heterodi-
mers with the retinoid X receptor and bind to specific DNA sequences.[27, 28] In general,
PPAR-α promotes fatty acid catabolism in the liver and the skeletal muscle, while PPAR-γ reg-
ulates fatty acid storage in adipose tissues.[29–31] PPAR-β/δ is expressed ubiquitously [32]
and is involved in fatty acid catabolism,[33] cell differentiation,[34] and cancer.[35] Due to its
complex roles in the human metabolism, PPAR-β/δ is an attractive target for drug design.

Here, we study the conformational changes in the LBD as well as full-length PPAR-β/δ
upon binding of the agonists GW0742 (KD = 0.4 nM, EC50 = 1 nM) and GW1516 (KD = 1.1
nM, EC50 = 1 nM) (Fig 3).[22] After (photo-) chemical cross-linking, enzymatic digestion, and
MS analysis of the cross-linked peptides, the distance constraints obtained allowed us to study
the conformational changes upon ligand binding in PPAR-β/δ. The identified cross-links in
the DBD and the LBD were in good agreement with published NMR and X-ray 3D-structures
(pdb entries 2ENV and 3TKM; Fig 4).[36] With the (photo-) cross-linking/MS approach, we
obtained detailed structural information mainly from the flexible N-terminal region and the
hinge region of full-length PPAR-β/δ upon ligand binding.

Fig 2. Reaction scheme of the photo-reactive amino acid Bpa. After photo-cross-linking, the reaction product might lose a water molecule during MS
analysis.

doi:10.1371/journal.pone.0151412.g002
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Material and Methods

Reagents and Chemicals
Agonists GW0742 and GW1516 were purchased from Sigma-Aldrich (Taufkirchen, Ger-
many). Nano-HPLC solvents were LC-MS grade (VWR, Darmstadt, Germany), water was
purified with a TKA X-CAD system (Thermo Fisher Scientific, Bremen, Germany). Trypsin
(cleaving C-terminally of lysine and arginine), GluC (cleaving C-terminally of glutamate and
aspartate), and ProTEV Plus (cleaving C-terminally of ENLYFQ(G/S)) were obtained from
Promega (Mannheim, Germany). The cross-linker BS2G-D0/D4 was obtained from Thermo
Fisher Scientific (Rockford, IL). The urea-linker was synthesized and purified in-house.[13]
Bpa was obtained from Bachem (Bubendorf, Switzerland). Tryptone, yeast extract, antibiotics,
TCEP, and IPTG were purchased from Roth (Karlsruhe, Germany). Iodacetamide, DTT, D-
desthiobiotin, DMTMM, and all other chemicals (Sigma-Aldrich, Taufkirchen, Germany)
were obtained at the highest available purity.

Protein Expression and Purification
Expression of PPAR-β/δ LBD as N-terminal Strep-tag II construct was performed as described
recently.8 The photo-activatable amino acid Bpa was incorporated into PPAR-β/δ at positions
Phe-180 and Tyr-443 according to the method described by Schultz et al. [16] Cells were resus-
pended in buffer A (50 mMHEPES, 300 mMNaCl, 1 mM TCEP, pH 6.8) at a 1:3 ratio. To
resuspended cells, one tablet of protease inhibitor complete (Roche, Mannheim, Germany) and
benzonase (final concentration 5 U/ml; Sigma-Aldrich, Taufkirchen, Germany) were added.
After sonication on ice, the lysate was centrifuged at 35,000 g (4°C, 60 min). Before chro-
matographic separation, the supernatant was filtered using Filtropur S 0.2 μm filtration units
(Sarstedt, Nümbrecht, Germany). The purification step was carried out on an ÄKTA Prime
system (GE Healthcare, Munich, Germany) at 6°C. The supernatant was loaded at 0.3 ml/min

Fig 3. Structures of PPAR-β/δ agonists (A) GW0742 and (B) GW1516.

doi:10.1371/journal.pone.0151412.g003
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onto two connected 1 ml StrepTrap HP columns (GE Healthcare, Munich, Germany) using a
50-ml superloop. Wildtype PPAR-β/δ and variants and were eluted with 1 ml/min buffer B (50
mMHEPES, 300 mMNaCl, 1 mM TCEP, 10 mMD-desthiobiotin, pH 6.8). PPAR-β/δ-con-
taining fractions were pooled, washed, and concentrated via Amicon ultracentrifugation units
(cut-off 10 kDa; Millipore, Darmstadt, Germany) to 12−35 μM and stored at −20°C. Full-

Fig 4. High-resolution 3D-structures of PPAR-β/δ. (A) X-ray structure of PPAR-β/δ LBD (pdb 3TKM),
bound to agonist GW0742; The activation function helix 2 (AF2, helix 12) is shown in red, the flexibleΩ-loop
is shown in orange; the amino acids replaced by Bpa are shown as green sticks; the ligand GW0742 is shown
in stick representation in magenta. Helices containing amino acids that are involved in cross-linking are
colored (helix 1: light blue; helix 2: light pink; helix 4: pale cyan; helix 8: pale green; helix 10: wheat; helix 11:
pale yellow). (B) NMR structure of PPAR-β/δ DBD (pdb 2ENV).

doi:10.1371/journal.pone.0151412.g004

Monitoring PPAR-β/δ Structures by Cross-Linking/MS

PLOSONE | DOI:10.1371/journal.pone.0151412 March 18, 2016 5 / 20



length PPAR-β/δ was obtained from Biomol (Hamburg, Germany) as N-terminal (His)6 con-
struct (for amino acid sequence please see S1 Fig).

Cross-Linking Experiments
TEV protease was added (5–10 U) to PPAR-β/δ LBD wildtype and variants as well as full-
length PPAR-β/δ to remove the tag (Strep-tag II for PPAR-β/δ LBD; (His)6-tag for full-length
PPAR-β/δ). After cleavage (6°C, overnight) all samples were washed three times with buffer A
(see Protein Expression and Purification) using an Amicon centrifugation unit (10 kDa). Sam-
ples were adjusted to a protein concentration of 5 μM and immediately used for (photo-)
cross-linking experiments. For photo-cross-linking, the PPAR-β/δ LBD variants F180Bpa and
Y443Bpa were mixed with the agonist GW0742 or GW1516 in DMSO to give a 20-fold molar
excess of ligand over protein. As a control, one sample was mixed with DMSO without the
addition of ligand. After 30 min at 4°C, the solutions were irradiated with UV-A light (365 nm;
8 J/cm2) to activate the photo-reactive amino acid Bpa (Scheme 1). Afterwards, samples were
analyzed by SDS−PAGE or subjected to in-solution digestion with trypsin or a trypsin/GluC
mixture. Bands of interest were excised from SDS-gels and in-gel digested with trypsin accord-
ing to an existing protocol.[37] After enzymatic digestion, the peptide mixtures were immedi-
ately analyzed by LC/MS/MS.

PPAR-β/δ LBD and full-length PPAR-β/δ were mixed with both agonists as described
above. After incubation on ice, the PPAR-β/δ LBD was mixed either with DMTMM (8000-fold
molar excess over protein), BS2G-D0/D4 (100- or 200-fold molar excess over protein) or the
urea-linker (100- or 200-fold molar excess over protein) for 2 hrs on ice. Samples were either
quenched with ammonium bicarbonate (BS2G-D0/D4 and urea-linker) to a final concentration
of 20 mM or immediately mixed with Laemmli buffer and analyzed by SDS-PAGE
(DMTMM). Full-length PPAR-β/δ was mixed with BS2G-D0/D4 to give a 200-fold molar excess
of cross-linker over the protein. After 2 hrs on ice, samples were quenched as described above.

Nano-HPLC/Nano-ESI-Orbitrap-MS/MS Analysis
In-solution and in-gel digestion mixtures were analyzed by LC/MS on an UltiMate 3000 RSLC
Nano system (Thermo Fisher Scientific, Bremen, Germany) coupled to an Orbitrap Fusion Tri-
brid mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) equipped with a Nanos-
pray Flex Ion Source (Thermo Fisher Scientific, Bremen, Germany). Samples were loaded onto
a pre-column (C8 reversed phase, Acclaim PepMap, 300 μm � 5 mm, 5 μm, 100 Å, Thermo
Fisher Scientific, Bremen, Germany) and washed with water containing 0.1% (v/v) TFA for 15
min, before the peptides were separated on the separation column (C18 reversed phase,
Acclaim PepMap, 75 μm � 250 mm, 2 μm, 100 Å, Thermo Fisher Scientific, Bremen, Germany)
using gradients from 1% to 35% (v/v) B (90 min), 35% to 85% (v/v) B (5 min) followed by 85%
B (5 min), with solvent A: 0.1% (v/v) formic acid (FA) in water (LC-MS grade, VWR, Darm-
stadt, Germany) and solvent B: 0.08% (v/v) FA in acetonitrile (LC-MS grade, VWR, Darmstadt,
Germany). Data were acquired using data-dependent MS/MS mode where each high-resolu-
tion full-scan in the orbitrap (m/z 300 to 2000, R = 120,000) was followed by high-resolution
product ion scans in the orbitrap (collison-induced dissociation (CID), 35% normalized colli-
sion energy, R = 15000; higher energy collision-induced dissociation (HCD) 29% normalized
collision energy ± 15 stepped collision energy, R = 15,000) within 5 s, starting with the most
intense signal in the full-scan mass spectrum (isolation window 2 u). For BS2G-D0/D4, a
charge-dependent isolation window and offset windows were employed (charge 2+: offset 1 u,
isolation window 4 u; charge 3+: offset 0.66 u, isolation window 3.5 u, charge 4+: offset 0.5 u,
isolation window 3 u, charge 5+: offset 0.4 u, isolation window 2.5 u, charge 6+: offset 0.33 u,
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isolation window 2 u, charge 7+: offset 0.28 u, isolation window 1.5 u, charge 8+: offset 0.25 u,
isolation window 1 u). Dynamic exclusion (exclusion duration: 60 s, exclusion window:
±2 ppm) was enabled to allow detection of less abundant ions. Data acquisition was controlled
with Xcalibur 3.0.63 (Thermo Fisher Scientific, Bremen, Germany). Peptides were identified
with the Proteome Discoverer 1.4 (Thermo Fisher Scientific) using Mascot server, version 2.2.
Cross-linked products were identified with the in-house software StavroX,[38] version 3.4.12
and MeroX version 1.4.12.[39] All cross-links were manually evaluated.

Visualization of Cross-links
All 3D-structures were created with PyMOL (0.99rc6). Circos plots were created with Circos
(0.67–7).[40]

Results
The X-ray structure of PPAR-β/δ LBD has been determined in complex with the agonist
GW0742 (pdb entry 3TKM).[36] Yet, no high-resolution structural information is available to
date on how GW1516 interacts with PPAR-β/δ. Given that both agonists differ only by the
presence of a fluorine atom, similar binding modes were expected for both ligands. To clarify
this, we employed the chemical cross-linking/MS approach using a variety of external cross-
linkers as well as the incorporation of the photo-reactive amino acid Bpa. For the latter, two
Bpa variants of PPAR-β/δ LBD (amino acids 167–443) were expressed in E.coli cells using the
method developed by Schultz and coworkers.[16] PPAR-β/δ LBD variants were individually
transformed into E. coli cells carrying a Bpa-specific suppressor tRNA and an aminoacyl-tRNA
synthetase that allows the incorporation of Bpa in place of the natural amino acid via the intro-
duced TAG stop codon. In PPAR-β/δ LBD, either Phe-180 or Tyr-443 was replaced by the
photo-reactive amino acid Bpa: Phe-180 is located on Arm II in helix 1, while Tyr-443 is
located on Arm I of activation function helix 2 (AF2, helix 12) (Fig 4A). As both helices are
prone to conformational changes upon ligand binding they are ideal targets for the incorpo-
ration of the photo-reactive amino acid Bpa.

Purification of PPAR-β/δ LBD and Variants F180Bpa and Y443Bpa
PPAR-β/δ LBD and Bpa variants were purified as N-terminally Strep II-tagged proteins via
affinity chromatography. Pure protein was obtained after TEV protease cleavage (~13 μg/g
cells for PPAR-β/δ LBD and ~6.5 μg/g cells for PPAR-β/δ LBD variants). The identity of the
PPAR-β/δ LBD variants and the incorporation of Bpa at the desired positions were confirmed
by in-gel digestion and LC/MS/MS analysis.

Cross-linking with Amine-Reactive and Zero-Length Linkers
After purification of PPAR-β/δ LBD, we performed cross-linking experiments with the homobi-
functional cross-linker BS2G that bridges Cα-Cα distances up to 27 Å (Fig 1A). Cross-links
identified between lysines—and to a certain extent also with serines, threonines, and tyrosines—
allow deducing conformational information in PPAR-β/δ. We identified a number of cross-
links in the absence, but also in the presence of ligands (S1 Table). All cross-links identified in
free PPAR-β/δ LBD were in accordance with the published X-ray structure (pdb entry 3TKM).
Upon agonist binding, additional cross-links were identified between theN-terminus of the
LBD (corresponding to Gly-167) and the flexibleO-loop (for agonist GW1516) as well as the
activation function helix 2 (for agonist GW0742) (Fig 4A). Interestingly, these cross-links were
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not identified in free PPAR-β/δ LBD and indicate conformational changes upon binding of
either of the agonists. All cross-links found for BS2G are presented in Fig 5.

Additional cross-linking experiments were performed using the MS/MS cleavable amine-
reactive urea-linker (Fig 1B) that allows an automated analysis of cross-links via its characteris-
tic fragmentation pattern.[13, 15, 39] As such, a cross-link between the N-terminus of the LBD
(Gly-167) and Lys-198 in PPAR-β/δ was unambiguously identified based on the specific frag-
mentation pattern of the urea-linker and intense backbone cleavage of the connected peptides
(Fig 6A). The urea-linker is an amine-reactive homobifunctional cross-linker that bridges Cα-
Cα distances up to 30 Å, which is only slightly longer than the distances BS2G can connect. As
such, it is not surprising that for PPAR-β/δ LBDmost of the cross-linking sites found in experi-
ments with BS2G were also identified with the urea-linker (S2 Table).

To allow carboxylic acid side chains in PPAR-β/δ LBD to participate in the cross-linking
reaction, we also employed the zero-length cross-linker DMTMM (Fig 1C). DMTMM cross-
links spatially neighbored amine groups (N-terminus and lysine residues) and carboxyl groups
(aspartic and glutamic acid residues) and thus yields complementary short-range information
compared to the homobifunctional amine-reactive linkers. With DMTMM, similar cross-links
were identified in PPAR-β/δ LBD in the presence as well as in the absence of ligands (S2
Table). MS/MS data of one exemplary cross-link are shown in Fig 6B. In GW0742-bound
PPAR-β/δ LBD, two additional cross-links were identified, connecting the N-and the C-termini
as well as the N-terminus (Gly167) and Glu-331 of the LBD. Both cross-links cannot be
explained by the published X-ray structure. In order to be cross-linked by DMTMM, the
respective amino acid side chains have to come into close spatial neighborhood indicating that
PPAR-β/δ LBD adopts a specific conformation in solution after ligand binding.

Photo-Cross-linking with Bpa Variants
To obtain complementary structural information, the PPAR-β/δ LBD variants F180Bpa and
Y443Bpa were produced by genetic engineering.[16] In each of the two variants, the photo-
reactive amino acid Bpa was specifically introduced at a defined position in different flexible
regions of PPAR-β/δ LBD to optimize monitoring conformational changes upon ligand bind-
ing (Fig 4A). Photo-cross-linking experiments were conducted in the presence and the absence
of agonists GW0742 and GW1516 by irradiation with UV-A light. After the photo-cross-link-
ing reaction, PPAR-β/δ LBD variants were enzymatically digested and the resulting peptide
mixtures were analyzed by LC/ESI-MS/MS yielding several cross-links (S3 Table). For PPAR-
β/δ variant F180Bpa, one cross-link was found in the absence as well as in the presence of ago-
nists (Fig 7). For variant PPAR-β/δ Y443Bpa, two cross-links were identified in the absence,
while one was identified in the presence of ligands (S3 Table). All cross-links identified with
our complementary approaches are visualized as Circos plots (Fig 8A–8C, S2–S13 Figs).[40]
Photo-cross-links identified in PPAR-β/δ variants F180Bpa and Y443Bpa were comparable for
free and agonist-bound protein. In ligand-free PPAR-β/δ variant Y443Bpa, an additional
cross-link between Bpa-443 and Ile-330 (located in the N-terminal region of helix 8) was iden-
tified, which perfectly matches the published X-ray structure (Fig 4A).

Cross-linking with Full-Length PPAR-β/δ
We performed additional cross-linking experiments with full-length PPAR-β/δ comprising the
DBD and the LBD (S1 Fig) to rule out that some cross-links found for PPAR-β/δ LBDmight be
induced by the artificially created N-terminus, but in fact do not represent the native structure
of PPAR-β/δ. For full-length PPAR-β/δ, a high number of cross-links were identified in the flex-
ible hinge region connecting DBD and LBD as well as in the flexibleN-terminal region—both in
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Fig 5. BS2G-cross-linked amino acids in PPAR-β/δ LBD and DBD. Cross-links identified in PPAR-β/δ in
experiments with BS2G are mapped on the available 3D structure (3TKM). (A) PPAR-β/δ LBD without
agonists, (B) PPAR-β/δ LBD with GW0742; the bound ligand is shown in magenta, (C) PPAR-β/δ LBD with
GW1516, and (D) PPAR-β/δ DBD.

doi:10.1371/journal.pone.0151412.g005
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the presence and in the absence of agonists (S4 Table). All unambiguously identified cross-links
were in good agreement with published high-resolution 3D-structures of the DBD and the LBD.
Several of these cross-links were found between the flexible N-terminal and hinge regions and
the DBD or within the DBD (Fig 8). As such, theN-terminus of full-length PPAR-β/δ was

Fig 6. MS/MS spectra of cross-linked products in PPAR-β/δ. (A) MS/MS spectrum of a 3+ charged cross-
linked product atm/z 673.033, identified in experiments with the urea-linker. The cross-linked product was
unambiguously identified based on the presence of a y3 ion atm/z 374.251 (β-peptide) and a y11 ion atm/z
1262.640 (α-peptide). The specific fragmentation pattern of the urea-linker is described as “Bu” and “BuUr”.
[15] (B) MS/MS spectrum of a 3+ charged cross-linked product atm/z 820.104, identified in experiments with
the zero-length cross-linker DMTMM. The cross-link between theN-terminus of the LBD (Gly-167) and Glu-
373 was identified based on a b1 ion atm/z 1196.661 (α-peptide) and a b2 ion atm/z 1283.700 (β-sequence).
{ denotes the N-terminus of the protein.

doi:10.1371/journal.pone.0151412.g006
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cross-linked—both in the presence and in the absence of ligands—to Lys-198 in the LBD as well
as to a number of amino acids in the DBD (amino acids 73–147), i.e., Lys-122, Lys-107, and
Lys-126. Interestingly, only in the presence of GW1516 an additional cross-link between theN-
terminus and Lys-423 was found (Fig 8C).

Discussion

Structures of PPAR-β/δ LBD
Chemical cross-linking with the amine-reactive cross-linkers BS2G and the urea-linker yielded
a high number of cross-links in free as well as in ligand-bound PPAR-β/δ LBD (Table 1, S1 and
S2 Tables). After ligand binding, several cross-links were identified between the N-terminus
(corresponding to Gly-167) of the isolated LBD and various lysines in PPAR-β/δ LBD. Some of
these cross-links cannot be explained by the X-ray structure of GW0742-bound PPAR-β/δ
LBD (pdb 3TKM; Fig 5A–5C), taking the distances into account the cross-linkers can bridge
(up to 30 Å). They can, however, be explained by a large degree of flexibility in the N-terminal
region of the LBD where Gly-167 is located. As such, in the ligand-bound-state of PPAR-β/δ
LBD, cross-links were identified between the N-terminus (Gly-167) and Lys-423/424 (C-termi-
nal region of helix 11) and Lys-324 (N-terminal region of helix 8) (Fig 5B and 5C). With the
agonist GW0742, cross-links between the N-terminus of the LBD (Gly-167) and Lys-440 (AF2)
as well as between Lys-197/198 (helix 2) and Lys-324 (N-terminal region of helix 8) were iden-
tified (Fig 5B). In the GW1516-bound state, a cross-link between the N-terminal Gly-167 and
Lys-231, located on the flexible O-loop, was identified (S1 Table). As no diffraction data are
available for parts of the omega loop in the high-resolution X-ray structure, the location of Lys-

Fig 7. MS/MS spectrum of a 4+ charged cross-link atm/z 428.986, identified in photo-cross-linking experiments with the PPAR β/δ variant
F180Bpa. The cross-link was unambiguously identified between Bpa-180 and Ile-379, based on the y2 ion atm/z 288.205, the y3 ion atm/z 469.780, and the
b8 ion atm/z 704.366.

doi:10.1371/journal.pone.0151412.g007
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Fig 8. Cross-linked amino acids in full-length PPAR-β/δ. Cross-linked amino acids found with the amine-
reactive linker BS2G are presented for full-length PPAR β/δ as Circos plots (A) without ligand, (B) with
GW0742, (C) with GW1516. The flexibleN-terminal and hinge regions are shown in grey, the LBD is shown in
orange, the DBD is shown in ochre.

doi:10.1371/journal.pone.0151412.g008
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Table 1. Comparison of identified (photo)-cross-links in full-length PPAR-β/δ and PPAR-β/δ LBD. For the LBD, cross-links are summarized for all
reagents used in this study, while for full-length PPAR-β/δ only BS2G cross-links are presented; { denotes theN-terminus of the protein; } denotes theC-termi-
nus of the protein.

PPAR-β/δ ligand-binding domain (LBD) PPAR-β/δ full-length

Cross-linked amino acids Free GW0742 GW1516 Cross-linked amino acids Free GW0742 GW1516

{167+S181/K182 X X X {+K107 X X

{167+K182 X X X {+S116/K118 X

{167+K190 X X X {+K121/K122 X X X

{167+T195/K196/K197 X {+K122 X X X

{167+K196/K197/K198 X X X {+K126 X X

{167+K197/K198 X X X {+K155 X X

{167+K198 X {+K197/K198 X X X

{167+S201 X {+K198 X X

{167+K231 X {+K423 X

{167+E264 X X X K82+K121/K122 X

{167+K267 X X K107+K155 X X

{167+K324 X X K118+K122 X X X

{167+E331 X K118+K126 X X

{167+E373 X X X K118+K134 X

{167+D377 X X X K118+S181/K182 X

{167+K404 X X K118+K198 X

{167+K423/K424 X X K121+K126 X X X

{167+K440 X K122+K126 X X X

{167+}443 X K122+K134 X X X

{167/G167/S168/Q169/Y170+X180 X K122+K155 X

X180+I379 X X X K122+K157 X

S181/K182+K197/K198 X X X K126+K134 X

S181/K182+K198 X X K126+K155 X

K182+K197 /K198 X X X K134+K197/K198 X X

K190+K197/K198 X X X K155+K182 X

K190+K198 X X X K155+K190 X

T195/K196/K197+K198 X X K155+K197 X X X

K197/K198+S201 X X X K155+K197/K198 X

K197/K198+K206 X X X K155+K404 X

K197/K198+S208 X X X K157+K197/K198 X

K197/K198+K206/S208/T210 X K190+K197/K198 X

K197/K198+K324 X K197/K198+S201 X X X

K197/K198+K423/K424 X K198+S201 X X X

K197+K424 X K324+K423/K424 X

K198+S201 X X X K423+K440 X X

K198+K206 X X

S201/T204/K206/S208+K302 X

K226+Y249/K241 X

K241+K423/K424 X

S298/K302+K400 X

K324+K423/K424 X X X

K324+K424 X X

I330+X443 X

K333+K423/K424 X

(Continued)

Monitoring PPAR-β/δ Structures by Cross-Linking/MS

PLOSONE | DOI:10.1371/journal.pone.0151412 March 18, 2016 13 / 20



231 is ambiguous and as such, the respective residue cannot be assigned in Fig 5C. This cross-
link might be explained by a large conformational change in the O-loop after ligand binding,
bringing the N-terminus of the LBD into close distance to the O-loop.

Also, in both ligand-bound states, cross-links were found between the N-terminal Gly-167
of the LBD and Lys-404 (N-terminal region of helix 11) and Lys-267 (C-terminal region of
helix 4) (Fig 5B and 5C) that are in agreement with the distances the cross-linkers can bridge.
The fact that both cross-links were not identified in free PPAR-β/δ LBD suggests the presence
of a different stabilized conformation upon ligand binding.

Additional cross-linking experiments performed with the zero-length cross-linker
DMTMM that delivers valuable short-range information resulted in a high number of cross-
links, both in the free and in the ligand-bound state of PPAR-β/δ LBD (S2 Table). In all states,
a cross-link was identified between Gly-167 and Glu-264, located in the C-terminal region of
helix 4. Interestingly, this helix was also cross-linked by BS2G in the ligand-bound state (Lys-
267) indicating that Gly-167 comes into close distance to helix 4 and is thus cross-linked by
BS2G and the zero-length cross-linker DMTMM. Two additional cross-links between Gly-167
and the C-terminus as well as between Gly-167 and Glu-331 (located on helix 8) were identified
in the GW0742-bound state. Both cross-links cannot be explained by the published X-ray
structural data, again confirming the stabilization of a specific conformation where the N-ter-
minus of the LBD comes into close spatial neighborhood to helices 4 and 8 (Fig 4A). Yet, with
GW1516 these cross-linking sites were not identified, possibly indicating different binding
modes for the two agonists GW0742 and GW1516.

The incorporation of the photo-reactive amino acid Bpa at two defined positions into
PPAR-β/δ LBD, replacing either Phe-180 or Tyr-443, followed by UV-irradiation yielded only
a few cross-links, underlining the selectivity of this strategy. Most of the cross-links were identi-
fied in free as well as in ligand-bound states of PPAR-β/δ LBD. For PPAR-β/δ variant F180Bpa,
one cross-linking site was identified, connecting Ile-379 on helix 10 with Bpa-180 (Fig 4A).
The cross-link between the Bpa-443, located on AF2, and Ile-330, located on helix 8 (Fig 4A),
was found exclusively in the ligand-free state of PPAR-β/δ variant Y443Bpa. No cross-links
were identified between AF2 and the flexible O-loop, indicating that the O-loop and the AF2
are not oriented towards each other, which matches the published X-ray structure (Fig 4A).

Structures of Full-Length PPAR-β/δ
To complement our results obtained with the LBD of PPAR-β/δ, we performed cross-linking
experiments with full-length PPAR-β/δ using the amine-reactive cross-linker BS2G. We identi-
fied a large number of cross-links in the hinge region between DBD and LBD, in the flexible N-
terminal region, and within the DBD (Fig 8). A cross-link identified in the ligand-free state
between Lys-155 (located in the hinge region) and Lys-404 (located on helix 11) of full-length
PPAR-β/δ points to the same conformation as the cross-link found between Gly-167 and Lys-

Table 1. (Continued)

PPAR-β/δ ligand-binding domain (LBD) PPAR-β/δ full-length

Cross-linked amino acids Free GW0742 GW1516 Cross-linked amino acids Free GW0742 GW1516

M419+X443 X X X

K423+D441 X X X

K423/K424+T425/T427/T429/S430 X

K423/K424+K440 X X X

doi:10.1371/journal.pone.0151412.t001
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404 in PPAR-β/δ LBD. The fact that this cross-link was identified both in the ligand-bound
state of PPAR-β/δ LBD as well as in the ligand free-state of full-length PPAR-β/δ suggests an
overall presence of this specific conformation. It might be speculated that in the truncated
form of PPAR-β/δ, comprising only the LBD, the N-terminal region and helix 1 are more flexi-
ble than in full-length PPAR-β/δ, resulting in more pronounced conformational changes upon
ligand binding than in full-length PPAR β/δ. In the GW1516-bound state, a cross-link was
identified between the N-terminus and Lys-423 (located on helix 11 in the LBD) in full-length
PPAR-β/δ. This suggests that after binding of GW1516, the N- and C-termini of PPAR-β/δ
come into close neigborhood (Fig 8C). The fact that this cross-link was specifically identified in
GW1516-bound PPAR-β/δ, however, does not necessarily indicate that is it not present in
GW0742-bound protein. Clearly, more cross-linking experiments are required to support the
finding that a specific conformation is induced in full-length PPAR-β/δ only in the presence of
GW1516.

Our cross-linking results yield first structural insights into the conformational changes of
full-length PPAR-β/δ upon ligand binding. In the past years, crystal structures of three nuclear
receptors have emerged showing interfacial coupling between the DBDs and LBDs.[41–44]
Our data confirm and extend these high-resolution structural data, indicating interactions
between DBD and LBD in PPAR-β/δ in solution (Fig 8). We mapped the cross-links found for
full-length PPAR-β/δ into the published X-ray structure of ligand-bound PPAR-γ, co-crystal-
lized with DNA response element, coactivator peptides, and RXR-α (pdb 3DZU) [41] (S14
Fig). All cross-links between DBD and LBD as well as those connecting the flexible hinge
region with DBD and LBD in PPAR-β/δ proved to be in good agreement with the X-ray struc-
ture. One slightly longer cross-link (40.8 Å) between the hinge region and helix 11 (LBD) can
easily be explained by the inherent flexibility of the hinge region. Moreover, our cross-linking
data were able to deliver structural information of the highly flexible N-terminus of PPAR-β/δ,
for which no structural data are available in the PPAR-γ structure.

Conclusively, the cross-linking/MS approach proved highly advantageous to study nuclear
receptors, enabling us to reveal the interplay between DBD and LDB in PPAR-β/δ. We envision
that chemical cross-linking/MS, combined with other structural, biophysical, and cell-based
studies will enhance our current knowledge of how PPARs function and how conformational
changes occur when activating ligands are present.

Conclusions & Outlook
The cross-linking/MS approach revealed different conformations of PPAR-β/δ LBD and full-
length PPAR-β/δ in solution, stabilizing one specific conformation through ligand binding. To
our best knowledge, we performed the first studies addressing the structure of full-length
PPAR-β/δ upon ligand binding, revealing the interplay between DBD and LDB in free and
ligand-bound PPAR-β/δ. Our cross-linking data were able to deliver structural information
also from the highly flexible N-terminus of PPAR-β/δ, for which no structural data are avail-
able in the PPAR-γ structure. Moreover, a close distance between the N- and C-terminal
regions was observed for full-length PPAR-β/δ in the presence of GW1516. Further cross-link-
ing experiments are planned for PPAR-β/δ in the presence of DNA response element and RXR
to complement existing high-resolution 3D-structural data.

Supporting Information
S1 Fig. Amino acid sequence of PPAR-β/δ. Full-length PPAR-β/δ was subjected to cleavage
with TEV protease to remove the N-terminal (His)6-tag. The TEV cleavage site is shown
underlined. Due to TEV cleavage, two additional amino acids (G and A) are present at the N-
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response element (PPRE), coactivator peptides (NCOA2), and RXR-α (pdb 3DZU). Cross-
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