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Abstract

Previous investigations of the neural code for complex object shape have focused on two-

dimensional (2D) pattern representation. This might be the primary mode for object vision, based 

on simplicity and direct relation to the retinal image. In contrast, 3D shape representation requires 

higher-dimensional coding based on extensive computation. Here, for the first time, we provide 

evidence of an explicit neural code for complex 3D object shape. We used a novel evolutionary 

stimulus strategy and linear/nonlinear response models to characterize 3D shape responses in 

macaque monkey inferotemporal cortex (IT). We found widespread tuning for 3D spatial 

configurations of surface fragments characterized by their 3D orientations and joint principal 

curvatures. Configural representation of 3D shape could provide specific knowledge of object 

structure critical for guidance of complex physical interactions and evaluation of object 

functionality and utility.

A primary goal in the study of object vision is to decipher the neural code for complex 

object shape. At the retinal level, object shape is represented isomorphically (i.e., replicated 

point-for-point) across a 2D map comprising approximately 106 pixels. This isomorphic 

representation is far too unwieldy and unstable (due to continual changes in object position 

and orientation) to be useful for object perception. The ventral pathway of visual cortex1–2 

must transform the isomorphic image into a compact, stable neural code that efficiently 

captures the shape information needed for identification and other aspects of object vision.

Previous studies of complex shape coding have focused on 2D pattern representation. These 

studies have shown that neurons at intermediate (areas V2 and V4) and final (IT) stages in 

the monkey ventral pathway process information about 2D shape fragments. V2 and V4 
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neurons encode curvature, orientation, and object-relative position of 2D object boundary 

fragments3–7. At the population level, these signals combine to represent complete 

boundary shapes as spatial configurations of constituent fragments8. In posterior IT, 

individual neurons integrate information about multiple 2D boundary fragments, producing 

explicit signals for more complex shape configurations9–10. In central/anterior IT, the 

homologue of high-level object vision regions in human cortex11–13, neurons are selective 

for a variety of patterns and that selectivity is organized across the cortical surface in a 

columnar fashion14–18. At each stage, neurons appear to be tuned for component-level 

shape, although holistic shape tuning can evolve in IT through learning19. Holistic object 

representation may be more fully realized in medial temporal brain structures associated 

with long-term declarative memory20 and in prefrontal areas processing categorical object 

information21.

The question addressed here is whether and how complex 3D shape is encoded by IT 

neurons. Our specific hypothesis is that IT neurons encode 3D spatial configurations of 

surface fragments. Under this hypothesis, the 2D structural representations described above 

could be considered to occupy a subspace within the higher-dimensional 3D structure 

domain. (I.e., surface fragments forming the 2D self-occlusion boundary of an object would 

be a special case of 3D surface fragments.) This hypothesis is consistent with classic shape 

coding theories in which objects are represented as 3D spatial configurations of simple 3D 

parts22,23. The alternative hypothesis, advanced in more current theories, is that complex 

shape perception is based primarily on 2D image processing. According to these theories, 

consistent recognition of 3D objects from different vantage points is achieved by learning 

associations between multiple 2D views24. The multiple-views hypothesis avoids the time-

consuming computational complexity of inferring 3D structure. This hypothesis is supported 

by psychophysical results showing that view-invariant recognition is learning-

dependent25,26 and by computational studies showing that 2D image processing can 

support rapid, accurate object identification27,28. (However, these results and the multiple-

views hypothesis itself are also compatible with 3D representation29; see Discussion.)

The classic hypothesis that complex shapes are represented as 3D spatial configurations of 

3D parts has yet to be tested at the neural level. Previous studies have shown differential 

responses across a small number of 3D shapes30 or tuning along a single depth-related 

dimension31–34, but such results cannot demonstrate or explain complex 3D shape 

representation. (Similar responses in dorsal pathway cortex have been interpreted as signals 

for orientation in depth35.) Representation of 3D object shape would require neurons with 

much more complex, multidimensional tuning properties. That kind of tuning can only be 

measured with large stimulus sets in which a wide range of 3D shape elements are combined 

in many different ways, so that quantitative analyses can disambiguate which 3D shape 

factors (if any) are uniquely and consistently associated with neural responses. This has not 

been attempted before due to the intractable size of 3D shape space. In this virtually infinite 

domain, a conventional random or systematic (grid-based) stimulus approach can never 

produce sufficiently dense, combinatorial sampling.

We addressed this obstacle with a novel evolutionary stimulus strategy. Beginning with an 

initial generation of 50 random 3D shapes, stimuli evolved through multiple generations 
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under the guidance of neural feedback. Ancestor stimuli from previous generations were 

probabilistically morphed, either locally or globally, to produce descendant stimuli that 

varied the ancestor’s shape characteristics and/or combined them with new shape features. 

The average neural response to each stimulus determined the probability with which it 

produced morphed descendants in subsequent stimulus generations. This strategy has two 

advantages. First, sampling becomes increasingly focused around the response range of the 

neuron, so that far less experimental time is spent sampling null response regions. Second, in 

the high-response stimulus lineages, the (initially unknown) shape characteristics encoded 

by the neuron are repeatedly varied and recombined with other shape features. The result is 

much denser, more combinatorial sampling in the most relevant region of the 3D shape 

domain. (In contrast, standard gradient descent search aims to identify a single, maximum 

response stimulus, which by itself cannot reveal what specific shape information is encoded 

by a neuron.) This evolutionary stimulus strategy made it possible for the first time to test 

the 3D configural coding hypothesis at the neural level.

RESULTS

Random 3D shape stimuli were constructed by extensively deforming a closed ellipsoidal 

surface (Supplementary Fig. 1 online). These stimuli were rendered in depth by a 

combination of binocular disparity and shading cues. Two rhesus monkeys were trained to 

maintain fixation on a small spot while stimuli were flashed for 750 ms each at the center of 

gaze. We recorded the stimulus responses of individual neurons in central and anterior IT 

(between 5.8 and 21.0 mm anterior to the interaural line). Neurons were typically tested with 

8–10 generations of 50 stimuli each. When recording time permitted, the entire procedure 

was run a second time, to verify that stimulus evolution would converge in the same 

direction (Fig. 1, left and right columns). In each run, the initial generation was completely 

random, and responses were generally low (Fig. 1a).

Higher response stimuli had a greater probability of producing morphed descendants in 

subsequent generations, and response levels progressed across generations in a way that was 

sometimes gradual and sometimes punctuated (Fig. 1b; also see Supplementary Figs. 2, 3, 
4 and 5 online). In any given generation, only a few descendants produced higher responses; 

most descendants evoked equivalent or lower responses. These lower response samples in 

neighboring shape space are essential for characterizing the shoulders and boundaries of 

tuning functions.

For this example cell, both lineages converged toward shapes that varied on the global level 

but contained consistent local structure comprising sharp protrusions and indentations, 

oriented toward the right and positioned to the upper right of object center (Fig. 1c). We 

quantified this response pattern with a multi-component model analogous to those applied 

recently to dorsal pathway area MT and in posterior IT cortex9–10, 36. In the MT analyses, 

the model components represent tuning for different movement directions in the orientation 

domain. Here, the model components represent tuning for different surface fragments in a 

3D curvature/orientation/position domain. The two tuning models based on the two runs for 

this neuron (Fig. 1d) both comprised two component Gaussian functions, denoted by 

magenta and cyan. The magenta functions are centered on strongly positive (convex) 
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maximum curvature and negative (concave) minimum curvature, indicating a hyperbolic or 

saddle-shaped surface. This surface is oriented to the right (0°) and positioned to the upper 

right in the x/y plane. The cyan functions are centered on convex/convex curvature, oriented 

downwards (270°) and positioned to the upper right.

The predicted response for a given stimulus depended on how closely any of its constituent 

surface fragments matched these tuning functions. The overall predicted response was a 

linear combination of predictions based on the two separate functions plus a nonlinear 

interaction term (Fig. 1d, equations). In this case, the nonlinear interaction terms had the 

highest fitted weights, showing that neuron was relatively selective for the combination of 

both types of surface fragments. Higher response stimuli in both runs included surface 

fragments near these two Gaussian functions (Fig. 1e, magenta- and cyan-tinted surface 

regions). In this and all subsequent stimulus plots, the tinted regions include any additional 

surface structure strongly correlated with the Gaussian tuning function, to better capture the 

entire surface configuration associated with neural responses. This is necessary because the 

geometry of closed, continuous surfaces imposes strong local structure correlations. For 

example, sharp points (tangent discontinuities) are necessarily correlated with the conjoined 

surfaces that define them, as in Fig. 1e. From a mechanistic point of view, the neuron’s 

response could be driven by a sub-portion of that structure, but geometric constraints make 

that difficult or impossible to test in an experiment of this kind.

These tuning models showed strong cross-prediction of responses in the other run (r = 0.67 

for run 1 model cross-prediction of run 2; r = 0.63 for run 2 model cross-prediction of run 

1). The two runs provide a rigorous cross-validation test since they were generated 

completely independently. (Geometric similarities between runs are imposed by the neuron 

itself, and thus serve to confirm the generality of the tuning model.) Cross-validation 

analyses of all cells with double lineages (see Supplementary Fig. 6 online) established that 

models based on two Gaussian tuning regions had greater statistical validity than simpler 

models based on one Gaussian and more complex models based on three, four, or five 

Gaussians. Restricting models to subunits explaining at least 5% additional variance 

produced a corresponding predominance of 2-Gaussian models (see Supplementary Fig. 7 
online). The results presented below are based on two-Gaussian models for 95 neurons that 

showed statistically significant cross-validation between two runs (n = 16) or 5-fold cross-

validation within one run (n = 79). We corrected the 5-fold cross-validation procedure for 

standard error of the mean response measurements to estimate that these models accounted 

for 32% of the explainable response variance on average (mean r = 0.57; see 

Supplementary Fig. 6).

Fig. 1 exemplifies the expected pattern for cells that encode 2D boundary shape. Even 

though the response model domain encompasses 3D surface fragments, the fitting procedure 

finds surfaces at the 2D occlusion boundary, with normal orientations in the image plane, 

essentially corresponding to 2D boundary fragments. Correspondingly, control tests showed 

that this cell responded nearly as strongly to the same shapes when all depth cues were 

removed (producing a silhouette shape with no internal detail; Supplementary Fig. 8 
online; 54 spikes s-1 with stereo and shading cues, 44 spikes s-1 without). However, this 

result did not typify the majority of neurons in our sample.
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The more common finding was tuning for surface fragments outside the image plane, as in 

Fig. 2. The highest response shapes for this neuron were characterized by a ridge facing out 

of the image plane (Fig. 2a; also see Supplementary Fig. 9 online). Stimuli lacking this 

surface characteristic evoked little or no response (Fig. 2b). Control tests performed on 

stimuli drawn from the top, median, and bottom of the response range (Figs. 2c—h, top, 

middle, and bottom rows) confirmed that this neuron’s shape tuning was dependent on depth 

structure and robust to other image changes. The neuron remained responsive when either 

disparity or shading cues for depth were present but failed to respond when both were 

eliminated (Fig. 2c; see also Supplementary Fig. 10 online). 3D shape selectivity remained 

consistent across lighting directions over 180° vertical and horizontal ranges (Fig. 2d), in 

spite of the resulting dramatic changes in shading patterns across the object surface 

(Supplementary Fig. 11 online). Selectivity was likewise consistent across changes in 

stereoscopic depth (Fig. 2e) and x/y position (Fig. 2f), although not across changes in 

stimulus orientation (Fig. 2g). Selectivity was consistent across stimulus size (Fig. 2h). The 

response model (Fig. 2i) comprised tuning for forward-facing ridges in front (magenta) and 

upward-facing concavities near object center (cyan). The model for this neuron was highly 

nonlinear, as shown by the large AB interaction term representing combined energy in the 

two tuning regions. Thus, this neuron provided a relatively explicit signal for the ridge/

concavity configuration. (By “explicit”, we mean having a simple, easily decoded 

relationship to the shape configuration in question. Linear integration of information about 

multiple fragments would produce more ambiguous, less explicit signals, in which the same 

response level could correspond to either part A or part B.) This configuration characterized 

the high response stimuli in the evolutionary test (Fig. 2j; one high response stimulus is 

shown from both the front and above for greater visibility of the two surface components; 

see also Supplementary Fig. 12 online).

Tuning for 3D surface configurations (as in Fig. 2) was more common in our sample than 

tuning for 2D boundary configurations (as in Fig. 1). This was established by follow-up 

control tests measuring how responses depended on the presence of 3D cues (as in Fig. 2c). 

The critical comparison from these tests is between the condition in which the standard 3D 

cues (disparity and shading) were present and the condition in which no 3D cues were 

present, so that the stimulus was a plain 2D silhouette. In each condition, strength of 

modulation was measured by the response difference between a stimulus drawn from the top 

of the main test response range and a stimulus drawn from the bottom of the range, 

normalized by the maximum response across all conditions. Response modulation was 

generally strong (near 1.0) when 3D depth cues were present (Fig. 3a, horizontal axes). 

When depth cues were removed (vertical axes) modulation sometimes remained strong 

(points near the upper right), indicating that responses were based on 2D boundary shape. 

More commonly, however, modulation dropped to near 0, reflecting sensitivity to 3D shape. 

The drop in response modulation with removal of 3D cues does not simply reflect selectivity 

for 2D shading patterns, since 3D shape tuning was robust to changes in shading pattern 

produced by different lighting directions. We quantified this by measuring the separability 

of tuning for shape and tuning for lighting direction (Fig. 3b). 3D shape responses were 

likewise robust to changes in x/y position, stereoscopic depth and stimulus size (Fig. 3b), 

analogous to previous results showing similar tolerance in 2D shape responses37.
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Tuning models spanned a wide range of surface fragment configurations (Fig. 4a,b). 

Component fragments were frequently discontiguous, consistent with a multi-fragment 

configural coding scheme. Even when tuning regions were extended to cover structures 

strongly correlated with the fitted Gaussians (as in Fig. 4), only a fraction (on average 23%) 

of total object surface area was included (Supplementary Fig. 13 online). Correspondingly, 

the global shape of high response stimuli varied at locations outside these surface regions. 

Thus, 3D shape representation in IT is not generally holistic. IT neurons represent spatially 

discrete 3D shape components, and must cooperate in a distributed coding scheme.

Tuning models showed a predictable bias toward surface positions near the front of the 

object, which is more visible and behaviorally relevant under normal circumstances (Fig. 
5a,b). Tuning was markedly biased in the curvature domain toward high values, especially 

on the convex end of the scale. Thus, although object surface area is dominated by flat or 

broad curvature (Fig. 5c), the IT representation of 3D shape emphasizes sharper projecting 

points and ridges (Fig 5d). Tuning for non-zero curvature reflects the coding advantage of 

higher order derivatives38. The bias toward convexity may reflect the functional importance 

of protruding object parts and/or the well-established perceptual bias toward interpreting 

convexities as objects parts and concavities as junctions between parts39.

DISCUSSION

We tested the classic hypothesis that complex shapes are represented as 3D spatial 

configurations of 3D parts. This hypothesis requires that neurons encode the 3D shape, 3D 

orientation, and relative 3D position of object parts. Our analyses show that a substantial 

fraction of IT neurons do exactly that—they are simultaneously tuned for 3D shape 

(maximum and minimum principle surface curvatures), 3D orientation, and relative 3D 

position of constituent surface fragments. Moreover, they are tuned for multiple regions in 

this domain, i.e. they respond to shapes that include a specific configuration of particular 

surface features. This result supports classic theories of 3D configural shape 

representation22,23, and extends those theories by suggesting that neurons encode not just 

individual parts but configural relationships between multiple parts.

In many cases, our analyses and follow-up control tests revealed exclusive tuning for 2D 

boundary shape. The majority of neurons in our sample, however, were clearly tuned for 3D 

spatial configurations of 3D surface fragments. Our control tests eliminate explanations 

based on other stimulus properties besides 3D shape. For example, neural responses might 

have been associated with 2D boundary shape features, since these can be strongly 

correlated with 3D surface shape40. But our depth cue test showed that, for most cells, 

removing 3D information and presenting only the 2D boundary resulted in a drastic loss of 

tuning/responsiveness (Fig. 3a). Alternatively, neural responses might have been associated 

with the 2D shading patterns we used to help convey 3D shape. But our lighting direction 

test showed that dramatic changes in the 2D shading pattern (Supplementary Fig. 11) had 

little effect on shape tuning (Fig. 3b). Neural response differences might have reflected 

tuning for binocular disparity, but our depth position test showed that large changes in 

disparity had little effect on tuning (Fig. 3b). These three control tests eliminate alternate 

explanations based on any stimulus characteristic associated with the 2D boundary, 2D 
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shading pattern, or disparity values, and these three elements constitute all the image 

information present in these stimuli. Likewise, large changes in stimulus size and position 

typically had little effect on tuning (Fig. 3b). No other potentially explanatory stimulus 

properties apart from 3D surface shape itself would have survived all these major image 

changes. As a further control, we performed an analysis to show that response variations 

could not be explained in terms of image spatial frequency content (Supplementary Fig. 6).

Our results are largely consistent with classic theories of configural shape 

representation22,23. According to these theories, objects are represented as spatial 

configurations of canonical 3D parts. The parts are generalized cones or more complex 

volumetric components called “geons”. Their configuration is represented in an object-

defined reference frame that translates, scales, and rotates with the object (producing 

invariance to viewpoint). Correspondingly, we observed explicit signals for configurations 

of 3D surface fragments that appear to be encoded in an object-relative 3D reference frame. 

By “explicit”, we mean easily decoded signals with clear, simple relationships to large-scale 

3D object structure. In contrast, although the same information is necessarily present in V1 

(from which IT responses ultimately derive), the V1 representation is highly implicit and 

difficult to decode, because it is distributed across a much larger population of neurons with 

complex, highly variable relationships to large-scale 3D object structure.

However, our results differed in two ways from classic theories. First, while the neural 

reference frame appeared to translate and scale with the object (given the consistency of 

responses across stimulus position and size) we did not find any evidence that it rotates with 

the object. Generalization across object rotations may depend on learned associations 

between views24,41, although there is some capacity for recognizing rotated views of novel 

objects42. Representation of 3D structure is not incompatible with that view29. Second, 

classic theories envision that individual neurons would represent single, spatially discrete 

parts. Instead, consistent with our previous 2D studies, we found that neurons represent 

configurations of multiple parts, frequently at distant, discontiguous locations on the object 

surface (Supplementary Fig. 14 online). Integration across multiple boundary and surface 

regions to derive larger, more complex configurations may be a ubiquitous aspect of visual 

processing43. Complete 3D shapes might be represented in terms of a small number of 

component surface configurations (Fig. 6). A coding scheme like this still has the 

combinatorial productivity of parts-based representation—a finite number of signals can be 

combined in many different ways to represent a virtual infinity of objects. At the same time, 

it would constitute a step toward holistic shape coding, which has greater potential for 

sparseness. A sparse object representation based on just a few signals can be more 

efficiently stored in memory and decoded by other parts of the brain44,45. The configural 

coding we observe may reflect a compromise between productivity and sparseness in 

higher-level visual cortex.

The neural code we observed here is a 3D generalization of the 2D coding scheme we have 

previously described8–9. Boundary fragments in 2D generalize to surface fragments in 3D. 

The circular orientation domain for 2D boundary fragments in the image plane generalizes 

to the spherical orientation domain for 3D surface fragments. Tuning for 2D boundary 

fragment curvature generalizes to joint tuning for the two principal curvatures characterizing 
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any 3D surface fragment. Tuning for relative position of boundary fragments in the 2D 

image plane generalizes to tuning for relative position of surface fragments in 3D space. 

Conceivably, the 2D shape tuning properties that we and others have studied previously are 

not in any way distinct, and simply occupy a subspace in the higher dimensional 3D domain. 

In other words, neurons tuned for 2D shape might simply be a subpopulation (within a 3D 

shape representation) encoding surface fragments near the occlusion boundary. The 

predominance of 3D shape sensitivity in our neural sample supports this suggestion. 

However, this bias might be due to denser sampling in the superior temporal sulcus, which 

has been reported to contain more 3D-sensitive neurons46 (see Supplementary Fig. 15 
online).

To summarize, we used a novel evolutionary stimulus strategy to reveal for the first time an 

explicit structural code for 3D object shape in high level visual cortex. This code is 

embodied by neurons tuned for configurations of multiple object surface fragments. This 

result rules out the alternative that complex shape representation is primarily 2D, as in most 

current computational models of object vision. It supports classic theories of 3D structural 

representation22,23, but qualifies those theories in two ways. First, individual neurons 

represent not single object parts but configurations of multiple object parts, providing more 

explicit signals for spatial relationships between shape elements. Second, the spatial 

reference frame is only partially defined by the object. The reference frame is centered with 

respect to the object, but contrary to classic theories does not rotate with the object. Thus, 

neural representations are very different depending on viewpoint, and relationships between 

different views of the same object would have to be learned, as proposed in view-dependent 

theories of object representation24–26. Finally, these results apply only to the population of 

neurons we were able to study effectively with our stimulus strategy, and they do not rule 

out other object processing mechanisms in other neural populations. In particular, rapid, 

coarse object categorization might depend on faster, feedforward processing of 2D image 

information28.

Why would the brain explicitly represent complex 3D object shape, considering the 

computational expense of inferring 3D structure from the 2D retinal image and the higher 

neural tuning dimensionality required? In contrast, 2D shape representations are lower-

dimensional and can be derived quickly and directly from the retinal image. Moreover, 

computational studies of biologically-inspired hierarchical network models show that 2D 

image processing alone can produce rapid, accurate object identification27,28. We speculate 

that representation of 3D object structure instead supports other aspects of object vision 

beyond identification. Direct cognitive access to 3D object structure makes even unfamiliar 

objects comprehensible in terms of their geometric similarity to familiar objects, inferred 

physical properties, potential functionality and utility, and aesthetic qualities. Knowledge of 

3D structure is also necessary for accurate prediction of physical events and control over 

complex physical interactions with objects. These cognitive and behavioral requirements 

may have driven the emergence of an explicit neural code for 3D object structure in visual 

cortex. Similar tuning might emerge from hierarchical network models given 3D input 

information and more diverse task demands.
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METHODS

Behavioral task

Two head-restrained rhesus monkeys (Macaca mulatta), a 9.5 kg male and a 5.3 kg female, 

were required to maintain fixation on a 0.1° spot within a 0.75° radius for 4 s in order to 

obtain a juice reward. Eye position was monitored with an infrared eye tracker (ISCAN). 

Separate left and right eye images were presented via mirrors. Binocular fusion was verified 

with a random dot stereogram search task. All animal procedures were approved by the 

Johns Hopkins Animal Care and Use Committee and conformed to National Institutes of 

Health and US Department of Agriculture guidelines.

Electrophysiological recording

The electrical activity of well-isolated single neurons was recorded with epoxy-coated 

tungsten electrodes (A-M Systems) and amplified and filtered in a Tucker-Davis 

Technologies acquisition system. We studied 250 neurons with at least 300 stimuli. Of 

these, 95 (59 from the male, 36 from the female) produced models that passed our statistical 

thresholds (Results). These neurons were sampled from the central/anterior lower bank of 

the superior temporal sulcus and lateral convexity of the inferior temporal gyrus (5.8–21.0 

mm anterior to the interaural line; see Supplementary Fig. 15). IT cortex was identified 

based on structural MRI images.

Visual stimuli

3D shape stimuli were rendered with shading and binocular disparity cues using the NURBS 

facility in OpenGL (gluNurbsSurface). NURBS control point positions were varied by 

distorting a polar grid (see Supplementary Fig. 1). Stimulus depth was adjusted so that the 

depth of the object surface at the fovea matched fixation depth (screen distance).

Neurophysiological testing protocol

A roughly optimal stimulus color (white, red, green, blue, cyan, yellow, or magenta) was 

selected based on responses to stimuli under experimenter control. During all subsequent 

tests, following initiation of fixation, four stimuli were flashed one at a time for 750 ms 

each, with inter-stimulus intervals of 250 ms. Control tests of sensitivity to depth cues, x/y 

position, stereoscopic depth, size, orientation, and lighting direction (see Fig. 2) were 

performed on three stimuli, drawn from the top, median, and bottom of the response range in 

the main experiment.

Evolutionary morphing algorithm

The first stimulus generation contained only randomly generated 3D stimuli. Stimulus 

responses (averaged across 5 repetitions) were ranked into 10 bins with equal numbers of 

stimuli. In the second generation, 10–20% of stimuli were randomly generated. The rest 

were morphed descendants of ancestor stimuli from the first generation, selected randomly 

in equal numbers from the 10 bins. Thus, a typical second generation would contain 10 

stimuli generated de novo, 4 descendants of stimuli in the highest response bin, 4 

descendants from the second highest bin, etc. In subsequent generations, ancestor stimuli 
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were pooled across all preceding generations and re-binned. Descendant stimuli had an 

equal probability of being either locally or globally morphed (see Supplementary Fig. 1). 

The amplitude of control point changes was inversely proportional to response rate, to 

produce denser sampling in higher response ranges.

3D shape response models

We characterized each 3D stimulus in terms of its component surface fragments. The 

stimulus surface was densely sampled across the NURBS control point grid. At each point, 7 

values were determined: x, y, and z positions, relative to stimulus center of mass, surface 

normal orientation on the x/y and y/z planes, and maximum and minimum (principal) cross-

sectional curvatures, squashed to a range from −1 to 1 using a sigmoidal function. 

Component surface fragments were defined by mathematically fitting elliptical regions on 

this grid with approximately constant curvature in either the minimum or maximum 

curvature dimensions. Each ellipse was shifted and scaled to be as large (i.e. cover as many 

grid points) as possible without violating constraints on maximum deviation of curvature 

values. Successive ellipses were fitted to remaining regions on the object surface. Curvature 

maxima and minima were also used to define surface fragments. On average, a given 

stimulus comprised 240 component surface fragments. For each fragment, maximum and 

minimum curvature were averaged across the included surface points, and the position and 

orientation values were measured at the point of maximum or minimum curvature, yielding 

7 measurements. Thus, each fragment corresponded to a point in a 7-dimensional domain, 

and each stimulus was represented by a constellation of such points. All the models 

described here were based on 7D Gaussian tuning functions (model subunits) in this domain. 

The predicted response component due to a given subunit was based on the Gaussian 

function amplitude at the stimulus point closest to the Gaussian peak:

where kac, kbc, Θxc, Θyc, rxc, ryc, and rzc are the curvature, normal, and relative position 

values for a surface fragment in the stimulus, μ and σ are the fitted Gaussian peaks and the 

standard deviations on each of these seven dimensions, and A is the fitted Gaussian 

amplitude. The standard deviations in the curvature, orientation, and position dimensions 

were constrained to be the same (respectively) for all Gaussian functions in order to limit 

model complexity (i.e. only 3 standard deviation values were required for any given model, 

one each in the curvature, orientation and position dimensions). Including separate standard 

deviation parameters for each dimension slightly increased variance explained, by a mean of 

3.7% for the 1-Gaussian models and 4.5% for the 2-Gaussian models (5-fold cross-

validation, n = 95). Since the difference in explained variance between 1- and 2-Gaussian 

models increases, this would not impact our conclusion that neurons are tuned for 

configurations of multiple surface fragments rather than single fragments. The analyses 

presented here are based on the models with just 3 standard deviation parameters.
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For each cell, we fitted models based on combinations of 1–5 excitatory Gaussian subunits. 

The predicted response to each stimulus was a weighted combination of the individual 

subunit responses (the linear component) and a product of subunit responses (the nonlinear 

interaction component). All possible combinations of subunits for nonlinear components 

were tested, but in the final models each subunit could participate in only one nonlinear 

interaction term. For the 2-Gaussian models emphasized in this report, there was only one 

possible interaction term.

where Rs is the unweighted response predicted by each subunit (derived from equation 1) 

and RNL
s is the unweighted response predicted by each interaction term. Ws is the fitted 

weight (amplitude) for each subunit, Wk is the fitted weight for each interaction term, G is 

the overall gain, and b0 is the baseline firing rate. The total numbers of fitted parameters for 

the models with 1–5 subunits were 13, 21–22, 29–30, 37–39, and 45–47, respectively. The 

variability in parameter number for higher order models is due to variability in the number 

of possible interaction terms. Overfitting was controlled by cross-validation analyses 

described in Results and presented in detail in Supplementary Fig. 6.

Response rates were calculated by counting the number of spikes during the 750-ms 

stimulus presentation period and averaged across repetitions. The Matlab function lsqnonlin 

was used to adjust model parameters to minimize the sum of squared differences between 

observed and predicted responses. The fitting procedure was repeated using 20–163 

(average 93) starting points based on the constituent surface fragments for the 3 highest 

response stimuli. For each neuron, the best-fitting model across all starting points was used.

In some cases, these Gaussian tuning models may fail to capture the complete shape 

configurations associated with neural responses, instead focusing on smaller surface 

fragments within the complete configurations. This problem is inevitable due to the local 

surface structure correlations in any closed, continuous surface (Results). To better capture 

the complete shape configurations signaled by the neurons, we identified additional surface 

structure components that were highly correlated with those identified by the fitted Gaussian 

tuning regions. We then extended the tuning regions to include those correlated structures, 

up to the point at which explained variance dropped by 5%. The extended tuning regions are 

bound to have a non-Gaussian shape, which we approximated with a cluster of neighboring 

Gaussians. Predicted responses were based on average stimulus matches across the 

Gaussians in each cluster. These extended models were the basis for projections onto 

stimulus surfaces (Figs. 1e, 2j, and 4), tuning distributions (Fig. 5, Supplementary Figs. 16 
and 17), and analysis of fractional surface coverage (Supplementary Fig. 12). All goodness 

of fit results were based on the original fitted 2-Gaussian models. The computational 

procedure for extending tuning regions is described in Supplementary Information (see 

Supplementary Fig. 13).

Yamane et al. Page 11

Nat Neurosci. Author manuscript; available in PMC 2009 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Statistical analysis

Randomization analysis of cross-validation between double lineages was used to compare 

the statistical validity of models based on 1–5 Gaussian tuning regions (see Supplementary 
Fig. 6). A 5-fold cross-validation procedure was used to estimate explained variance without 

overfitting (Results).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Evolutionary 3D shape experiment
Two independent stimulus lineages (Run 1 and Run 2) are shown in the left and right 

columns respectively. Background color (see scale bar) indicates the average response to 

each stimulus of a single IT neuron recorded from the ventral bank of the superior temporal 

sulcus (6.45 mm anterior to the interaural line). (a) Initial generations of 50 randomly 

constructed 3D shape stimuli. Stimuli are ordered from top left to bottom right according to 

average response strength. (b) Partial family trees showing how stimulus shape and response 

strength evolved across successive generations. (c) Highest response stimuli across 10 
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generations (500 stimuli) in each lineage. (d) Linear/nonlinear response models based on 

two Gaussian tuning functions. The Gaussian functions describe tuning for surface fragment 

geometry, defined in terms of curvature (principal, i.e. maximum and minimum, cross-

sectional curvatures), orientation (of a surface normal vector, projected onto the x/y and y/z 

planes), and position (relative to object center of mass in x/y/z coordinates). The curvature 

scale is squashed to a range between –1 and 1 (see Methods). The 1.0 standard deviation 

boundaries of the two Gaussians (magenta and cyan) are shown projected onto different 

combinations of these dimensions. These boundaries appear circular because standard 

deviations in the curvature, orientation, and position dimensions were constrained 

(respectively) to have the same values in order to limit model complexity. The equations 

show the overall response models, with fitted weights for the two Gaussians, the product or 

interaction term, and the baseline response. (e) The two Gaussian functions are shown 

projected onto the surface of a high response stimulus from each run. The stimulus surface is 

tinted according to the tuning amplitude in the corresponding region of the model domain. In 

this and subsequent displays, the projection areas are extended to include strongly correlated 

surface regions (see Methods). The scatterplots show the relationship between observed 

responses and responses predicted by the model. In each case, self-prediction by the model 

is illustrated by the stimulus/scatterplot pair on the left and cross-prediction by the pair on 

the right.
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Figure 2. Neural tuning for 3D configuration of surface fragments
Error bars indicate s.e.m. (a) Top 50 stimuli across 8 generations (400 stimuli) for a single 

IT neuron recorded from the ventral bank of the superior temporal sulcus (17.5 mm anterior 

to the interaural line). (b) Bottom 50 stimuli for the same cell. (c) Responses to highly 

effective (top), moderately effective (middle) and ineffective (bottom) example stimuli as a 

function of depth cues (shading, disparity, and texture gradients, exemplified in 

Supplementary Fig. 10 online). Responses remained strong as long as disparity (black, 

green, blue) or shading (gray) cues were present. The cell did not respond to stimuli with 

only texture cues (pale green) or silhouettes with no depth cues (pale blue). (d) Response 

consistency across lighting direction. The implicit direction of a point source at infinity was 

varied across 180° in the horizontal (left to right, black curve) and vertical (below to above, 
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green curve) directions, creating very different 2D shading patterns (Supplementary Fig. 
11). (e) Response consistency across stereoscopic depth. In the main experiment, the depth 

of each stimulus was adjusted so that the disparity of the surface point at fixation was 0 (i.e. 

the animal was fixating in depth on the object surface). In this test, the disparity of this 

surface point was varied from −4.5° (near) to 5.6° (far). (f) Response consistency across x/y 

position. Position was varied in increments of 4.5° of visual angle across a range of 13.5° in 

both directions. (g) Sensitivity to stimulus orientation. Like all neurons in our sample, this 

cell was highly sensitive to stimulus orientation, although it showed broad tolerance (about 

90°) to rotation about the z axis (rotation in the image plane, blue curve); this rotation 

tolerance is also apparent among the top 50 stimuli in (a). Rotation out of the image plane, 

about the x axis (black) or y axis (green) strongly suppressed responses. (h) Response 

consistency across object size over a range from half to twice the original stimulus. (i) 
Linear/nonlinear response model based on two Gaussian tuning functions. Details as in Fig. 
2d,e. (j) The tuning functions are projected onto the surface of a high response stimulus, 

seen from the observer’s viewpoint (left) and from above (right).
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Figure 3. Prevalence of 3D shape tuning in IT
(a) Response modulation depended strongly on 3D cues for the majority of neurons in our 

sample. For each cell, three stimuli (with high, medium, and low responses in the 

evolutionary test) were presented with depth cues (disparity and shading) and without (solid 

color silhouette stimuli with the same boundary shape). A separate modulation index 

(difference between maximum and minimum responses, normalized by maximum response 

across the entire test) was calculated for the with- and without-depth cue conditions. The 

modulation index is the response difference between the high- and low-response stimuli, 

normalized by maximum response across all conditions. This normalization ensures that 

high values reflect robust responses. In some cases, removing 3D cues reversed the rank 

order of responses and produced negative index values. The average modulation index of 

0.85 with depth cues (horizontal axis) dropped to 0.26 without depth cues. The effect of 

depth cues on responses was significant (P < 0.05) for 76/97 cells (filled circles) based on 

two-way ANOVA (main or interaction effects of stereo and shading). Of the 95 cells with 

significant 3D shape tuning models, 57 were tested in this way. For these cells, the 

modulation index average dropped from 0.87 with depth cues to 0.23 without, and the 49/57 

cells showed significant main or interaction ANOVA effects. (b) Shape tuning was 

independent of shading pattern, stereoscopic depth, stimulus position and stimulus size. 

Response consistency across these factors was tested as shown in Fig. 2. Response 

consistency was measured by separability of tuning for shape (across the high, medium, and 

low response stimuli) and tuning for shading, depth, position, or size. Separability is 

represented here by the fraction of response variance (r2) explainable by a matrix product 

between separate tuning functions for shape and shading/depth/position/size. These tuning 

functions were the first pair of singular vectors in a singular value decomposition of the 

observed tuning matrix. For each factor, most neurons have r2 values above 0.75, showing 

that 3D shape tuning is largely independent of lighting direction, stimulus position, stimulus 

size, and stimulus depth.
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Figure 4. 3D surface configuration tuning patterns
(a) All neurons for which two independent evolutionary stimulus lineages were obtained. In 

each case, two high response stimuli are shown from the first run (top row) and the second 

run (bottom row). Best fit 2-component models are projected onto these stimuli as in Fig. 
1e. (b) Example neurons for which only one lineage was obtained. In each case, two high 

response stimuli are shown with the best fit model projected onto the surface.
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Figure 5. Distribution of 3D shape tuning
(a) Comparison distribution of surface point positions in the y/z plane (relative to object 

center of mass) in random stimuli (1st generation stimuli for all 95 neurons described here). 

The scale is in arbitrary units approximately corresponding to stimulus size (maximum span 

in any direction averaged across stimuli = 1.08). (b) Distribution of Gaussian tuning peaks 

in best-fit models for 95 neurons. The stimulus distribution peak is shown in the surface plot 

(asterisk) and the stimulus distributions are shown in the marginal histograms (red curves). 

The distribution is biased toward positive values in the z dimension, i.e. positions in front of 

object center. (c) Comparison distribution of surface curvatures across random (1st 

generation) stimuli. The bias toward positive (convex) curvatures is characteristic of closed, 

topologically spherical surfaces. (d) Distribution of Gaussian tuning peaks in the curvature 

domain. The stimulus distribution peak is shown in the surface plot (asterisk) and the 

stimulus distributions are shown in the marginal histograms (red curves). Relative to the 

stimulus distribution, the tuning peaks are biased toward higher magnitude convexity in the 
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maximum curvature dimension and higher magnitude concavity in the minimum curvature 

dimension.
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Figure 6. Configural coding of 3D object structure
To illustrate how complex 3D shape could be encoded at the population level, five 2-

Gaussian tuning models (red, green, blue, cyan, magenta) from our neural sample are 

projected onto a 3D rendering (right) of the larger figure in Henry Moore’s “Sheep Piece” 

(1971-72, left; reproduced by permission of the Henry Moore Foundation, www.henry-

moore-fdn.co.uk). (Tuning models were scaled and rotated to optimize correspondence.) A 

small number of neurons representing surface fragment configurations would uniquely 

specify an arbitrary 3D shape of this kind and would carry the structural information 

required for judging its physical properties, functionality (or lack thereof), and aesthetic 

value.
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