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Abstract: A multifunctional switchable terahertz (THz) absorber based on graphene and vanadium
dioxide (VO2) is presented. The properties of the absorber are studied theoretically by the finite-
difference time-domain (FDTD) method. The results illustrate that the structure switches between the
single-broadband or double-broadband absorption depending on the temperature of VO2. Moreover,
the amplitude of the absorptivity can be adjusted by changing the Fermi energy level (EF) of graphene
or the conductivity of VO2 separately. Via impedance matching theory, the physical mechanism of
the absorber is researched. Furthermore, the effects of incidence angle on absorption have also been
studied. It is found that the absorber is insensitive to the polarization of electromagnetic waves.

Keywords: terahertz; graphene; vanadium dioxide; impedance matching; absorption

1. Introduction

A THz wave is an electromagnetic wave with a frequency ranging from 0.1 THz to
10 THz. It has received much attention in the application prospects of communication [1,2],
biology [3], sensing [4], imaging [5,6], and other fields. The promotion of THz technology
is limited because of the lack of suitable materials in nature. Metamaterials, as special
electromagnetic response materials, are composed of sub-wavelength microstructures
produced by artificial designs [7,8]. Using the combination of metamaterials and THz
technology, researchers have designed a variety of high-efficiency optical devices such as
filters [9,10], modulators [11], switchers [12], and absorbers [13,14]. Among them, THz
absorbers based on metamaterials have shown promising applications in the fields of
invisibility cloaks, wireless communications, and thermal emitters [15–17]. The absorption
properties of traditional THz metamaterial absorbers (TMMAs) cannot be easy to change
once it is produced, which leads to inconvenience and high cost. Therefore, metamaterials
that can be dynamically controlled have become a hot research topic [18,19].

Graphene is a new material, a two-dimensional honeycomb lattice structure with
tightly packed carbon atoms connected by sp2 hybridization. It has become a hotspot
in both physics and chemistry for its unique electro-optical properties [18,20]. The EF of
graphene can be tuned continuously and dynamically by varying gate voltage or chemical
doping, which makes graphene be widely studied in tunable TMMAs [21]. For instance,
in 2020, Liu et al. presented a THz absorber which realized broadband tunable function
by changing the EF of the graphene [20]. In 2021, Feng et al. showed a tunable wide-
band THz absorber that can be tuned by varying EF of graphene. The absorptance can
be gradually reduced by decreasing the EF [22]. In recent years, phase change materials
have also been used in a wide range of tunable devices. VO2 is a phase change material.
When the temperature reached the critical temperature of 340 K, it changes from insulating
phase to metal phase, and the phase change can be reversible [23,24]. Hence, VO2 has
great application potential for developing devices with tunability functions. Researchers
have studied different tunable absorbers based on VO2. For instance, in 2020, Huang
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et al. designed a flexible wideband THz absorber composing of VO2 square rings. The
absorptance can be tuned in the range between 4% and 100% by varying the conductivity
of VO2 in the range from 200 S/m to 2 × 105 S/m [19]. In 2021, Wu et al. proposed an
ultra-wideband absorber consisting of three VO2 resonance rings. By switching between
the insulating and metallic phases of VO2, the absorber can realize the function of an optical
switcher, and the working band reaches the range of 2.34 to 5.64 THz [25].

For realizing more functions, the multifunctional modulation absorbers achieved via
the combination of graphene and VO2 are also the focal direction. In 2020, based on a
multilayer structure of graphene and VO2, Zhang et al. presented a THz multifunctional
absorber that can achieve both narrowband and broadband absorption properties [26]. In
2021, Liu et al. proposed a structure based on graphene and VO2 to realize switchable
single broadband and double narrowband absorption [27]. In 2021, Liu et al. realized
THz absorbers with broadband characteristics at different frequencies based on hybrid
metamaterials of graphene and VO2 [28]. We can see that the studies above focused mainly
on narrowband absorption or single broadband properties.

In the paper, we proposed a THz absorber that can realize switching from single-
broadband to double-broadband absorption by using graphene and VO2 as controlling
media. Via the FDTD solution method, we theoretically studied the absorption properties
and mechanisms of the designed metamaterials.

2. Structure and Method

The designed multifunctional tunable absorber is shown in Figure 1a, in which every
structure unit in the device is arranged periodically. The three-dimensional schematic
diagram of the structure unit is shown in Figure 1b. It can be found from Figure 1b
that the unit cell consists of six layers. From top to bottom, they are the VO2 metamate-
rial patch, polyethylene cyclic olefin copolymer (topas), graphene patch layer, VO2 film,
topas, and gold (Au) film, respectively. The thicknesses of the upper and lower topas
layers are t1 = 18 µm and t2 = 16 µm, respectively, and the relative permittivity of topas
is ε = 2.35 [29]. The thickness of the underlying Au film is 0.5 µm, and its conductiv-
ity is 4.561 × 107 S/m [30]. The thickness of the top VO2 metamaterial patch and the
middle VO2 layer is 0.1 µm and 2 µm, respectively. The top VO2 metamaterial patch is
shown in Figure 1c. It is composed of two orthogonal hexagons with structural parameters
w1 = 4 µm, w2 = 10 µm, and l1 = 32 µm. The top view of the graphene patch layer is pre-
sented in Figure 1d. The side length of the square graphene patch is l2 = 15 µm, and the
distance between the two square patches is w3 = 2 µm. The graphene patch is linked with a
graphene bar w4 = 1 µm wide to form a conductive pathway when a voltage is applied.
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Then, we begin to calculate reflection parameter S11 and transmission parameter S21
via the FDTD method. The x and y directions are set to be periodic boundary conditions
and the z-direction is set to be a perfectly matched layer. The absorptance of the structure
can be expressed as: A(ω) = 1− R(ω) − T(ω). T(ω) represents the transmittance of
the absorber, R(ω) represents the reflectance of the absorber, and R(ω) = |S11(ω)|2,
T(ω) = |S21(ω)|2. As the thickness of Au film on the bottom of the structure is much
larger than the skin depth of THz wave, T(ω) = 0. Therefore, the absorption rate is
A(ω) = 1− R(ω) = 1− |S11(ω)|2.

The surface conductivity of graphene can be described as σg = σintra + σinter. Where
σintra and σinter represent the intraband and interband contributions, respectively. According
to random-phase approximation (RPA) theory σg can be expressed specifically as [31,32]:

σintra =
2e2kBT

πh̄2
i

ω + iτ−1 ln[2 cosh(
EF

2kBT
)] (1)

σinter =
e2

4h̄
[
1
2
+

1
π

arctan(
h̄ω− 2EF

2kBT
)− i

2π
ln

(h̄ω + 2EF)
2

(h̄ω− 2EF)
2 + 4(kBT)2 ] (2)

where e is the electron charge, kB is the Boltzmann constant, T is the temperature, h̄ is the
reduced Planck’s constant, ω is the frequency of THz wave, τ is the relaxation time of
graphene carrier, and EF is the Fermi level.

Based on the Drude model, in the THz band the insulating constant of VO2 can be
defined as [33–36]:

ε(ω) = ε∞ −
ω2

p(σ)

ω2 + iγω
(3)

where ε∞ = 12 is insulating permittivity at the infinite frequency, ωP(σ) = 1.4× 1015 rad/s
is plasma frequency depending on conductivity, and γ = 5.75× 1013 rad/s is collision
frequency. The relationship of ωP(σ0) and conductivity σ is: ω2

p = ω2
p(σ0)σ/σ0, with

σ0 = 3× 105 S/m. The conductivity of VO2 is 0 S/m or 2 × 105 S/m when it is insulating
or metal phase.

3. Results and Discussion

Based on the formula mentioned above, via FDTD the absorptance spectra of the
absorber were obtained and shown in Figure 2, where the blue solid line and red dashed line
represent the absorptance when VO2 is in the insulating and metallic phases, respectively.
As shown with the blue solid line in Figure 2, when VO2 is in the insulating phase, the
absorber shows a broadband absorption ranging from 0.9 THz to 3.5 THz, and with the
absorptance of more than 90%, which results from the single-cycle characteristic of the
graphene layer. When the temperature of VO2 reaches phase-change temperature (68 ◦C),
VO2 behaves as a metal and has large conductivity (about 2 × 105 S/m) [37], which makes
the structure show double-cycle characteristics. Correspondingly, the absorber shows two
broadband absorptions, and the absorptance is more than 90% in the regions of 1.5–3.6 THz
and 7.1–8.5 THz.

For explaining the physical mechanisms of the designed absorber, we investigated the
electric field distributions when VO2 is in the insulating phase and the EF of graphene is set
to be 0.7 eV. The electric field distributions of the graphene layer are shown in Figure 3a,b,
respectively. It can be found that, at 1.2 THz and 3 THz, the electric field is concentrated
mainly in the gaps between the square graphene sheets, which implies the resonance of the
graphene layer mainly occurs in the interaction between the squares of graphene.

Further, we investigated the electric field distribution in the top layer when the
temperature is high and the VO2 is in the metallic phase. The distribution of electric fields
at 1.8 THz and 3.4 THz are depicted in Figure 4a,b. We can see that the electric field focused
mainly on the left and right ends of the VO2 patch, which means that the resonance of two
frequencies results from the electro-dipole excitation of the left and right ends of the VO2
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patch. The electric field distribution at 7.3 THz and 8.3 THz are depicted in Figure 4c,d.
The enhanced electric field is at the sidewalls of the hexagonal patch and two ends of the
patch, which implies the resonance of two frequencies arise here.
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In addition, the absorption properties of single broadband and dual broadband were
studied respectively. Specifically, the effects of the EF of graphene and the conductivity of
VO2 on the absorption spectra are shown in Figure 5a,b, respectively. When VO2 is in the
insulating phase, it can be found in Figure 5a that the absorptance decreases significantly
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with the decrease of the EF. In Figure 5b, it seems that as the conductivity of VO2 decreases,
the absorptance of the dual broadband becomes gradually low.
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In order to further analyze the results above, the impedance matching theory is utilized,
and the corresponding impedance matching formula is as follows [38,39]:

A(ω) = 1− R(ω) = 1−
∣∣∣∣Z− Z0

Z + Z0

∣∣∣∣2 = 1−
∣∣∣∣Zr − 1
Zr + 1

∣∣∣∣2 (4)

Zr = ±

√√√√ (1 + S11(ω))2 − S21(ω)2

(1− S11(ω))2 − S21(ω)2 (5)

where A(ω) is the absorptance, R(ω) is the reflectance, Z is the effective impedance,
Z0 is the free space impedance, and Zr = Z/Z0 is the relative impedance between the
designed structure and the free space. When Zr = 1 the absorptance is maximal. The
S11(ω) and S21(ω) are the reflection coefficient and transmission coefficient obtained from
S-parameters. When the bottom Au film is much thicker than the skin depth of the THz
wave, the transmittance T(ω) will be close to 0. The real and imaginary parts of the relative
impedances Zr are calculated by utilizing the MATLAB programming package. Under
the different EF of graphene, the real and imaginary parts of the relative impedances Zr
are represented in Figure 6a,b. In Figure 6a, there are three peaks and four dips, and they
approach gradually to 1 with increasing EF. When the EF reaches 0.7 eV, the real part is
almost equal to 1 in the region of 0.9–3.5 THz. In Figure 6b, the three peaks and three dips
are gradually close to 0 with the increase of EF. At the EF = 0.7 eV, the imaginary part
is almost equal to 0 in the region of 0.9–3.5 THz. This means that the proposed absorber
matches well with the impedance of free space. Correspondingly, it can be seen from
Equation (4) that the absorptance reaches the maximum. Similarly, the change of real and
imaginary parts of the relative impedances Zr with the conductivity of VO2 is described
in Figure 6c,d. In Figure 6c, the peaks and dips of the curve become close to 1 with the
increase in conductivity. When the conductivity increases to 2 × 105 S/m, the curve is
almost equal to 1 at 1.5–3.6 THz and 7.1–8.5 THz. Figure 6d shows that all the peaks and
dips move gradually near to 0 as the conductivity increases, and the imaginary part is
closest to 0 at 1.5–3.6 THz and 7.1–8.5 THz for 2 × 105 S/m. When the conductivity is
2 × 105 S/m, the impedances of the absorber and free space match perfectly at 1.5–3.6 THz
and 7.3–8.5 THz. From Equation (4), we can know that when the impedance matches
perfectly the absorptance reaches the maximum.

In addition, we also studied the effects of incidence and polarization angles on ab-
sorptance. The incident wave is parallel to the xoz plane. Here, the incident angle was
between the incident direction and the negative direction of the z-axis. The absorption
performance spectra of different polarization angles for single and dual broadband are
shown in Figure 7a,d, respectively. The absorption performance is insensitive to polar-
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ization angle, which may result from the fact that the proposed structure is a four-sided
symmetrical structure. Figure 7b,c show the single-broadband absorptance performance
spectra of TE and TM waves changing with incidence angle. It can be found that the
absorptance remained almost constant even when the incidence angle is 50◦. Figure 7e,f
are the absorption spectra of TE and TM waves of dual broadband. It can be found that
the absorptance is not sensitive to the incident angle of TE and TM polarized plane waves.
In the lower frequency region, the absorptance is still 80% when the incident angle is 50◦.
When the angle of incidence is greater than 50◦ the absorptance decreases gradually. With
an increase in the incident angle, a significant blue shift occurs in the high frequency of
dual broadband, but the absorptance is still high. Based on the analysis above, we can
know that the absorber can realize good-broadband absorption performance even at large
incidence angles.
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(f) TM polarization with dual-broadband absorption at different incidence angles.

At present, the absorbers utilizing VO2 and graphene as modulating media have
attracted increasing research [26–28], and every investigation has its novelty. To more
visually compare their advantages, Table 1 shows the characteristics of the proposed
absorber and other absorbers. The absorber in Ref. [26] can realize tunable narrowband and
broadband absorption properties. In Ref. [27], the absorber can implement the switching
from dual narrowband to single-broadband absorption. In Ref. [28], the absorber can realize
the switching between high-frequency broadband and low-frequency broadband. However,
our work can allow for flexible switching between single and double broadband via VO2.
In addition, the amplitude of absorptance can be tuned by using graphene and VO2.

Table 1. The absorber in this paper is compared with other tunable absorbers in the THz band based
on VO2 and graphene.

Reference Adjustable Material Absorption Band Function

[26] VO2 & Graphene Narrow & Broad Narrowband and broadband switching &
Tuned absorptance

[27] VO2 & Graphene Dual narrow & Broad Dual narrowband and single-broadband
switching & Tuned absorptance

[28] VO2 & Graphene High frequency broad &
Low frequency broad

High-frequency broadband and low-frequency
broadband switching & Tuned absorptance

This work VO2 & Graphene Single broad & Dual broad Single-broadband and dual-broadband
switching & Tuned absorptance

4. Conclusions

In summary, we propose a dynamically tunable THz absorber that can switch from
single-broadband absorption to double-broadband absorption by using VO2 and graphene.
When VO2 is in the insulating phase and the EF of graphene is 0.7 eV, the absorber exhibits
single-period characteristics, resulting in single-broadband absorption. When VO2 is in
the metallic phase, the absorber exhibits dual-period characteristics, thus achieving dual-
broadband absorption. The amplitude of the absorbance can also be tuned individually.
Additionally, the absorbance is insensitive to incident wave polarization.
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