Preferential Utilization of Specific Immunoglobulin Heavy Chain Diversity and Joining Segments in Adult Human Peripheral Blood B Lymphocytes

By Masao Yamada,* Robert Wasserman,‡ Betty Anne Reichard,* Sara Shane,* Andrew J. Caton,* and Giovanni Rovera*

From *The Wistar Institute of Anatomy and Biology; and The [‡]Department of Pediatrics, The University of Pennsylvania School of Medicine and The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104

Summary

We have examined at the molecular level the CDR3 and adjacent regions in peripheral blood B lymphocytes of normal individuals. A total of 111 sequences (12–28 sequences from six individuals) were obtained after cloning of the polymerase chain reaction-amplified segments into plasmids or phage. The average length of the VDJ joining was 109 nucleotides, with a range from 79 to 151. Approximately 75% of the sequences were in frame when translated into amino acids. Among the J_{H} segments, $J_{H}4$ was found most frequently (in 52.5% of the sequences), and $J_{H}1$ and $J_{H}2$ segments the least frequently (~1% of the clones). A polymorphic $J_{H}6$ gene with a one-codon deletion accompanied by a base change was present in two of six patients. Preferential breakpoints were found for $J_{H}2$, $J_{H}3$, $J_{H}4$, and $J_{H}5$, although the breakpoints of $J_{H}6$ were distributed more heterogenously.

In $\sim 90\%$ of the cases, significant homology of the D regions with published D sequences was found. Preferential usage of a particular coding frame was observed in in-frame sequences utilizing DA, D21/9, and DM1 segments. However, in general, all coding frames of germline D genes were used to generate CDR3s. Eight sequences that have a DN1-like D sequence with two base changes at the same positions were identified, suggesting the likely existence of a new germ line D gene belonging to the DN families. Using probes specific for a particular CDR3, the frequency of a specific B cell clone in the peripheral blood of normal individuals was estimated to be at most as high as 1/20,000.

The most variable region of the immunoglobulin heavy chain is the third complementarity determining region (CDR3) (1, 2). This region spans the junction between the variable (V_H) diversity (D), and junctional (J_H) segments in the rearranged IgH genes (1, 2). The hypervariability of this region is due to the combinatorial assortment of the many V_H , D, and J_H segments that are utilized to generate a particular CDR3, to the imprecise joining mechanisms that include deletion of bases from the potential coding regions of each segment to be joined (3), and the addition of new bases that can be enzymatically added at the point of joining (N regions) (4). Finally, somatic mutations of the rearranged region can contribute to the production of higher affinity antibodies (5).

The nucleotide sequences of all the human D genes, estimated to be \sim 30 in number (6), have not been fully defined, and questions remain about the relative usage of different D genes used in VDJ joinings during development and in adult individuals. Furthermore, the characteristics of the extent of base excision and addition, including the identification of preferred sequence boundaries for the V_H , D, and J_H regions, have not been well delineated. The relative frequency of inframe translation products reflecting productive rearrangements, and the possibility of specific translation frames being preferred for particular D gene families have not been determined on a large sample size.

To address these questions, we have used the method of the PCR (7, 8) using primers for framework region (3) (FR3) of the $V_{\rm H}$ segments and for the $J_{\rm H}$ genes to amplify the CDR3s and adjacent regions (9) from a polyclonal population of peripheral blood B lymphocytes. The amplified CDR3s have been sequenced from plasmids or phage libraries.

The resulting analysis of 111 CDR3 sequences from six adult volunteers gives a picture not only of the usage of various D family and J_{H} gene segments and of the translational frame used in individual D family genes, but also extends our present information on the location of joining boundaries, the frequency of in-frame products in circulating B cells of normal individuals, and the type of polymorphisms present in the human J_H gene locus. Also, we provide further evidence that novel rearrangements (V_H-J_H, V_H-inverted D-J_H, V_H-DIR-J_H, V_H-D-D-J_H, V_H-D-inverted D-J_H, V_H-DIR-D-J_H, V_H-inverted DIR-D-J_H, and V_H-D-DIR-J_H) are commonly present in the circulating B cell population supporting the original hypothesis of Kurosawa and Tonegawa (3), that alternative signal sequences present in certain D segments may be responsible for this break in the 12/23-bp spacer recombination rule (10).

Materials and Methods

Clinical Samples and DNA Preparation. Peripheral blood (10 ml) was obtained by venipuncture from six healthy adult volunteers. Low-density mononuclear cells were obtained by fractionation on a Ficoll/Hypaque gradient (d = 1.078) (11). High molecular weight genomic DNA was isolated from mononuclear cells using established methods (12).

Oligonucleotide Primers and Probes. Oligonucleotides were synthesized by the solid phase triester methodology on a DNA synthesizer (380A; Applied Biosystems, Inc., Foster City, CA) (13). The sense and antisense primers containing the Sall and PstI cloning sites, homologous to the V_H FR3 and the J_H genes, used for amplification of the VDJ joining region of the IgH, were 5' CTG-TCGACACGGCCGTGTATTACTG-3' and 5' AACTGCAGAG-GAGACGGTGACC-3', respectively. In some experiments, to exclude a possible bias in amplification of the J_{μ} segments, primers specific for $J_{\mu}2$ and $J_{\mu}3$ were used. These $J_{\mu}2$ and $J_{\mu}3$ primers differed from the antisense universal J4 primer by a G to A base substitution at positions 16 and 9 of the universal J_{μ} primer, respectively. The J_H consensus (J_HC) probes, which were used to detect all VDJ rearrangements, were a mixture of four oligonucleotides derived from the sequences of $J_{\mu}2$, $J_{\mu}3$, $J_{\mu}4$, and $J_{\mu}6$ genes just 5' to the J_{μ} antisense primer used for PCR amplification. These oligonucleotides had the following sequences; J_H2: 5'-CTG-GGGCCGTGGCACCCTGG-3'; J₄3: 5'-CTGGGGGCCAAGGGA-CAATGG-3'; J_H4: 5'-CTGGGGGCCAGGGAACCCTGG-3'; J_H6: 5'-TCTGGGGCAAAGGGACCACG-3'.

The J_{μ}4 probe also hybridized to J_{μ}1 and J_{μ 5} sequences when 42°C and 45°C were used as the hybridization and washing temperatures, respectively.

PCR, Cloning, and Sequencing of VDJ Joining. PCR was carried out as described by Saiki et al. (7) and Mullis and Faloona (8). The initial denaturation step was at 95° C for 5 min, followed by 30 cycles with a 1-min annealing step at 55° C, a 2-min elongation step at 70° C, and a 2-min denaturation step at 95° C. The final cycle was completed with a 7-min elongation step. Samples were extracted with phenol/chloroform, precipitated with ethanol, and resuspended in Tris-EDTA buffer. Precautions against crosscontamination of amplified material were taken according to the recommendations of Kwok et al. (14).

After phenol/chloroform extraction and ethanol precipitation, an aliquot of the PCR-amplified material was digested with both SalI and PstI restriction endonucleases (Boehringer Mannheim Biochemicals, Indianapolis, IN). After electrophoresis in a 4% Nusieve agarose gel (FMC, Rockland, ME), slices spanning the 72–191-bp region, which contain the amplified CDR3 DNA, were treated with agarase (15) (Calbiochem-Behring Corp., San Diego, CA). Recovered DNA was ligated into Bluescript phagemid (Stratagene, La Jolla, CA) and transfected into *Escherichia coli* strain JM 109 (16).

Transformants were lifted onto nitrocellulose filters (BA 85; Schleicher & Schuell, Inc., Keene, NH). The filters were hybridized at 42°C with ³²P-labeled J_nC probes and were washed in $6 \times$ SSC and 0.1% SDS at 45°C. Lower stringency of washing was used in order not to miss any VDJ clones with polymorphisms in the areas homologous to the J_nC probes used.

Positive clones were picked up randomly, and double-stranded DNA template was prepared and sequenced by the method of Sanger et al. (17) using the Sequenase kit (United States Biochemical Corp., Cleveland, OH).

Computer Analysis of DNA Sequences. Computer analysis of DNA sequencing data was performed using the sequence analysis software package of the Genetic Computer Corp., Release 5, of the University of Wisconsin and a Micro Vax II computer (Digital Equipment Corp., Marlboro, MA).

All VDJ joining sequences were entered using the "seqed" program. Each sequence was checked for the presence, in the correct orientation, of the J_{H} and V_{H} primers. Each VDJ joining sequence was translated into the predicted amino acids, using the following criteria to identify in-frame sequences. (a) The amino acid sequence of the V_{H} primer in FR3 starts with VDTAVYY (C). (b) The amino acid sequence of the J_{H} primer ends up with VTVSS (A). (c) No stop codons should be present in between the two primer coded sequences. Each sequence was searched for homology with the six human J_{H} sequences (18) available in a subdirectory using the "word search" program.

Each sequence was searched for homology against all published D genes (6, 19, 20) available in a second subdirectory. The best-fit D genes were chosen according to the following criteria; (for Fig. 7, we dropped criteria *a* and *e*). (*a*) We did not accept reverse homology. (*b*) We gave priority to the homology with a J_{H} segment, when both D and J_{H} homologous regions overlapped. (*c*) When we had more than one candidate, we took the longest stretch with the highest homology. (*d*) We tried to avoid introducing gaps and base additions to the alignment. However, if there were no other candidates and the stretch of homology was long enough, we took the sequence with the gap or base additions. (*e*) We did not use homology to DIR sequences. According to this computer analysis, sequences of the VDJ joinings examined were subdivided into V_H, D, and J_H segments.

Generation and Screening of M13 Libraries of VDJ Joining Clones. PCR-amplified materials from donors 2, 3, and 4 were ligated into M13 mp19 (Bethesda Research Laboratories, Gaithersburg, MD) phage vector using the same protocol used for Bluescript transformation. Ligated materials were then used to transform DH5 α F' *E. coli*, and \sim 5–10 × 10³ plaques per 15-cm plates were transferred to nitrocellulose filters to generate replica filters. Duplicate filters were screened separately with the J_nC probes to establish the number of VDJ joinings present in the libraries and with diagnostic oligonucleotide probes homologous to the N regions of randomly picked VDJ joinings to establish the frequency of a specific CDR3 sequence in the overall population.

The frequency of $J_{\mu}2$ segment usage in the population was determined by screening separately a large number of M13 clones containing VDJ joinings on duplicate filters with the $J_{\mu}C$ probes that hybridize to all six J_{μ} genes and with the $J_{\mu}2$ -specific probe. Stringent hybridization conditions (washing the filters at 1°C below the melting temperature of the probe) were used with the $J_{\mu}2$ probe in order to avoid crosshybridization with other J_{μ} segments. 12 of the plaques that hybridized to the $J_{\mu}2$ probe were isolated and sequenced.

Results

Characteristics of the CDR3 in Normal B Lymphocytes. DNA sequences that contain the CDR3 and adjacent regions spanning from the FR3 of $V_{\rm H}$ to the 3' end of $J_{\rm H}$ were obtained from PBL of six healthy adult volunteers.

Fig. 1 contains the sequences of 99 randomly picked VDJ joinings as well as 12 VDJ joinings containing J_{H2} segments that have been isolated using a J_{H2} -specific diagnostic probe. Palindromic nucleotides generated during the joining process, as described by Lafaille et al. (21), are shown when present as full tetrameric palindromes. In the 111 total CDR3 sequences, nine were found at the 3' V_H border, five at the 5' D border, one at the 3' D border, and one at the 5' V_H border.

Fig. 2 shows the predicted amino acid sequences of the CDR3 and adjacent regions. 75% (75/99) of the randomly picked sequences were in-frame when translated into amino acids. 7 of 12 VDJ joinings with $J_{\rm H}2$ segments (58%) were in-frame. The in-frame sequences from Fig. 1 are grouped according to the $J_{\rm H}$ utilized and are listed in an increasing order of length. The reading frame for each D segment is also indicated.

Fig. 3 shows the length distribution of the 99 randomly picked VDJ joinings shown in Fig. 1. Clone 3-79 (Fig. 1) is the shortest CDR3 identified, and it is an in-frame sequence that codes for only a four-amino acid-long CDR3 (Fig. 2). Clone 1-139 (Fig. 1) is the longest in-frame sequence that codes for a 24-amino acid-long CDR3 (Fig. 2). Clone 1-151 (Fig. 1) is the longest out-of-frame sequence. Although the length of the CDR3s are very heterogenous, ranging from 4 to 24 amino acids, the majority of clones range from 8 to 18 amino acids. Only one of four clones that were longer then 136 bp are in-frame, in contrast to the smaller sequences in which the majority are in-frame.

Characteristics of the J_{H} Regions Utilized in Adult B Lymphocytes. Table 1 shows the frequency of J_{H} gene usage in adult peripheral lymphocytes calculated from the 99 VDJ sequences shown in Fig. 1, which were amplified with the J universal primer. The most frequently found $J_{\rm H}$ segments are $J_{\rm H}4$ (52.5%), J_H6 (22.2%), and J_H5 (15.2%). Only one VDJ clone carrying a $J_{\rm H}1$ segment and no clones containing a $J_{\rm H}2$ segment were identified among the 99 clones randomly picked. Experiments were done to rule out the possibility that the J universal primer was biased in its amplification of $J_{\mu}2$ and $J_{\rm H}3$ segments due to one-base mismatch with these sequences. Three J primers 100% homologous to J2, J3, and J₄ were synthesized and used individually to amplify the CDR3 of the PBL of donor 3. The amplified products resulting from each J primer were cloned in Bluescripts and screened with probes specific for J_2 , J_3 , and J_4 . The data (not shown) indicate that no differences in the frequency of $J_{\mu}2$, $J_{\rm H}3$, and $J_{\rm H}4$ containing recombinant clones were observed when either the $J_{\rm H}$ universal or $J_{\rm H}3$ or $J_{\rm H}2$ primers were used in the PCR.

Table 2 shows the frequency of J_{H2} gene usage as determined by screening an M13 library containing CDR3amplified sequences with a J_{H2} -specific oligonucleotide probe (see Materials and Methods section). The calculated frequency of $J_{\mu}2$ gene usage ranged from 0.98 to 1.77% in the three donors studied.

Fig. 4 shows the sequences present in the six donors in J_H3 , J_H4 , J_H5 , and J_H6 gene segments as compared with the sequences originally published by Ravetch et al. (18). These variant sequences have all been published previously (18, 22, 23). J_H3b differs from J_H3a by one base (G to A), which results in an amino acid change from V to I. J_H5b differs from J_H5a by three bases (C to A, A to G, T to C), of which the latter base change results in an amino acid change from S to P. J_H6c has three consecutive base deletions (GGT), which eliminates an amino acid change from Q to K when compared with J_H6b . J_H4b and J_H6b differ from J_H4a and J_H6a by one base change, respectively, which does not result in an amino acid change.

 J_H3b , J_H4b , and J_H5b segments were exclusively used by all six donors. For J_H3 and J_H5 , there were one and three sequences, respectively, which could not be assigned to an a or b sequence because the break point was downstream from where they differed. These findings and other findings in the literature (23) indicate that J_H3b , J_H4b , and J_H5b sequences should be considered as prototype sequences instead of J_H3a , J_H4a , and J_H5a sequences, which were originally reported as germline J_H sequences in a single individual (18). All the J_H6 sequences obtained from donor 6 used the J_H6c sequence. This variant sequence was also observed in two of three J_H6 sequences from donor 5, while J_H6b sequences were found exclusively in donors 1, 2, 3, and 4. Therefore, J_H6b and J_H6c truly represent two different polymorphic loci.

Analysis of Rearrangement Sites at the D-J_H Junction. Fig. 5 highlights the 5' rearrangement sites of J_H segments in VDJ joining clones. Rearrangement of the J_H3 segment is most frequently observed at the 5' end (base 1 in the Fig. 5) of the J_H coding sequence. Rearrangements of the J_H2 and J_H5 segments are most frequently observed 2–5 bp downstream from the 5' end of the coding sequence, whereas the J_H4 segments most frequently rearrange 4–9 bp downstream. Rearrangements of the J_H6 segments are widely distributed 3–21 bp downstream.

Characteristics of D Gene Family Usage. Approximately 91% (100/111) of the sequences from Fig. 1 had significant homology to one of the presently known germline D genes (6, 19, 20). Fig. 6 aligns the D regions of the sequences in Fig. 1 to known germline D1 segments with the most homology. As seen, there is often extensive trimming of nucleotides at both the 5' and 3' ends of the D segment, which may make some of the homology assignment inaccurate. In many cases, the homology to a given family member is <90%. suggesting that these sequences are probably derived from other unknown members of the same family. Specifically for the DN1 segments, 8 of 19 sequences have two base pair changes at the same position; i.e., $C \rightarrow T$ at position No. 12, and $A \rightarrow G$ at position No. 13. This variant form of the known germline sequence is observed in all six donors. The germline DN4 segment, which is the only other known member of DN family, does not match the variant at positions no. 12 and no. 13. These findings suggest the presence

80	1-884	88 5 5	1-103	1-106 1-112	1-115 1-1184	1-1188		1-139	101 1		2-100B	2-102A	AE01-2	2-103B	2-1030	2-106B	2-1094	2-1095	2-1090	2-115A	2-115B	2-118A	2-118C	2-120A	2-121A	2-121B 2-122	3-79	19 19 19	5 8 8 4 5	3-97 7-100	3-103A	4601-E	3-109B	3-118 3-126	88 4	4-91A 4-91B	4-91C	1 2 1	4-100A 4-100B	
			TTTGACHACTECOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC	ACTITISACTICICOCOCOCOCOCOCOCOCI (J4)	ALIPHCEROSSERVICESOSSERVICESOSSERVICED (J6) CIRCIPACIENCESERVICENCESOSSERVICESOSSERVICED (J6)	CUACTACTACTACTACTACTACTACTACTACTACTACCAC (J6) CTACTACTACTACTACTACTACTACTACTACTACTACCACC	ACMCIRGITICEACOCUIGEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	ACTRCTRATERITERACEICTERACEOCRAACEACCAC (J6) AAACTIGETTUCEACOCTERACEOCRACEAACOCT (J5)		TOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTO	CIP/CIP/CIP/COSTAILCORDICIC/COSTACCARCOCOCCOC (J.6)	(UI) CACITACIZZCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCO	TIGECTECTECCECCECCECCECCECCE (J14)	TTTSPCTACTOGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	ANCITEGETTICEACOCCITEREROOCACCEAACOCCI (JE)	LINCOLARGEOCHICAGEOCHICAGEOCHICAGEOCHICUTI (J4) TAICTEGEOCHICAGEAMACOCTI (J4)	TITICACIACIOCOCOCOCOCOCOCI (J4)	01111000000000000000000000000000000000	CITICACTARCERCIACCECT (J5) CITICACTARCIACTARCERCIALACCECT (J5)	TCACTACTOCCCCACCCACCCACCCT (34)	AND IN THE CANON CONTRACTION AND CONTRACTION (JG)	AACTIGGTTOGACOCOTGGGGGGGAAACOCT (J5) TPACTACTACTATATTATTATTATTATTATTATTATTATTAT	TTTCACTACTOCCACCACCACCACCACCACC	TTTTGACIPACIAGONACOCI (J4) ACIPACIPACIPACICACIPACIAGONACOCI (J4)	CIGSTICO COCTACOCOLOCON COCON (US)	ANCIERTICERCOCOTERESCERECERCERCET (J.S) CTUTIERCTRECTERESCERECERECERCET (J.S)	CHCCCCIICCCCACCERCECHCCCCI (12)	TROTEINUCARCENCICEDACCAMACCACCOC (J6)		TTTTGACEGOCAGGAAAACCT (74) GACTRACTICECECAGGAAAACCT (74)	TACTACTACCOSTALICERACOSTICUCCCCCCARACCERCEC (US)	TITIGAURICIGOCOCCANCOCROCOCT (UC)	TEMUMUCIGGGGGGAMAGGEACAMAGGEACAMIT (JT3) CTIGGTTICEACDCOTGGGGGGCGAAACOCT (JT5)	CIRCITITEACINCITEEECOCAESERACOCT (J4) CAACIESTITGEACOCOCIESEECOCAESERACOCT (J5)	TINGHCIPHCIDECEOCONGRAPHCOCT (34)	CIGAZZODAZZAMOCTI (J.4) GMCTRAZZODOZZAMOCCI (J.4)	CTUTIGACIPACIDAGAGAAAACOCT (J4) CITAGTITOGAGAAAACOCT (J4)	TGACTACTOCCOCOCOCOCOCOCOCCU(14)		
z	GICCC	TICCONC	ANCORCITICOS CODOCT	NCENCE NCEN		MCCC	GCCCCINCANCINGITICZACCCCI GCCCCCI	GIGG ACCCCCACAGETAAACCGCCGCCTTC2AT	υ			CODEITATICOS	Start Tart	8	TICCIG	COCIFICAC	ICACA	CACCCEAACAAAAAACCS		CCC CCPCC	ACCOCCI	THACTCIG	TICHTICHICC		Gaac Thingseamanass	GIGODAGC		COCAG		COLLEG	CPCATCHACHAT	ACTAGICALICETIC	333	MENLOUGGG	11CC 6		JO	2040	в	
	(ns) TCCCACTCCCCATC (X2*1) CCCACTC	(K4) GATTACHOCTATIGS (N1) GSTATIGGC	(A1/4) GACTACTROCEACITAC (XP ⁺ 1) GETTCOGOCEACITA	(LR4) TMGTMGT+OCMG (XP1) GTMTTMOCMDMTTTTG+CTG	(XP4) GIATTACCATTUTTICCAGTICATU (N1) ATTACTACTICS	(21/9) GIATTACTATICATINGTIGGTTTATTICCACC	(Net) <u>DATACCANTERCTOSTIDATIA</u> (VDA) CIDATTACCANTTITACTOSTIDATIA (VDA) CIDATTACCANTERNETICACTOSTIDATIA		(N4) GNGININGCINCC	(K4) GIGSACCACAGOGIAGOGE (ns) Altrochciocaagogagggg	(ns) 100002001 (XP*1) ATTRCTRATEATTRCTAC	(MI) TANCTORANC	(21/9) TIACIMICAUNCIPCIGGUIA (A1/4) TIGACIPCIGGUIAC	(KI) GENCETARAGATICOCTACAATT	(RI) ATBGTECODOCAT	(XP4) CGMITITINGGAGIGGETTALT	The second second second (1. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	(KL) CANCGATT (21/9) GINUTPACTANTANTAATTAATTAATTA	(LT2) - GEINTGAUNGING	(Z1/ 9) GANTRURAURAURAURAURAURAURA (K4) ATRACACTATICAT	(XP1) GENTRACEMENTICHCICGETTAT (XPA) MUTUTICSCENTITIES		(NI) AUMCCMCCMCCIGGIA (LIRO) TAMCAMACINGCINGCINACTIA	(III) CONSTRUCTIONITIC	(Z1/5) TURCIMICAURGINGIGGUIMUNGA (K4) GOOGAURGACINAUGGUIA	(LR4) CONTRATIGINGINGINCCROCICCIA	(ns) (23357PA (ns) (57	(NI) GCAGCAGCITCS	(MZ) COSCAMATICOC (NA) GAUTAGACCAG	(LR4) DAUGAUNGIPAGY VVDA1) CC2000	(ALL) TATPACITORA ACCENC		(NI) CONCRETERINC	(U) AGICCULT	(XP 1) TTCCCCC (XP 1) GCCCPG	(LR2) AZZMUCZSCIMCIG	(us)	(NI) CONCONSCION	(XP*1) TACTAGAACTAG (M1) TAACTAGAACTAG	
z		TAIGITICCOA	TTRACEAUCC	tockurative cocca Gittaatoo	ACC	CCECC	CCARCESSISTINAA	tocicalificonamacr	A	TICOMITIAC		14cccc	TICE	TICA 	June 10	ACAGS ACCONTINUES	GGENCLINCCERTENC	AG	ATTERCOCCATTICC	ACTICESTICTIC	ACCIT	anna c	CREMENTERACTRACT CREMENTERSTRACT	TIMUCAC	ANCIENC	COMPERED			3390400	CACAATTAC		ж Х	TGUCTOREESE	ACCEPTOC	TPIC OSTIGGENERATIGGEN	8 6	2	tag	CANANCITINGCANCT GCCCCCCC	
X	TOCANGA	TICCAMAGE	TOCHACA	TICCREACE	TOCOMCA	TOCACA	TICCOMA	TOCONCILIEN	TOCHNICA	TOCCAMAGC	TRACTANCE	TECCHENCE	TICHAGAGA	TICCHCACO T	TOCONCA	TICCEMMEN	TOCHCA	TICCENCENER	TOCHEREN	TIGUNGACA	TECENER	TOCHOR	TGTCAGA	TOCOMMEN	TIGUESIC	TOCHCA	TACTACA	JICIC	TCCNAME	TOCHA	TOPON	TICCAM	TICCACACA TICCACACACACACACACACACACACACACACACACACAC	TUCKA	TOCACA	TCCA	TOCHOR	TOCCAMAGA	ADMODIT	
वाय	a a i	a a i	3 a i	a a	a a	a f	a a	5	a i	4 A i	3 ð	5	4 A	2 2	a	2 2	a	a a	5 4	4 2	2 Z	A	4 ð	58	3 a	Ð	a B	a i	4 A	ã 2	123	4 A	ŧ ≈	Ð	a a	74 F	a	4 A i	a a	
 		14-1	1-106	1-112 311-1	1-118A	1-124	001-1	1-151	2-94A	4001-2	4001-2	2-1028	2-1038	2-103C	2-1064	2-1068	2-1098	2-1090	2-E	2-115	2-1150	801-2	Y-LON	2-1208		21-2	5-6 8-6	16 6-0	5	18 18 18				3-126	84 164	4-918 1-918 218-4	46-4	5	4-100B	
							39	98		VDJ	i Jo	ini	ngs	in	Hu	ıma	in I	Perij	phe	ral	Blo	od	B	Lyn	nph	ocy	tes													

44444444444444444444444444444444444444		F100 F101 F103 F112 F103 F127 F127 F127 F127	Z-106 Z-1066 Z-10668 Z-1066 Z-107 Z-109 Z-109 Z-1208 Z-1208 Z-1208 Z-1208 Z-1208 Z-1208 Z-1208 Z-1208
ACTITITACIACITACIACIONACTOCASCARACOCT (J4) TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	ACITITIZACIBACITACIONACIDACIDACIT (34) AMACINICATICAROCOMACITACIONACIT (34) CITITIZACIDACIDACIDACIDACIDACIDACITA (34) GALTINICACIDACIDACIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDA CIPALIDACIDACIDACIDA CIPALIDACIDACIDACIDA CIPALIDACIDACIDACIDA CIPALIDACIDACIDACIDA CIPALIDACIDACIDACIDA CIPALIDACIDACIDACIDA CIPALIDACIDACIDACIDA CIPALIDACIDACIDACIDA CIPALIDACIDACIDACIDA CIPALIDACIDACIDACIDA CIPALIDACIDACIDACIDA CIPALIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDA CIPALIDACIDACIDACIDA CIPALIDACIDACIDACIDA CIPALIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDA CIPALIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDACIDACIDACIDA CIPALIDACIDACIDACIDACIDACIDACIDACIDACIDACIDAC	ACTIMUTEACONCINC***AITTA-CONCERTERCONCORRADOCTI (JJ) ACTIMUTEACINCTERCONCINCARACTICACONCARACONCI (JJ) ACTIMUTTIA-CINCTORCONCARACTICACONCINCARACTICACONCI (JJ) CINCTIMUTEACINCTORCONCARACTICACONCINCARACTICACONCI (JJ) CINCTIMUTEACINCTORCET-**AITTA-ACTINTOSCONCARACANCONCI (JJ) TRACTIMUTEACINCTORCET-**AITTA-ACTINTOSCONCARACANCONCI (JJ) TRACTIMUTEACINCTORCET-**AITTA-ACTINTOSCONCARACANCONCI (JJ) TRACTIMUTEACINCTORCET-**AITTA-ACTINTOSCONCARACANCONCI (JJ) TRACTIMUTEACINCTORCET-**AITTA-ACTINTOSCONCARACTIACONCI (JJ)	1651M-TTO-ATTOTATES 20201922-ACCT [3] CITC-ATTOTATES 20201922-ACCT [3] TG3/M-TTO-ATTOTATES 20201922-ACCT [4] TG3/M-TTO-ATTOTATES 20201723-ACCT [3] CITC-TTO-ATTOTATES 20201723-ACCT [3] TG3/M-TTO-ATTOTATES 20201723-ACCT [3] ACTOFAM-TTO-ATTOTATES 20201723-ACCT [4] ACTOFAM-TTO-ATTOTATES 20
TPC AITCCCCCCCCC C AGTNITCA TTAMIDIOSSAACCAMICITAACOCCAGGSTING CCCCCC ACTICG ACTICG ACTICG ACTICG ACTICG ACTICG ACTICG ACTICG ACTICC ACTICG ACTICC AC	CCOCRACCCC CCCRAMANCT CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CIA ACE CIG CANCERCENCE CANCERCENCE CANCERANTING COCEMINTING ACCONTINUES ACCONTINONTINUES ACCONTINUES ACCONTINUES ACCONTINUES	GTICIPACA AUROSSIGT ACAG And And And Aurochicipaca Aurochicipaca Aurocoscanos Trococcututuas
(res) COCCATTEMICOCCATEGATICAME (N1) COCTATEMICOCCATEGATICA (N2) COCUMENTICOCATEGATICA (N3) COCUMENTICOCATEGATICA (N3) COCUMENTICACATEGATICA (N3) TRACTACATEGATICA (N3) TRACTACATEGATICA (N3) TRACTACATEGATICA (N3) COCUMENTICATICA (N3) COCUMENTICATICA (N4) CACATEGATICA (N1) COTATEGATICA (N1) COTATEGATICATICA (N1) COTATEGATICATICA (N1) COTATEGATICATICA (N1) COTATEGATICATICA (N1) COTATEGATICATICA (N1) COTATEGATICATICATICA (N1) COTATEGATICATICATICA (N1) COTATEGATICATICATICATICATICA (N1) COTATEGATICATICATICATICATICATICATICATICATICATIC	 (RP4) GINTIDICANTITITIZAG (LR4) ANTERPERAGINGTINGTOCINIC (LA4) GUNTIGINGTINGTOCINCTINIC (AL/4) THACTINC (LA5) TRACTINGTOCINCTINIC (AL/4) CARCENCENCE (AL/4) CARCENCENCE (AL/4) CARCENCENCENC (AL/4) CARCENCENCENC (AL/4) CARCENCENCENC (AL/4) CARCENCENCENC (AL/4) CARCENCENCENC (AL/4) CARCENCENCENC (AL/4) CARCENCENCENCENCENCENCENCENCENCENCENCENCENC	(AL/A) TAACTICC (IIS) CRICEAAACCT (LEE) TITGAAACCT (AL/A) ACAATTICTICAACTICC (AL/A) ACAATTICTICAACTICC (PA) ACAATTICTICAACTICC (PA) ACAATTICTICAACTICC (PA) CACTIAT (NI) CACTIAT (NI) CACTIAT (NI) CACTIAT (NI) CACTIAT	 (x2⁺¹) TMTIAT (K1) CIMMACACCIGS (K1) CEMMACACCIGS (K1) CECHACCIGS (K1) CACTACGTISA (K1) CACTACGTISA (K1) CACTACGTISA (K1) CACTACGTISA (K1) ACTACTACTACG (K1) ACTACTACTACG (K1) ACTACTACTACG (K1) ACTACTACTACG (K1) ACTACTACTACG (K2) TACCTACACATACA (K2) TACCTACACATACACACATACACATACA (K2) TACTACACATACACACACATACACATACACATACACATAC
CITAMATICac CITAMATICac CITAMATICac CANCINAC CITACIACACTINAC CITACIACACTINAC CITACIACACACACACACACACACACACACACACACACAC	COTTACCS TTTTTG CCTTTTTT CCTTTCTTC CCTC CCTC	cocritococripicose Across tractos tractos cos cos cos cos cos cos cos cos cos c	ACAUTIC GITPA GGETOCIC GGETOCIC GACCC TACACC CACACC CACACC ACACCANIA ACACCANIA TCCCCACA
и плами и плами и посача и посача и и посача и посача и посача и и посача	N 100240 N 1002404 017 10024046 N 10024046 N 10024046 N 10024046	NI TOTACC OUT TOTACACA OUT TOTACACA OUT TOTACACA NI TOTACACA NI TOTACACA NI TOTACACA NI TOTACACA	MU TOCHARAM N N N TOCHARAM N N N TOCHARAM N N N N N N N N N N N N N N N N N N N
 4-108 4-108 4-1150 4-1150 4-1150 4-1150 4-1150 4-123 4-123 4-123 4-123 4-123 4-120 5-1036 5-1036 5-1036 		6113 6113 6112 6112 6112 6112 6128 6128 6128 6128	27-105 27-1066 27-1066 27-1066 27-106 27-107 27-118 27-1203 27-1203 27-1203 27-1203 27-1203

or out of frame. Each sequence is subdivided into V_u, N, D, N, and J_u regions according to the results of computer analysis against published germline V_u, D, and J_u genes. Names of the germline D and J_u genes with maximum homology to the segments used in the VDJ joining are shown in parentheses in the appropriate rows. When a specific germline D gene could not be determined, (ns, nonspecified), the N-D-N sequence is presented as one stretch of sequences. Deletions from germline sequences are indicated as asterisks. VDJ joinings carrying J_u² gene segments that were obtained using a J_u2-specific probe (see Materials and Methods) are shown at the bottom. Donors from which these sequences were derived are shown in the parenthesis after the J_u sequence. P nucleotides as described by Lafaille et al. (21) are shown by small letters when present as tetrameric palindromes. Underlined are the sequences that were used to generate two oligonucleotide probes used to determine the relative frequency of these specific CDR3 in the B cell population, as described in Table 4. The first number in the first row represents the donor number, and the second number represents the length of the clone in base pairs. The length is calculated from the first base of the Sall site in the V_H primer in FR3 and ends at the last base of the PstI site in the J_H primer. Sequences of the primer used in the PCR are not shown. The second row indicates whether the sequence is in

399 Yamada et al.

ß

Figure 2. Translated amino acid sequences of the CDR3 and adjacent regions. 75 in-frame sequences from the 99 randomly picked VDJ clones and seven in-frame J_{H2} sequences shown in Fig. 1 are included. The amino acid sequences are grouped according to the J_{H} segment used and lined up in increasing order of length. Amino acids derived from the V_{H} and J_{H} primer sequences may not entirely represent the original amino acids. The first 10 amino acids are lined up as the framework region 3 (FR3), amino acids that are not identical are indicated. The second block is

Figure 3. Length of the CDR3 sequences deduced from the 99 VDJ sequences from Fig. 1. Shaded bars represent in-frame sequences, while open bars represent out-of-frame sequences. On the x-axis, the first line shows the length of the VDJ joinings sequences in basepairs. These clones cover the 3' end of the FR3, the CDR3, and the FR4. The second line shows the length of the CDR3 in basepairs. The third line shows the length of the CDR3 in basepairs. The third line shows the length of the CDR3 peptides (for in-frame sequences) in amino acids (aa). The y-axis shows the number of clones examined.

of a new D segment that belongs to the DN family. We can not rule out the possibility that some of the other aligned sequences are derived from related but not yet identified members of the same family. Table 3 shows the coding frame of the D segments used in those sequences that were found in frame. All three coding frames were used with some preferential use of specific coding frames in certain D genes. 5 of the six in-frame sequences carrying a DA segment used the second coding frame. All five in-frame sequences using a DM1 gene used the third coding frame. All four sequences using a D21/9 gene used the second reading frame. Sequences using the DK segments (DK1 and DK4) preferentially used the first and third coding frames.

Possibility of Unusual VDJ Joining. In 11 of 111 total sequences analyzed (10%), we could not find significant homology with a known D segment. In addition, several sequences have extraordinarily long N regions (>15 bp), including some with homology to a known D segment. We reexamined these sequences using less stringent criteria by allowing for homology against both DIR and D gene segments regardless of orientation. The following are possible unusual VDJ joinings. Fig. 7 shows examples for each of the following categories: (a) V_H -J_H joining without D. (b) Inverted D joining ($V_H \leftarrow$ D-J_H joining). (c and d) Double D joining (V_H -D-D-J_H) and (V_H -D \leftarrow D-J_H). (e and f) V_H -DIR-

the amino acid sequence derived from N-D-N region. Sequences homologous to germline D genes at the nucleotide level are underlined. Amino acids identical to those coded for by germline D genes are shown in small letters. The third block is the amino acid sequence derived from the germline J_{ii} gene. Amino acids identical to consensus sequence are shown by bars, while amino acids that are not identical are indicated. The first column (*) after the sequences shows the length of CDR3 peptide. The second column shows the D gene used and the third column indicates the coding frame of the D gene used. (ns) The reading frame for a particular D gene cannot be identified due to either extensive deletion or mutation.

Table 1. JH Gene Usage in 99 Randomly ExaminedVDJ Joinings

				Done	ors			
J _H segment	1	2	3	4	5	6	Total	Percent
J1	0	1	0	0	0	0	1	1.0
J2	0	0	0	0	0	0	0	0.0
J3	0	3	3	2	1	0	9	9.1
J4	8	14	4	11	7	8	52	52.5
J5	2	5	4	2	1	1	15	15.2
J6	5	5	2	2	3	5	22	22.2
Total	15	28	13	17	12	14	99	100.0

Table 2. Frequency of VDJ Joinings Containing the $J_{\mu}2$ Segment in Peripheral Blood B Cells

Donor	J _H 2 clones*	Total VDJ joinings [‡]	Frequency of J _# 2 clones
			%
2	80	6,320	1.27
3	59	6,041	0.98
4	184	10,384	1.77

* Number of recombinant clones containing CDR3 amplified sequences present in M13 phage libraries that hybridize to a J_{H2} -specific probe. ‡ Number of clones positive for a mixture of J_{H} consensus probes (J_{HC} probes) derived from J_{H} segment sequences 5' to the J_{H} primer used in the PCR amplification.

D-J_H joining, V_H-D-DIR-J_H joining. (g) V_H-DIR-J_H joining, V_H-inverted DIR-J_H joining.

Frequency of Specific CDR3 Sequences in the B Cell Population as an Indication of Clonal Heterogeneity. To determine whether the primers used in the PCR amplified a large number or a relatively discrete number of CDR3 regions, we tried to estimate the frequency of two specific CDR3 sequences in the PCR products amplified from the lymphocyte population of three donors. Two oligonucleotide probes (2-106A-DP and 2-118B-DP) were synthesized that were specific for the CDR3 of the randomly picked VDJ clones 2-106A and 2-118B from donor 2 (underlined in Fig. 1). Triplicate filters of M13 libraries containing amplified CDR3s from three normal lymphocyte samples (donor nos. 2, 3, and 4) were then screened with these probes. One set of filters was hybridized with the $J_{H}C$ probes to establish the number of the VDJ clones present in the M13 libraries. The second and third sets of filters were hybridized with the 2-106A-DP probe and 2-118B-DP probe, respectively, to establish the frequency of these two specific clones in the population. As shown in Table 4, we found one positive plaque for the 2-106A-DP probe in M13 libraries from donor no. 2 only, and not from the other two donors (nos. 3 and 4). No positive clones for the 2-118B-DP probe were found after screening 18,000–20,000 plaques in each donor's library. From these data, we estimate that in the peripheral blood of donor 2, the two CDR3 sequences from which the probes were derived are present at a frequency of no more than one in 20,000 different CDR3s

JBa JBb		A1 	GC.		IGA	TGT -A-		GGG	CCA	AGG	GAC		3 -		
J3a J3o			A -	f F	D -	V I	W -	G -	Q -	G -	Т 	м -			
J4a J4b		A(TA	CTT 	IGA	CTA 	CIG	GGG	CCA	AGG G	AAO		3 -		
J4a J4b			Y -	F	D -	Y _	W -	G -	Q -	G -	Т —	L -			
J5a J5b		ACA A-	ACI	IGG.	ria	GAC	roc: C	IGG	GGα	CAA(G-	3GAV	<u>+ca</u>	TG.	••	
J5a J5b			N -	W -	F -	D -	S P	W 	G -	Q -	G -	Т -	L -		
J6a J6b J6b		TAC	TAC	TAC	CTA	-000		GA	CGIN		3660 (CA4 >	100G	ACC	ACG
J6a/b	Y	Y	Y	Y	Y	G	м	D	v	W	G	Q	G	т	т
J6c		-	-	-		0	-	-	-	-	-	K	-	-	-

401 Yamada et al.

NO. OF CDR3 CLONES

0

8

0 52

0

12

0

15

Figure 4. Sequences of J_H genes. J_H3a , J_H4a , J_H5a , and J_H6a were original sequences published by Ravetch et al. (18). J_H4b and J_H5b were described as polymorphisms in J_H4 and J_H5 genes by Schroeder et al. (23). J_H6c was first described by Ravetch as a variant from J_H6 found in one of the two recombined genes from IgM-expressing chronic lymphocytic leukemia cells (18). J₁₁3b also appeared in the paper by Schroeder et al. (23), although they did not mention it as a polymorphism. The Ju6b was noted in the work by Bird et al. (22) from rearranged IgH in leukemic lymphoblasts. The first group for each J_{H} gene is the comparison at the nucleotide level and the second group is the comparison at the peptide level. In this study, J_H3b, J_H4b, and J_H5b genes were used exclusively by all six donors while both J_H6b and J_H6c genes were used in the population. Consensus sequences between each version are shown as bar, while sequences that are not identical are indicated. Deletions are shown as circles. For each $J_{\rm H}$ segment, the 5' coding region begins at the first nucleotide shown. The 3' ends of the J_{H} segments are not shown. The number of CDR3 clones using a specific J_{H} is shown in the right column.

Figure 5. Analysis of the 5' junction of the J_{μ} genes in VDJ rearrangements. Six germline J_{μ} sequences are lined up from the beginning of the heptamer signal (*underlined*). Numbering starts at the first nucleotide of the coding sequence. The position of the 5' junction of the J_{μ} genes observed in each VDJ sequence are plotted above the nucleotide as an asterisk. The first TG in each J_{μ} gene is underlined. The 3' ends of the J_{μ} segments

(representing 10,000-20,000 B lymphocytes, depending on the number of rearranged IgH alleles). These data also indicate that a single set of primers used for PCR amplification of VDJ joinings is able to amplify a very large proportion, if not the total representative population of the CDR3 region present in normal lymphocytes.

Discussion

are not shown.

We report a detailed analysis of the human H chain CDR3 present in the peripheral blood B lymphocytes of six healthy adults. To do so, we have amplified the CDR3 present in the cell population using the PCR with primers that are homologous to the 3' end of the $J_{\rm H}$ segment (antisense primer) and to the FR3 of the $V_{\rm H}$ segments (sense primer) (9).

The data obtained indicate that J_{H4} and J_{H5} segments are the most commonly found J_{H} segments in adult peripheral lymphocytes of CDR3, and that J_{H1} and J_{H2} are the least frequently found. Schroeder et al. analyzed 15 IgH sequences in human fetal liver and reported a predominance of transcripts of J_{H3} (seven clones), J_{H4} (six clones), and J_{H5} (two clones) (23). It is not clear at the present time if the differences between Schroeder's findings and ours are due to the small sampling in their study or different utilization or selection of J_{H} segments in a fetal vs. an adult B cell population.

Table 3. Usage of D Coding Frame in CDR3 Peptides

D genes	1st	2nd	3rd	Unknown*	Total
XP4	1	2	4	0	7
XP1	1	2	0	0	3
XP'1	5	4	1	0	10
D21/9	0	4	0	0	4
A1/4	1	5	0	0	6
K4	2	0	1	1	4
K1	0	1	3	2	6
N4	2	1	0	0	3
N1	5	4	2	1	12
M1	0	0	5	0	5
M2	1	0	0	0	1
LR5	0	0	1	1	2
LR4	0	2	0	1	3
LR1	0	0	0	0	0
LR2	0	1	0	1	2
LR3	0	1	1	0	2
HQ52	0	1	0	0	1
NS‡	-	~	-	-	11
Total [§]	20	28	16	7	82

* Frame is not known because of extensive mutations, or base deletions, however, enough homology is present to assign the sequence to a known D gene.

[‡] The D gene cannot be identified.

§ 75 in-frame sequences fom 99 randomly picked clones and seven inframe sequences obtained by screening with the $J_{\mu}2$ probe are included.

The sites of $J_{\rm H}$ gene rearrangement have been proposed to occur primarily at TG nucleotide sequences within the $J_{\rm H}$ gene segments (23). This observation appears to be applicable to our results. In the $J_{\rm H}3$ sequence, TG first appears at position no. 2. In $J_{\rm H}2$, $J_{\rm H}5$, and $J_{\rm H}4$, TG first appears at nucleotide position nos. 5, 6, and 8, respectively. After rearrangements, most of the 5' borders of these $J_{\rm H}$ segments seem to be clustered upstream of or around the first TG. On the other hand, TG first appears at position 22 in the $J_{\rm H}6$ sequence,

 Table 4. Frequency of a Specific CDR3 Sequence among a

 Polyclonal Population of Peripheral Blood B Cells

Donors	No. of clones positive for 2-106A DP	No. of clones positive for 2-118B-DP	Total no. of CDR3 sequences screened*
2	1	0	18,960
3	0	0	18,026
4	0	0	21,168

* Number of clones in M13 libraries that were positive for a mixture of $J_{\rm H}$ consensus probes ($J_{\rm H}C$ probes).

	CEDMI INC DUDA
	1 10 20 30
CDB3 SEO	ĠTATTACGĂŤTTTTGGAGŤĞGTTATTATĂČČ
1 1-116A	ßß
2 1-139	CC
3 2-1068	
T 2-110H	
6 5-1158	
7 6-109	
	GERMLINE XP'I
	1 10 20 30 GTATTACTATGGTTCGGGGGGGTTATTATGGC
CDA3 SEQ.	
1 1-868	+
2 1-100	
4 2-109B	
5 3-118	
6 1-88	
7 4-918	
8 4-100A	+-C
9 1-1150	M-
10 0-97	
12 J2-105	+
13 J2-118	
14 J2-139	C-AG
	GERNLINE XP1
	1 10 20 30
CBR3 654	GTATTACGATATTTTGACTGGTTATTATAAC
1 1-130	
2 2-118	
3 1-115	
	GENALINE B21/9
CDR3 SEQ.	I 20 30 GTATTACTATGATAGTAGTAGTAGTATTACTAC
1 1-124	
2 2-103A	
3 2-1090	
4 2-115A	-CC-
5 2-121A	6
+ U insert	between bases 14 and 15
В	
	UENALINE DK4
	GTGGATACAĞCTATGGTTÁČ
LUNJ SEU. 1 1-91	
2 1-127	
3 2-948	C
4 2-1158	
5 2-1218	-GTA
6 4-120	G-AA
	CEDMILINE DKI
	GEANLINE DK1
	GEANLINE DK1 1 10 20 GTGGATATAGTGGCTACGATTAC
CDR3 SEQ.	GEANLINE DK1 1 10 20 GTGGATATAGTGGCTACGATTAC
CDR3 SEQ. 1 2-103C	GEANLINE DK1 1 10 20 GTGGATATAGTGGCTACGATTAC CG
CDR3 SEQ. 1 2-103C 2 2-106R	GEANLINE DK1 1 10 GTGGATATAGTGGCTACGATTAC CG
CDR3 SEQ. 1 2-103C 2 2-106A 3 2-109C	GEARLINE DK1 1 10 GTGGATATAGTGGCTACGATTAC
CDA3 SEQ. 1 2-103C 2 2-106A 3 2-109C 4 3-126 5 4-133	GEANLINE DK1 1 10 GTGGATATAGTGGCTACGATTAC CG
CDR3 SEQ. 1 2-103C 2 2-106R 3 2-109C 4 3-126 5 4-133 6 J2-106C	GEARLINE DK1 1 10 GTGGATATAGTGGCTACGATTAC CG
CDN3 SEQ. 1 2-103C 2 2-106A 3 2-109C 4 3-126 5 4-133 6 J2-106C 7 J2-121	GEANLINE DK1 20 1 0 20 GTGGATATAGTGGCTACGATTAC
CDR3 SEQ. 1 2-103C 2 2-106A 3 2-109C 4 3-126 5 4-133 6 J2-106C 7 J2-121	GEANLINE DK1 1 20 GTGGATATAGTGGCTACGATTAC CG
CDR3 SEQ. 1 2-103C 2 2-106C 3 2-109C 4 3-126 5 4-133 6 J2-106C 7 J2-121	GERMLINE DK1 1 10 GTGGATATAGEGGCCTACGATTAC CGA A
CDR3 SEQ. 1 2-103C 2 2-106C 3 2-109C 4 3-126 5 4-133 6 J2-106C 7 J2-121	GERMLINE DK1 1 10 GTGGATATAGTGGGCTACGATTAC CGA CC -A GTGATATAGTGGCTACGATTAC CG
CDR3 SEQ. 1 2-103C 2 2-106A 3 2-109C 4 3-126 5 4-133 6 J2-106C 7 J2-121 CDR3 SEA	GERNLINE DK1 1 10 GTGGATATAGTGGCTACGATTAC CG
CDR3 SEQ. 1 2-103C 2 2-106A 3 2-109C 4 3-126 5 4-133 6 J2-106C 7 J2-121 CDR3 SEQ. 1 2-1028	GERNLINE DK1 1 20 GTGGATATAGTGGCTACGATTAC CGA -A
CDR3 SEQ. 1 2-103C 2 2-106A 3 2-109C 4 3-126 5 4-133 6 J2-106C 7 J2-121 CDR3 SEQ. 1 2-102B 2 3-103B	GERMLINE DK1 1 10 GTGGATATAGGGGCTACGATTAC CG
CDR3 SEQ. 1 2-103C 2 2-106A 3 2-109C 4 3-126 5 4-133 6 J2-106C 7 J2-121 CDR3 SEQ. 1 2-1028 2 3-1038 3 4-91C	GERMLINE DK1 1 10 GTGGATATAGGTGGCTACGATTAC CG
CDR3 SEQ. 1 2-103C 2 2-106A 3 2-109C 4 3-126 5 4-133 6 J2-106C 7 J2-121 CDR3 SEQ. 1 2-1028 2 3-1038 3 4-91C 4 4-1008	GERMLINE DK1 1 10 GTGGATATAGTGGCTACGATTAC CGA -AA CC -AG G GERMLINE DN1 GGTATATACTGGAACTAC
CDR3 SEQ. 1 2-103C 2 2-106A 3 2-109C 4 3-126 5 4-133 6 J2-106C 7 J2-121 CDR3 SEQ. 1 2-102B 2 3-103B 3 4-91C 4 4-100B 5 4-109	GERNLINE DK1 1 20 GTGGATATAGTGGCTACGATTAC CGA -AG G G-G- G G G G G G G G G
CDR3 SEQ. 1 2-103C 2 2-106A 3 2-109C 4 3-126 5 4-133 6 J2-106C 7 J2-121 CDR3 SEQ. 1 2-102B 2 3-103B 3 4-91C 4 4-100B 5 4-109 6 5-109	GERMLINE DK1 1 GTGGATATAGGGGCTACGATTAC CGA CG
CDR3 SEQ. 1 2-103C 2 2-106A 3 2-109C 4 3-126 5 4-133 6 J2-106C 7 J2-121 CDR3 SEQ. 1 2-1028 2 3-1038 3 4-91C 4 4-1009 5 4-109	GERMLINE DK1 1 10 GTGGATATAGEGGGCTACGATTAC CG
CDR3 SEQ. 1 2-103C 2 2-106A 3 2-109C 4 3-126 5 4-133 6 J2-106C 7 J2-121 CDR3 SEQ. 1 2-102B 2 3-103B 3 4-91C 4 4-100B 5 4-109 6 5-109	GERNLINE DK1 1 10 GTGGATATAGTGGCTACCGATACC CG
CDR3 SEQ. 1 2-103C 2 2-106A 3 2-109C 4 3-126 5 4-133 6 J2-106C 7 J2-121 CDR3 SEQ. 1 2-102B 2 3-103B 3 4-91C 4 4-100B 5 4-109 6 5-109	GERNLINE DK1 1 20 GTGGATATAGTGGCTACGATTAC CGA -AGC
CDR3 SEQ. 1 2-103C 2 2-106A 3 2-109C 1 3-126 5 4-133 6 J2-106C 7 J2-121 CDR3 SEQ. 1 2-102B 3 4-91C 4 4-1009 6 5-109 CDR3 SEQ.	GERNLINE DK1 10 GTGGATATAGGGGCTACGATTAC CGA GG G-G- G-G-
CDR3 SEQ. 1 2-103C 2 2-106A 3 2-109C 4 3-126 5 4-133 6 J2-106C 7 J2-121 CDR3 SEQ. 1 2-1028 2 3-1038 2 3-1038 3 4-91C 4 4-1008 5 4-109 6 5-109 CDR3 SEQ. 1 3-948	GERNLINE DK1 10 GTGGATATAGEGGCTACGATTAC CGA -AGC
CDR3 SEQ. 1 2-103C 2 2-106A 3 2-109C 4 3-126 5 4-133 6 J2-106C 7 J2-121 CDR3 SEQ. 1 2-102B 2 3-103B 3 4-91C 4 4-100B 5 4-109 6 5-109 CDR3 SEQ. 1 3-94B	GERNLINE DK1 10 20 GTGGATATAGEGGGCACGAGTACC CG
CDR3 SEQ. 1 2-103C 2 2-106A 3 2-109C 4 3-126 5 4-133 6 J2-106C 7 J2-121 CDR3 SEQ. 1 2-1028 2 3-1038 3 4-91C 4 4-1008 5 4-109 6 5-109 CDR3 SEQ. 1 3-918	GERNLINE DK1 1 10 GTGGATATAGTGGGCTACGATTAC CGA CCA CGA CG
CDR3 SEQ. 1 2-103C 2 2-106A 3 2-109C 1 3-126 5 4-133 6 J2-106C 7 J2-121 CDR3 SEQ. 1 2-102B 3 4-91C 4 4-100B 5 4-109 6 5-109 CDR3 SEQ. 1 3-94D	GERMLINE DK1 10 GTGGATATAGGGGCTACGATTAC CGA CG
CDR3 SEQ. 1 2-103C 2 2-106A 3 2-109C 1 3-126 5 4-133 6 J2-106C 7 J2-121 CDR3 SEQ. 1 2-102B 3 4-91C 4 4-1009 5 4-109 5 4-109 6 5-109 CDR3 SEQ. 1 3-94B	GERNLINE DK1 10 GTGGATATAGEGGGCTACGATTAC CG
CDR3 SEQ. 1 2-103C 2 2-106A 3 2-109C 4 3-126 5 4-133 6 J2-106C 7 J2-121 CDR3 SEQ. 1 2-1028 2 3-1038 3 4-91C 4 4-1008 5 4-109 6 5-109 CDR3 SEQ. 1 3-948 C insert 1 9 AGR codon	GERMLINE DK1 10 20 GTGGATATAGGEGGCTACGATTAC CG
CDR3 SEQ. 1 2-103C 2 2-106A 3 2-109C 4 3-126 5 4-133 6 J2-106C 7 J2-121 CDR3 SEQ. 1 2-1028 2 3-1038 2 3-1038 5 4-109 6 5-109 CDR3 SEQ. 1 3-940 CDR3 SE	GERNLINE DK1 1 10 20 GTGGATATAGEGGCTACGATTAC CG

GERMLINE DH1 1 10 20 GGGTATAGCAGCAGCTGGTAC CDR3 SEQ. 1 1-103 2 1-1108 ----G--------76-----3 1-151 4 2-1180 -----5 2-1208 ----TG-----T-6 3-94A 7 3-109B --A-------A-C----8 3-111 9 4-94B 10 4-97 11 4-106 -----TG-----12 5-105 13 5-112 ---------- TG------14 6-127 ----- TG-----15 J2-106A 16 J2-106B ----------17 J2-107 -G----TG-----18 J2-109 ---- TG-------C-T-----TG--19 J2-120A GEAMLINE DA1/4 1 TGACTACAGTAACTAC CDA3 SEQ. 1 1-104 2 2-1038 3 2-109A -----T-CG----------6--6----------6-6-6-C--C-4 4~124 -----G----C---5 5-1038 6 6-85 ----------7 6-94 ---GG-G-----8 6-100 -----9 6-103 -----T-GEANLINE DLAS 1 10 20 30 Agaatattgtratagtactactttctatgcc COR3 SEQ 1 5-115Å -G-G---C-AG-2 6-88 3 6-102 ---A--AC--GEANLINE DLR4 1 10 20 30 Aggatattgtagtagtagtaccagctgctatgcc CORJ SEQ. 1 1-112 -----2 2-122 ------3 3-100 ---GA-----4 5-121 5 5-138 -----C---G-GT--T---C------GERNLINE DLAI 1 10 20 30 Aggatattgtactaatggtgtatgctatacc CDR3 SEQ. 1 5-940 -6---6-C6C-----GERNLINE DLR2 AGGATATTGTAGTGGTGGTAGCTGCTACTCC CDA3 SEQ. 1 2-111 2 2-120A -G---GA----A-------GA----A----TAT-A---4-910 ----CGG------5-103A ----CT-G-A----GERMLINE DLAG 1 10 20 AGCATATTGTGGTGGTGATTGCTATTCC CDR3 SEQ 1 1-115A ----C-A---C----C-2 6-112 -----CT--6----3 J2-110 GERMLINE HQ52 1 10 CTAACTGGGGA

GERMLINE DN4 1 10 GAGTATAGCAGCTCGTCC

-----c-----------

---A-----

CDR3 SEQ. 1 2-94A 2 2-1188 3 3-97

4 6-114

5 6-120

Figure 6. Alignment of the CDR3 sequences that have homology to known germline D genes. In the top line of each panel, the germline D coding sequence is presented. Nucleotides that are different to the germline D genes are shown, while one that are identical are shown by bars.

403 Yamada et al.

3

4

CDR3 SEQ. 1 2-1030

Α

Figure 7. Examples of unusual VDJ joinings. (A) Three CDR3 sequences with V_H -J_H joinings without a D segment. (B) One sequence with an inverted D joining ($V_H \leftarrow D$ -J_H). (C) Five sequences with double D joinings (V_H -D-D-J_H). (D) Two sequences with double D joinings with the second D inverted (V_H -D $\leftarrow D$ -J_H). (C) Five sequences containing DIR and D segments (V_H -DIR-D-J_H and V_H -D-DIR-J_H). (G) Four clones containing DIR segments (including inverted orientation) instead of D segments (V_H -DIR-J_H and $V_H \leftarrow D$ -IR-J_H). (G) Four clones containing DIR segments (including inverted orientation) instead of D segments (V_H -DIR-J_H and $V_H \leftarrow D$ -IR-J_H). The inverted DIR sequence is shown as the reverse complementarity strand of the germline D sequences. The sequences from the peripheral blood of the six donors are underlined. The best homology to published germline D sequences is shown.

which may explain the widespread sites of rearrangement found in this segment.

There is very little documentation of the frequency of D gene usage in a polyclonal lymphocyte population from healthy adults. The total number of human D genes has been estimated to be \sim 30, based on an organization of five repeats, each containing six D gene families (6). The D5 cluster has recently been described as duplicated within the V_H gene locus (19). Some D genes may remain undiscovered. It is most likely that the DN1-like sequences that we have identified, which have consistent base pair changes from known sequences,

are derived from one of these uncharacterized D genes. Schroeder et al. (23) reported that the DHQ52 gene segment is most frequently used (8/15) in H chain transcripts from a 130-d human fetus. In the results presented here, given the restraints of maximizing homology, the DXP family appeared to be the most commonly found (29/111). Similarly, in 13 somatic D sequences published by Ichihara et al. (6), seven were assigned to the DXP family. Thus, these studies may indicate that the expression or selection of specific D gene segments differ according to the developmental stage of the individual. It is also possible that the number of functional germline DXP family members could be higher than for other D family members through duplication.

As observed previously, these results indicate that, in general, all three reading frames are used in human D regions to make productive rearrangements (6). However, there may be segments (DA1, D21/9, DM1) where a single reading frame is preferentially used, as is usually found among murine D regions (24). Translation of the CDR3 sequences indicates that \sim 75% of these rearrangements are in the correct reading frame to allow translation of a functional H chain. Previous analysis of Abelson murine leukemia virus-transformed murine B cells indicated that $\sim 40\%$ of the cells contained two V_H-D-J_H rearrangements, of which, one was productive and one was nonproductive (25). Since peripheral B cells would be expected to possess at least one productive rearrangement, this frequency of nonproductive V_{H} -D-J_H rearrangements would predict that 71% (100/140) of the CDR3 regions would contain an in-frame rearrangement. This predicted frequency is in close accord with the number observed.

We have shown that tetrameric palindromic nucleotides, whose formation have been originally described in detail by Lafaille et al. (21), are most frequently found at the V_{H} -N and N-D_H junctions in the human CDR3, while they are rare at the D-N and N-J_H borders. This finding follows the observation that nucleotides in the 3' end and of the D_H segments and the 5' end of the J_H segments appear to be frequently removed by exonuclease activity.

Finally, we have found that unusual rearrangements make up a small but notable amount ($\sim 10\%$) of the rearranged IgH population. DIR segments, as described by Ichihara et al. (6) as being D-like sequences with irregular spacer lengths between joining signals, which could be involved in DIR-D or D-DIR joining by inversion or deletion, appeared to be used in our population. Also, we have found examples of D-D fusions resulting in both direct and indirect (inverted) V_{H} -D- $D-J_{H}$ recombination. The mechanism that can account for these D-D fusions has been elegantly described in the mouse by Meek et al. (26), and previously proposed as a mechanism for creating additional antibody diversity by Kurosawa and Tonegawa (3). It is not clear if the examples of apparent V_{H} -J_H joining result from deletions of D in D-J_H joinings or reflect extensive exonuclease modification of the D segment in V_{H} -D-J_H joinings.

This work was supported by grants CA-10815 and CA-47983 from the National Cancer Institute.

Address correspondence to Giovanni Rovera, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104.

Received for publication 30 April 1990 and in revised form 30 October 1990.

References

- 1. Tonegawa, S. 1983. Somatic generation of antibody diversity. *Nature (Lond.).* 302:575.
- Yancopoulos, G.D., and F.W. Alt. 1986. Regulation of the assembly and expression of variable region genes. Annu. Rev. Immunol. 4:339.
- Kurosawa, Y., and S. Tonegawa. 1982. Organization, structure, and assembly of immunoglobulin heavy chain diversity DNA segments. J. Exp. Med. 155:201.
- Alt, F., and D. Baltimore. 1982. Joining of immunoglobulin heavy chain gene segments: Implications from a chromosome with evidence of three D-J_H fusions. *Proc. Natl. Acad. Sci.* USA. 79:4118.
- French, D.L., R. Laskov, and M.D. Scharff. 1989. The role of somatic hypermutation in the generation of antibody diversity. *Science (Wash. DC).* 244:1152.
- Ichihara, Y., H. Matsuoka, and Y. Kurosawa. 1988. Organization of human immunoglobulin heavy chain diversity gene loci. EMBO (Eur. Mol. Biol. Organ.) J. 7:4141.
- Saiki, R.K., D.H. Gelfand, S. Stoffel, S.J. Scharf, R. Higuchi, G.T. Horn, K.B. Mullis, and H.A. Erlich. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. *Science (Wash. DC)*. 239:487.
- Mullis, K.B., and F.A. Faloona. 1987. Specific synthesis of DNA in vitro via a polymerase catalyzed chain reaction. *Methods En*zymol. 155:335.

- Yamada, M., S. Hudson, O. Tournay, S. Bittenbender, S.S. Shane, B. Lange, Y. Tsujimoto, A.J. Caton, and G. Rovera. 1989. Detection of minimal disease in hematopoietic malignancies of the B-cell lineage by using third-complementaritydetermining region (CDR-III)-specific probes. *Proc. Natl. Acad. Sci. USA*. 86:5123.
- Rathbun, G.A., and P.W. Tucker. 1986. Conservation of sequences necessary for V gene recombination. In Evolution of the Immune Response. G. Kelsoe and D. Schultz, editors. Academic Press, New York. 75-115.
- Boyum, A. 1968. Isolation of mononuclear cells and granulocytes from human blood. Scand. J. Clin. Lab. Invest. 21:(Suppl. 97) 77.
- Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular cloning: A Laboratory Manual. 2nd Ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
- Seliger, J., K. Ballas, A. Merold, U. Kotschi, J. Lyons, F. Eisenbeiss, N.D. Sinha, and G.P. Talwar. 1986. New preparative methods in oligonucleotide chemistry and their application to gene synthesis. *Chem. Scr.* 26:569.
- Kwok, S., D.H. Mack, D.N. Kellogg, N. McKinney, F. Faloona, and J.J. Sninsky. 1989. Application of the polymerase chain reaction to detection of human retroviruses. *In Polymerase* Chain Reaction. H.A. Erlich, R. Gibbs, and H.H. Kazazian, Jr., editors. Cold Spring Harbor Laboratory Press, Cold Spring

NY. 151-158.

- Bucan, M., T. Ysang-feng, A.M. Colberg-Poley, D.J. Wolgemuth, J.L. Guenet, U. Franke, and H. Lebrach. 1986. Genetic and cytogenic localization of the homeobox containing genes on mouse chromosome 7. EMBO (Eur. Mol. Biol. Organ.) J. 5:2899.
- 16. Hanahan, D.J. 1983. Studies on transformation of Eschericha coli with plasmids. J. Mol. Biol. 166:577.
- 17. Sanger, F., S. Nicklen, and A.R. Coulson. 1977. DNA sequencing with chain terminating inhibitors. *Proc. Natl. Acad. Sci. USA.* 74:5463.
- Ravetch, J.V., U. Siebenlist, S. Korsmeyer, T. Waldmann, and P. Leder. 1981. Structure of the human immunoglobulin μ locus: characterization of embryonic and rearranged J and D genes. *Cell.* 27:583.
- Matsuda, F., E.K. Shin, Y. Hirabayashi, H. Nagaoka, M.C. Yoshida, S.Q. Zong, and T. Honjo. 1990. Organization of variable region segments of the human immunoglobulin heavy chain: duplication of the D₅ cluster within the locus and interchromosomal translocation of variable region segments. *EMBO (Eur. Mol. Biol. Organ.) J.* 8:2501.
- 20. Buluwela, L., D.G. Albertson, P. Sherrington, P.H. Rabbitts, N. Spurr, and T.H. Rabitts. 1988. The use of chromosomal translations to study human immunoglobulin gene organization: mapping DH segments within 35Kb of the Cμ gene and

identification of a new DH locus. EMBO (Eur. Mol. Biol. Organ.) J. 7:2003.

- Lafaille, J., A. DeCloux, M. Bonneville, Y. Takagaki, and S. Tonegawa. 1989. Junctional sequences of T cell receptor γδ genes: implication for γδ T cell lineages and for a novel intermediate fo V-(D)-J joining. Cell. 59:859.
- Bird, J., N. Galili, M. Link, D. Stites, and J. Sklar. 1988. Continuing rearrangement but absence of somatic hypermutation in immunoglobulin genes of human B cell precursor leukemia. J. Exp. Med. 168:229.
- Schroeder, H.W., J.L. Hillson, and R.M. Perlmutter. 1987. Early restriction of the human antibody repetoire. *Science (Wash. DC.)*. 238:791.
- Kabat, E.A., T.T. Wu, M. Reid-Millor, H.M. Perry, and K.S. Gottesman. 1987. Sequences of Protein of Immunological Interest. U.S. Dept. Health and Human Services. Washington, D.C.
- Alt, F.W., G.D. Yancopoulos, T.K. Blackwell, C. Wood, E. Thomas, M. Boss, R. Coffman, N. Rosenberg, S. Tonegawa, and D. Baltimore. 1984. Ordered rearrangement of immunoglobulin heavy chain variable region segments. *EMBO (Eur. Mol. Biol. Organ.) J.* 3:1209.
- Meek, K.D., C.A. Hasemann, and J.D. Capra. 1989. Novel rearrangements at the immunoglobulin D locus. Inversion and fusions add to IgH somatic diversity. J. Exp. Med. 170:39.