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Breast cancer is the leading cause of cancer death in women. At present,

chemotherapy is the main method to treat breast cancer in addition to surgery

and radiotherapy, but the process of chemotherapy is often accompanied by

the development of drug resistance, which leads to a reduction in drug efficacy.

Furthermore, mounting evidence indicates that drug resistance is caused by

dysregulated cellular metabolism, and metabolic reprogramming, including

enhanced glucose metabolism, fatty acid synthesis and glutamine metabolic

rates, is one of the hallmarks of cancer. Changes in metabolism have been

considered one of the most important causes of resistance to treatment, and

knowledge of the mechanisms involved will help in identifying potential

treatment deficiencies. To improve women’s survival outcomes, it is vital to

elucidate the relationship between metabolic reprogramming and drug

resistance in breast cancer. This review analyzes and investigates the

reprogramming of metabolism and resistance to breast cancer therapy, and

the results offer promise for novel targeted and cell-based therapies.

KEYWORDS
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Introduction

Breast cancer is the primary cause of cancer-related death in women. The WHO

reported approximately 2.26 million newly diagnosed cases of female breast cancer

worldwide in 2020, which is equivalent to 1 in 8 cancer patients being breast cancer

patients, rendering it the most common cancer in the world (1). According to

GLOBOCAN data from 2020, China has the highest ASIR (age‐standardized rates of

cancer incidence) of breast cancer, approximately 39.10 per 100,000 people (2). In 2019,

GBD (Global Burden of Disease) data estimated breast cancer to be the main cause of the
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DALY (disability‐adjusted life year) burden in young and

middle-aged women in the US and UK (3).

Currently, treatments for breast cancer are based on three

broad classes: estrogen receptor a-positive or progesterone

receptor-positive breast cancer, human epidermal growth

factor receptor 2-enriched breast cancer, and triple-negative

breast cancer that expresses none of these three receptors (4).

Endocrine therapy can be effective for treating cancers in which

either or both of the ER and PR proteins are overexpressed.

Selective estrogen receptor modifiers (SERMs), aromatase

inhibitors (AIs), and/or selective estrogen receptor degraders

(SERDs) are among the endocrine therapies available. The

subtype overexpressing HER2 was identified using HER2-

targeted therapy. HER-2 targeted therapy can be achieved by

monoclonal antibodies that are humanized, including

trastuzumab and epratuzumab (5–7). Alternatively, HER2-

positive patients may be treated with tyrosine kinase

inhibitors, such as lapatinib (8) and neratinib (9–11). As a

result, a lack of appropriate targeted therapies for breast

cancers are classified as triple negative, which are therapies

with cytotoxic chemotherapeutic agents, including taxane-
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based, platin-based, and other DNA damage-causing drugs

(12–15).

However, the development of drug resistance reduces

treatment effectiveness in breast cancer patients and is an

important cause of cancer-related death. Endocrine and HER-

2 resistance can result in disappointing outcomes, similar to

chemotherapy resistance. Therefore, elucidating the mechanism

of drug resistance in breast cancer is crucial to improving rates of

survival. It is known that cancer cells possess distinct metabolic

properties; among the metabolic properties of cancer cells are

increased aerobic glycolysis, fatty acid synthesis, and

glutaminolysis (10, 16). (Figure 1) Much more attention has

recently been paid to targeting metabolic enzymes in cancer

therapies and overcoming drug resistance (17, 18). The purpose

of this review is to discuss metabolic reprogramming and

progress in targeting metabolic pathways to treat breast cancer.

A recent focus in various cancer studies has been the

dysregulated metabolism of cancer cells, identifying

intratumoral heterogeneity and metabolic abnormalities in

cancer cells as likely causes of chemotherapeutic resistance.

The various clinical challenges in cancer therapy, such as
FIGURE 1

Metabolic pathway in breast cancer cells. Reprogramming of the metabolism, including glucose metabolism, fatty acid synthesis, and amino
acid metabolism. TCA, tricarboxylic acid cycle; G-6-P, glucose-6-phosphate; F6P, fructose-6-phosphate; F1,6P, fructose-1,6-bisphosphate; G-
3-P, glyceraldehyde 3 phosphate; DHAP, dihydroxyacetone phosphate; 1,3-BPG, 1,3-bisphosphoglycerate, 3-PG, 3-phosphoglycerate; 2-PG, 2-
phosphoglycerate; PEP, phosphoenolpyruvate; OAA, oxaloacetate; a-KG, a-ketoglutarate; GLUT, glucose transporter; HK, hexokinase; PKM2,
pyruvate kinase isozyme type 2; LDHA, lactate dehydrogenase A; MCT1, monocarboxylate transporter 1; PDK, pyruvate dehydrogenase kinase;
PDH, pyruvate dehydrogenase; acetyl-CoA carboxylase; FASN, fatty acid synthase; CPT1, carnitine palmitoyl transferase 1; 3PG, 3-phospho-
glycerate; GSH, reduced glutathione; GLU, glutamate; GLUT, glucose transporter; PHGDH, phosphoglycerate dehydrogenase; PSAT1,
phosphoserine aminotransferase 1; SLC1A5, solute carrier family 1 member 5; GLS, glutaminase; PSPH, 1-3-phosphoserine phosphatase; BCAAs,
branched-chain amino acids; BCAT1, branched-chain amino acid transaminase 1; BCAT2, branched-chain amino acid transaminase 2; BCKA,
branched-chain a-keto acid; MCD, malonyl-CoA decarboxylase; ACC, Acetyl-CoA carboxylase; MCT Monocarboxylate transporter.
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immunosuppression, inevitable recurrence, anticancer drug

resistance, cancer progression and metastasis, also contribute

to metabolic abnormalities (19). It has been suggested that the

specific metabolic characteristics of tumor cells can overcome

the toxic effects of anticancer drugs, possibly leading to drug

resistance in tumor cells (20) or promoting lipid synthesis and

inducing mutations in such harsh environments (21). Tumor

cells may be endowed with a highly adaptive metabolic capacity

or benefit from metabolism in the microenvironment and are

more likely to evade drug toxicity (22). Overall, metabolic

reprogramming is now recognized as a hallmark of cancer.

Increasing evidence indicates that metabolic reprogramming is

associated with drug resistance in cancer therapy (23).
The “Warburg effect” and “reverse
Warburg effect”

Metabolism of glucose differs significantly between normal

and tumor cells. In normally differentiated cells, energy for

growth is cells mainly provided by mitochondrial oxidative

phosphorylation; in many tumor cells, even when oxygen is

sufficient, cells still mainly rely on glycolysis for productivity,

which is known as the “Warburg effect”. This phenomenon has

been regarded as a phenotype of all cancers (23, 24). The

Warburg effect produces substrates that become available for

other metabolic pathways, including fat, nucleotide, and amino

acid syntheses, that are crucial for oncogenesis (25). In cancer

cells, glycolysis is the major metabolic process that produces

ATP; the pyruvate formed from glucose must be converted to

lactate for it to exert its effects and not be incorporated into the

TCA cycle (26). The “reverse Warburg effect” states that

cancer-associated fibroblasts can generate lactic acid through

aerobic glycolysis, which is then provided via a paracrine route

to adjacent cells, activating mitochondria, increasing oxidative

phosphorylation in adjacent cells and promoting the growth of

tumors (27). In general, the “Warburg effect” and “reverse

Warburg effect” are both crucial to the development of cancer.

Emerging studies suggest that various cancer cell subsets

depend on different energy-producing pathways (28).
Regulation of glucose metabolism in
breast cancer drug resistance

The reprogramming of glucose metabolism that occurs in

many cancers is to meet the energy requirements of growing

rapidly cancer cells (29, 30). Many enzymes play roles in

metabolism of glucose, which provides cancer cells with

energy. As glycolysis regulators, abnormal expression of

glycolytic-related enzymes results in glycolysis dysregulation,

which gives rise to oncogenesis, tumor growth, and treatment
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resistance (31). Researchers have demonstrated the effectiveness

of treatments that target metabolism in improving anticancer

therapies or reversing drug resistance in breast cancer cells, such

as resistance to chemotherapy, endocrine therapy, and HER-2

targeted treatment.
HK

Hexokinases contribute significantly to the initiation and

maintenance of tumors and catalyze the first reaction of

glycolysis. This step is a rate-limiting reaction in glycolysis,

transforming glucose into glucose 6-phosphate (32, 33). The

human hexokinase family consists of three members: HK1, HK2,

and HK3 (34). HK2 is highly expressed in many tumors. Some

studies indicate that breast cancer cells exhibit a high level of

HK2 expression (32). Chemotherapy resistance can also be

induced by upregulating HK2 expression, which is an enzyme

of crucial importance that is involved in resistance to breast

cancer and its prognosis through tumor glycolysis (35).

One study reports that curcumin increases sensitivity to

TAM in breast cancer cells by regulating the HK2 pathway.

SLUG may also regulate HK2 expression through activation of

transcription. Hence, HK2 and TAM resistance may be closely

related (36). The mechanism by which HK2 causes TAM

resistance was described in depth in another study. When

comparing TAMR and MCF-7 cells, TAMR cells exhibit

higher HK2 expression and higher glycolysis rates. Both HK2

and mTORC1 are primary sensors of glucose ingestion and

metabolism (35). HK2 binds to voltage-dependent anion

channels (VDACs) and inhibits apoptosis (37). Additionally,

HK2 can be phosphorylated at Thr473, which can cause

resistance to paclitaxel (38). Furthermore, dephosphorylation

of HK2 at Thr473, SMI 4a resensitizes paclitaxel-resistant cell

lines. In preclinical studies, two-deoxyglucose (2-DG), three-

bromopyruvate (3-BrPA), and lonidamine (LND) acted as HK2

inhibitors. Trastuzumab resistance correlates with increased

glycolysis. It has been demonstrated that trastuzumab

combined with 2-DG inhibits glycolysis in breast cancer cells

in vitro and in vivo (39). HK2 knockdown inhibits the

proliferation of MDA-MB-231 breast cancer cells and

enhances the ability of 5-FU to kill them. When HK2 is

downregulated in breast cancer cells, lactate secretion and

glycolysis baseline are significantly reduced (40). DZNep, as an

indirect inhibitor of histone methyltransferases, potently induces

degradation of NSD2 protein and inhibits expression of NSD2

target genes (HK2, G6PD, GLUT1 and TIGAR) involved in the

pentose phosphate pathway (PPP). These findings suggest that

DZNep-such as agents can be developed to target NSD2 histone

methyltransferase for effective treatment of tamoxifen-resistant

breast cancer (41). Zhu et al. reported that ETV4, as a pivotal

transcription factor, regulates gene expression associated with

glycolysis. In the presence of loss of ETV4, glycolytic enzymes,
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such as HK2 and LDHA, and glucose uptake are inhibited (42).

Liu et al. (35) demonstrated that by suppressing the mTOR-S6K

signaling pathway, upregulation of HK2 promotes autophagy,

subsequently conferring tamoxifen resistance to MCF 7 breast

cancer cells.
PFKFB3

Phosphofructokinase-1 (PFK1) catalyzes conversion of

fructose-6 phosphate to fructose-1,6 bisphosphate in the third

step of glycolysis. Fructose 2,6-biphosphate, which is produced

by the enzyme 6-phosphofructo-2-kinase/fructose2,6-

bisphosphatase 3 (PFKFB3) from fructose-6 phosphate, is

thought to allosterically activate PFK1. PFKFB3 is expressed at

high levels in many cancers (43). PFKFB3 is important for

sustaining glycolysis in the tumorigenic environment, even

under unfavorable conditions, promoting metabolic

reprogramming, cell proliferation, DNA repair, and drug

resistance (44). Tamoxifen-resistant LCC9 cells express

twofold higher levels of PFKFB3 mRNA and protein than

MCF-7 cells. Combining an inhibitor of PFKFB3 with TAM

suppresses the growth of both TAMR LCC9 and MCF-7 cells,

demonstrating the role of PFKB3 in TAM resistance (45). A

combination of PFKFB inhibitors and ER-targeted therapies

block tumorsphere formation in several models of advanced

breast cancer, such as tamoxifen (TamR)- and paclitaxel (TaxR)-

resistant cell models, ER+ patient-derived organoids (PDxO)

and murine tumor cells (46).

The glycolysis regulator PFKFB3 is key during BC

progression and drug resistance. PIM2 has been identified as a

novel binding protein for PFKFB3. PIM2 can directly bind and

change the phosphorylation status of PFKFB3 at Ser478 to

enhance stability through the ubiquitin−proteasome pathway

and to promote glycolysis, BC cell growth, and paclitaxel

resistance together with PIM2 in vitro and in vivo (47). Studies

have shown that PFKFB3 stimulation of lactic acid production

may mediate activation of the TLR4 signaling pathway to some

extent, leading to drug resistance to paclitaxel (48). PFKFB3 is a

hub for coordinating the cell cycle and glucose metabolism.

PFKFB3 binding results in accumulation of the CDK4 protein by

inhibiting ubiquitin proteasome degradation mediated by the

heat shock protein 90-Cdc37–CDK4 complex. Proteasome-

dependent degradation of CDK4 is accelerated via disruption

of the interaction of PFKFB3 with CDK4 through lysine 147 to

alanine mutation. Blocking the PFKFB3–CDK4 interaction

improves the therapeutic effect of the FDA-approved CDK4

inhibitor palbociclib against breast cancer (49). PO is also an

inhibitor of PFKFB3, and a study showed that it increases the

effectiveness of resistance combined with other anticancer

agents (50).
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Pyruvate kinase is a key enzyme that catalyzes the last step in

glycolysis. It participates in the process of transferring a

phosphate from PEP to pyruvate and converting ADP to ATP.

M1 and M2 are the two isoforms of pyruvate kinase, but cancer

cells express only the latter. The results of recent studies indicate

that many tumors express PKM2, which is a growth factor and

an inhibitor of apoptosis. It has a major impact on tumor growth

and metabolism (51, 52). Researchers have investigated

expression of PKM2 in breast cancer cells, both nuclear and

cytoplasmic (53). As a transcription coactivator, PKM2

translocates to the nucleus and increases chemotherapy

resistance. In advanced breast cancer, PKM2 expression

correlates with cisplatin resistance (54). In MCF-7 breast

cancer cells, PKM2 cooperates with sterile 20-like kinase 1 and

prevents caspase-3, resulting in inactivation of TAM-induced

apoptosis. PKM2 is important in regulating breast cancer cell

viability (55). Chemotherapy resistance is also promoted by

PKM2 in ER+ breast cancer via increased aerobic glycolysis.

Accordingly, 2-deoxy-D-glucose (2-DG) is a PKM2 inhibitor

that can suppress glycolysis and reverse adriamycin sensitivity in

MCF-7 and T47D cells (56).
ENO

Enolase (EN) is a critical enzyme involved in theWarburg effect.

During the phosphorylation reaction, ENO catalyzes conversion of

2-phosphoenolpyruvate (2-PG) to phosphoenolpyruvate (PEP) and

ATP. Three ENO isoforms exist: ENO-1, ENO-2, and ENO-3.

ENO1 regulates transcription, apoptosis, and cell differentiation. It

is also is essential for glycolysis (57). Moreover, analysis of 244

samples of breast cancer tissue revealed strong expression of ENO-1

in ER breast cancer, showing that it is also an important marker for

BC (58). In breast cancer, elevated expression of ENO1 has been

reported to be closely related to tamoxifen resistance and adriamycin

resistance (59), and silencing of ENO expression significantly

increases the cytotoxicity of 100 nM tamoxifen in tamoxifen-

resistant breast cancer cells. Upregulated ENO-1 suppresses

expression of c-Myc, resulting in the survival of resistant cells (60).

In MCF7 cells, TAM induces mRNA expression of ENO-1 by

activating ERa and NF-kB. As a result, drug-induced apoptosis is

inhibited (61, 62).

The correlation between ENO1 and MDR in breast cancer

may be regulated by activating the ERK1/2 pathway, and it is

likely to be regulated by c-Myc. Therefore, ENO1 alters the

concentration of extracellular ATP and further influences tumor

cell proliferation (63, 64). Doxorubicin-resistant MCF-7R cells

lacks E-cadherin expression and show upregulated Vimentin
frontiersin.org

https://doi.org/10.3389/fonc.2022.942064
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lv et al. 10.3389/fonc.2022.942064
expression and higher EGFR and ENO-1 levels (65).

Furthermore, proteomics profiling studies have indicated that

knockdown of ENO-1 expression restores oxidative

phosphorylation (66). Above all, an innovative strategy for

treating drug-resistant breast cancer is to target EN-1.
LDHA

Lactate dehydrogenase A (LDHA) is one version of the

enzyme LDH. In aerobic glycolysis, LDHA catalyzes the last

step of the process, converting pyruvate to lactate, which causes

the formation of NAD from NADH. Breast tissue expresses high

levels of LDHA, which is one of the most prominent isoforms of

LDH (67). According to a recent study, LDHA also plays a

significant role in acquired tamoxifen resistance in breast cancer

by facilitating autophagy (68). In addition, tamoxifen resistance

is associated with changes in LDHA and LDHB gene expression

and increased lactate concentrations (69). Thus, LDHA is a great

target for controlling TAM resistance in breast cancer. ErbB2

signaling enhances glycolysis via LDHA-dependent

upregulation of HSF1. Taking a targeted approach to glucose

metabolism may help overcome Herceptin resistance in breast

cancer. Glycolytic inhibitors combined with chemotherapy

overcome resistance and lead to more potent inhibition of

glycolysis in ErbB2-positive breast cancer (39).

LDHA correlates with trastuzumab-based therapy resistance

(70). LDHA inhibitors suppress proliferation of HER-2-

overexpressing cells in breast cancer and increase sensitivity to

drug therapy (71). When MDA MB231 cells are subjected to

sustained exposure to NAMPT inhibitors, such as FK866, drug

resistance is induced based on glycolytic metabolism shifts and

LDHA activity (72). Compared to cisplatin alone, electrical

pulses (EP) + cisplatin (CsP) cause a switch in metabolism

with LDHA downregulation, which impacts TNBC growth,

proliferation, invasiveness, chemotherapeutic resistance and

poor therapeutic response (73). We observed that LDHA and

MCT1 are upregulated in Taxol-resistant breast cancer cells (74).

Oxamate, an LDHA inhibitor, combined with paclitaxel induces

apoptosis in paclitaxel-resistant breast cells by inhibiting cellular

glycolysis. Thus, LDHA may serve as a therapeutic target for

breast cancer resistance (75).
PDC

The pyruvate dehydrogenase complex (PDC) contains three

types of enzymes that perform catalytic functions, known as E1, E2

and E3. Cellular metabolic flexibility is provided by the PDC, which

integrates glycolysis, fatty acid metabolism, and the TCA cycle (76).

PDH is an E1 enzyme that is a component of the PDC that converts

pyruvate to acetyl-CoA (77). PDH activity is mainly controlled by

pyruvate dehydrogenase kinase (PDK) and pyruvate dehydrogenase
Frontiers in Oncology 05
phosphatase. By phosphorylating PDH, PDK inhibits PDH activity,

whereas pyruvate dehydrogenase phosphatase activates it by

reversing phosphorylation. Four different types of PDKs

participate in glycolysis. They exert their effects on

chemoresistance in tumor therapy and include PDK1-4 (78).

The role of overexpressed PDK in aerobic glycolysis,

chemotherapeutic resistance, and metastasis in cancer has

been widely studied (79). Researchers have discovered that

inhibiting PDK reduces neoplasm development by controlling

aerobic glycolysis (80). When PDK1 inhibitors such as triciribine

or tetrandrine are combined with tamoxifen, breast cancer

becomes more sensitive to the drug (81).

Researchers have shown that hypoxia-inducible factor

(HIF)-1a regulates expression of pyruvate dehydrogenase

kinase 3 (PDK3), thereby inducing resistance to chemotherapy

under hypoxic conditions (82). Additionally, PDK4 alters

regulation of PDH and is associated with antiestrogen

resistance in breast cancer (83). The pyruvate dehydrogenase

kinase (PDK) inhibitor dichloroacetate (DCA) PDK regulates

pyruvate dehydrogenase, which aids in the conversion of

pyruvate to acetyl-CoA, illustrating the proliferation-inhibiting

properties of DCA in highly metastatic diseases (84). By

decreasing expression of EGFR, MCF7 cells can be sensitized

to tamoxifen-induced apoptosis by DCA (85). In trastuzumab-

resistant HER2+ cancers, neuromedin U (NmU) is upregulated,

and ectopic expression of NmU increases glycolysis, likely via

PDK activity, suggesting a possible treatment strategy (86).

OSU-03012, which is based on celecoxib as a scaffold to

develop a COX-2-inactive PDK-1 inhibitor, potentiates

trastuzumab’s antiproliferative effect in HER2-positive cells,

especially in SKBR3/IGF-IR cells, through downregulation of

PDK-1/Akt signaling (87). By blocking PDK-1/Akt signaling,

tamoxifen can be used to sensitize ER-negative breast cancer

cells to its antitumor effects (88).
FBP

Although many previous studies have focused on catabolic

glycolysis, recent studies work reveals that Fructose-1,6-

bisphosphatase (FBP), as a rate-limiting enzyme that regulates

conversion of fructose 1,6-diphosphate to fructose 6-phosphate,

is essential for the genesis and development of cancers.

Furthermore, the function of FBP in chemoresistance has

attracted attention (59). Two types of FBP exist in mammals,

FBP1 and FBP2. FBP1 plays a regulatory role in gluconeogenesis,

though the physiological role of FBP2 remains unclear. Fructose-

bisphosphatase 1 (FBP1) is a target gene of CELF6, and CUG-BP

Elav-like family member 6 (CELF6) was identified as an RNA-

binding protein. Stable CELF6-overexpressing BT549 and

MDA-MB-231 cell lines have been established, and CELF6

overexpression-mediated inhibition of TNBC growth relies on
frontiersin.org
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FBP1. CELF6 acts as a tumor suppressor by upregulating FBP1

expression through mRNA stabilization to inhibit TNBC

progression and increase sensitivity to PTX treatment (60).
GLUT

GLUTs are glucose transporters in mammalian cells. The

GLUT family comprises 14 members. GLUTs increase uptake of

glucose by the cytomembrane and play a critical role in

glycolysis (89). Due to oncogenic signaling, it is possible that

increased glucose utilization and activated glycolysis, resulting in

lactate accumulation, can occur even in cancer cells with oxygen

present. Glucose transporter-1 (GLUT-1) expression is higher in

TNBC than in non-TNBC (90). Upregulation of GLUT1,

GLUT3, and GLUT4 has been related to cancer resistance in

several studies. Inhibition of GLUT enhances the anticancer

effects of chemotherapy compounds (91). Researchers have

recently discovered that GLUT1 plays a role in enhancing

autophagy and resistance to TAM in MCF-7 breast cancer

cells (92).

Increased GLUT1 transcription and membrane translocation

leads to increased glucose uptake and glycolysis through the Akt

signaling cascade. Targeting glycolysis via Skp2 increases HER2+

tumor sensitivity to trastuzumab treatment (93). Therefore,

GLUT inhibitors have been used in a variety of combinations

with chemotherapeutics, such as doxorubicin, paclitaxel, and

cytarabine, and they exhibit synergistic or additive cancer-

fighting effects with reduced chemo-, radio-, and immuno-

resistance. Using glucose transporter (GLUT) inhibitors in

combination with chemotherapeutic agents reduces

chemotherapeutic toxicity compared to monotherapy due to

reduced therapeutic doses required to achieve desired effects (94).

In addition, palbociclib in combination with paclitaxel

inhibits proliferation of cells and induces apoptosis. By

pretreating cells with palbociclib and then removing it before

paclitaxel treatment, cell cycle reentry from G1 to S phase can be

synchronized. Moreover, palbociclib inhibits glucose transport

by reducing GLUT-1 glucose uptake through the Rb/E2F/c-Myc

signaling pathway. Furthermore, expression of HIF-1a, a key

factor in tumorigenesis, is inhibited. Researchers have shown a

high level of GLUT1 in breast and primary colon cancers (95).

Phloretin is a GLUT1 inhibitor that inhibits glucose transport

and glycolysis. Additionally, phloretin increases the sensitivity of

tumor cells to daunorubicin under hypoxic conditions (96).

Compound WZB117 has been shown to inhibit GLUT1 in

MCF-7 breast cancer cells. There is also evidence of synergistic

anticancer effects when WZB117 is combined with cisplatin and

paclitaxel. WZB117 inhibits cell proliferation more effectively in

combination with a mitochondrial inhibitor, which indicates

that it might be more effective against aggressive cancer cells,

which are invariably mitochondrial deficient (96). However,

combined use of other targeted therapies along with GLUT
Frontiers in Oncology 06
inhibitors may also be a key strategy for overcoming drug

resistance; nevertheless, GLUTs are present in a variety of

organs and cells, which makes them difficult to target (97).

Consequently, improvement of GLUT inhibitor selectivity and

affinity is a major area of study in anticancer research.

Contrary to previous studies, it has been proposed that

ablation of GLUT1 attenuates apoptosis and increases drug

resistance via upregulation of p-Akt/p-GSK-3b (Ser9)/b-
catenin/survivin. These results indicate that the potential of

Glut1 as a therapeutic target should be carefully re-

evaluated (98).
Regulation of amino acid
metabolism in breast cancer
drug resistance

Proteins are composed of the amino acids and have

structural and functional roles in organisms. Among the

various requirements of biosynthesis, amino acid metabolism

is vital to maintaining cellular homeostasis, energy production,

and redox equilibrium. Furthermore, tumor-specific

metabolites, such as polyamines, that play an important role in

tumor progression and growth are produced by amino acids

(99). Cells resistant to hormonal treatment regulate amino acid

anabolism and catabolism to ensure survival and growth. Breast

cancer therapeutic resistance is thought to be associated with

amino acid metabolites.
Glutamine

In addition to glucose, glutamine is the most abundant

circulating amino acid and functions as a key carbon and

energy source for cancer cells. It is known that glutamine is

important in cancer because it contributes nitrogen and carbon

for a variety of reactions that result in proliferation, invasion,

and metastatic spread of cancer cells (100–102). First, by

generating a-ketoglutarate (aKG), glutamine serves to provide

carbon sources for entry into the TCA cycle. Second, glutamine

is an important source of nitrogen for the synthesis of

nucleotides and other nonessential amino acids. Last,

glutaminolysis-generated glutamate is a precursor of

glutathione and helps maintain redox balance (103).

Tamoxifen-induced apoptosis is inhibited by glutamine, and

the cooperates between glutamine and stromal cells results in

chemoresistance (104). Furthermore, the interaction between

the stroma and the epithelium is critical to cancer progression

and metastasis. Cancer-associated fibroblast cells produce

glutamine, which is then secreted into the tumor via

autophagy. Glutamine is taken up from the tumor
frontiersin.org

https://doi.org/10.3389/fonc.2022.942064
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lv et al. 10.3389/fonc.2022.942064
microenvironment and converted to glutamate and ammonia.

Upon conversion to a-ketoglutarate, glutamate is used in the

TCA cycle, increasing mitochondrial activity. By inhibiting the

p53-induced protein TIGAR, glutamine decreases glycolysis,

apoptosis, and autophagy (105). Additionally, tumor epithelial

cells release ammonia into the microenvironment, where it

enters stromal cells, activates autophagy and inhibits Cav-1

expression. Autophagy is proposed to be a common survival

mechanism during resistance to TAM (106). Myc is activated in

breast cancer cells in the presence of acquired endocrine

resistance. In addition to regulating various cell processes,

Myc, a proto-oncogene, is involved in glutamine and glucose

metabolism (107). Myc inhibition in TAMR cells decreases cell

viability, growth, and glucose uptake. Thus, appropriate

regulation of the glutaminase-glutamine synthase system

(GLS/GAC-GLUL) by Myc is crucial for maintenance of

antiestrogen-resistant phenotypes (108). In TAMR cells,

endoplasmic reticulum stress is associated with marked

upregulation of the unfolded protein response. When glucose

is depleted, glutamine induces apoptosis and inhibits autophagy

through a pathway mediated by the unfolded protein response

(UPR) (109). In breast cancer, c-Myc overexpression may be

sufficient to cause antiestrogen resistance (110), and MYC

expression is upregulated by crosstalk between ER and HER2

in aromatase inhibitor-resistant breast cancer cells. MYC-

mediated glutamine metabolism is associated with AI

resistance in breast cancer (111). Re-expression of ERRa in

resistant cells triggers metabolic adaptations favoring

mitochondrial energy metabolism through increased glutamine

metabolism, as well as ROS detoxification required for cell

survival under therapeutic stress conditions. Pharmacological

inhibition of ERRa activity represents a viable mechanism to

counteract lapatinib resistance in breast cancer and to impact

metabolic adaptations occurring in resistant tumors (112). It is

also notable that the master regulator of mitochondrial

metabolism PGC-1a regulates a significant number of

pathways implicated in therapy resistance, including OXPHOS

(113), oxidative stress response (114), glutamine metabolism

(115), and glutathione metabolism (116). The context-

dependent roles of PGC-1a may therefore underpin specific

metabolic vulnerabilities in both doxorubicin and epirubicin

resistance in breast cancer. Targeting global regulators of

metabolic plasticity, such as PGC-1a, is promising as a broad

strategy for treating therapeutic-resistant cancers (117).

Resistance is common in breast cancer cells, and glutamine

addiction is a way to escape drug treatment. As a potential

pharmacological target to reverse cancer cell resistance to

chemotherapy, glutamine transporters or glutaminolysis have

emerged as promising candidates. The amino acid transporter

SLC6A14, also called ATB0,+, is upregulated in ER-positive

breast cancer in women. The features of SLC6A14 include

concentrative transport of leucine, glutamine, and arginine. It

is possible to inhibit mTOR activity, activate autophagy, and
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cause cell death by blocking SLC6A14 (118). AI-resistant breast

cancer cells show significant upregulation of the glutamine

transporters SLC1A5 and GLS, and inhibition of MYC,

SLC1A5, and GLS decrease cell proliferation in AI-resistant

cells (119). EphA2 is highly expressed in HER2+ tumors, with

increased dependence on glutamine metabolism through

enhanced transcription of SLC1A5 and GLS, which is

recognized as a new target of therapy in HER2+ tumors (120).

The glutamine transporter SNAT2 is the AA transporter most

frequently induced by hypoxia in breast cancer and is regulated

by hypoxia both in vitro and in vivo in xenografts. SNAT2

induction in MCF7 cells is also regulated by ERa, but it is

predominantly a hypoxia-inducible factor 1a (HIF-1a)-
dependent gene under hypoxia. A switch in regulation of

SNAT2 between ERa and HIF-1a leads to endocrine

resistance in hypoxia. The development of drugs targeting

SNAT2 may be of value for a subset of hormone-resistant

breast cancers (121).

Recent studies have drawn attention to glutaminase, an

enzyme that catalyzes glutamine to glutamate and has become

a potential target for cancer therapy. A pair of novel glutaminase

inhibitors has been found: CB-839 (122, 123) and 968 (124). CB-

839 exerts the strongest inhibition of proliferation in TNBC cells

but not in ER-positive cells. CB-839 shows significant antitumor

activity in xenograft models, whether used alone or in

combination with paclitaxel. Compound 968 has the strongest

cytotoxic effect against MDA-MB-231 breast cancer cells.

Genome analysis indicates that Compound 968 can inhibit

apoptosis or promote metastasis gene expression and modify

histones. Hence, MDA-MB-231 cells are more likely to be

apoptotic and less invasive. When combined with doxorubicin,

Compound 968 also increases the chemosensitivity of breast

cancer cells.
Branched-chain amino acids

The branched-chain amino acids leucine, isoleucine, and

valine play a pivotal function in tumorigenesis (125). It has been

found that breast cancer patients’ plasma and tissues contain

higher levels of BCAAs (126). BCAA metabolism enhances the

proliferation and growth of breast cancer cells through

modulation of mitochondrial biogenesis and function.

Catabolism of BCAAs is triggered by the enzyme branched-

chain amino acid transaminase 1 (BCAT1). In addition to

enhancing citrate synthase activity, BCAT1 increases the

quantity of ATP and reduces ROS generation. AMPK, SIRT1,

and mTOR are nutritional sensors involved in mitochondrial

activity, and experiments have demonstrated that mitochondrial

biogenesis is promoted by BCAT1 through its selective mTOR

signaling activation. Rapamycin may inhibit BCAT1 by

repressing mTOR (126). In TAM-resistant cells, mTORC1

phosphorylates (activates) p70S6 kinase by activating ER
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signaling pathways independent of estrogen (127). According to

one study, leucine uptake is crucial for tamoxifen-resistant cells

to grow under nutrient stress conditions. Leucine enters a cell via

the SLC7A5 transporter (128). The protein LLGL scrawl cell

polarity complex component 2 (LLGL2) regulates expression of

the SLC7A5 transporter on the cell surface. LLGL2 interacts with

SLCA5 and then binds to the YKT6 protein to form a trimeric

complex, which results in an increase in transporters on the

surface of the cell. Estrogen regulates LLGL2 expression. Overall,

expression of SLC7A5 is elevated in TAM-resistant MCF-7

cells (129).

L-type amino acid transporter-1 (LAT1) is involved in

chemotherapeutic resistance and may represent a new

treatment target in breast cancer. Metabolites of cancer and

branched-chain amino acids are also important in energy

production and drug resistance in MCF-7 cells treated with

chemotherapy, despite reduced glucose metabolism (129).
Serine

Serine is considered a key factor in glucose metabolism.

Indeed, many cancers are associated with upregulation of the

serine biosynthesis pathway (130, 131). Glycine is produced by

catabolism of serine. Together, serine and glycine provide the

primary one-carbon units needed for synthesis of nucleic acids,

lipids, proteins, and cofactors (132). Various enzymes are

involved in serine metabolism, including phosphoglycerate

dehydrogenase (PHGDH), phosphoserine aminotransferase 1

(PSAT1), and 1-3-phosphoserine phosphatase (PSPH), which

are highly expressed in TNBC. Additionally, serine and glycine

depletion in culture media reduces proliferation of TNBC

cells (133).

A variety of cancers highly express 3-phosphoglycerate

dehydrogenase (PHGDH), the enzyme responsible for de novo

serine biosynthesis. In addition to contributing to

tumorigenicity, PHGDH may contribute to innate or acquired

resistance to current chemotherapies in cancer (134). In vitro

and in vivo, small molecules inhibit the serine synthesis pathway

of PHGDH, resulting in a lower proliferation rate of breast

cancer cells expressing PHGDH (135, 136). CBR-5884 is a

PHGDH inhibitor that suppresses proliferation of PHGDH-

dependent TNBC tumor cells (137).

The phosphoserine aminotransferase (PSAT1) gene encodes

a key aminotransferase that contributes to serine biosynthesis; 3-

phosphohydroxypyruvate is converted to phosphoserine by this

enzyme during the oxidation reaction. Transcriptional and

immunohistochemical analyses have revealed that ER-positive

breast cancer patients who receive TAM are more likely to have a

poor prognosis if PSAT1 is overexpressed (138). PSAT1

knockdown sensitizes tamoxifen-resistant MCF7 breast cancer

cells to tamoxifen, suggesting that PSAT1 contributes to

tamoxifen resistance in MCF7 breast cancer cells. Additionally,
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combination treatment with YAP/TAZ or PSAT1 siRNA and

tamoxifen significantly reduces mTORC1 activity and survivin

expression in tamoxifen-resistant MCF7 breast cancer cells.

These data suggest that targeting the YAP/TAZ-PSAT1 axis

might sensitize tamoxifen-resistant MCF7 breast cancer cells by

modulating the mTORC1 survivin pathway (139). In tamoxifen-

sensitive MCF-7 cells, overexpression of PSAT1 decreases the

inhibition of cell proliferation by 4-OHT. In contrast, silencing

either PSAT1 or PHGDH results in a higher response to 4-OHT

treatment in tamoxifen-resistant LCC9 cells. Combining a

PHGDH inhibitor with 4-OHT also reduces proliferation of

LCC9 cells. Overall, these findings suggest that ER+ BC is more

likely to develop tamoxifen resistance due to overexpression of

serine synthase enzymes. It is capable of being targeted as a novel

combinatorial treatment option (140). Studies indicate that

kinase inhibitors (KIs) and biguanide agents target various

types of cancers in a synergistic and selective manner. The

ability of KI/biguanides to effectively treat disease is

determined by synthesis of nonessential amino acids (NEAAs).

Aspartate, asparagine, and serine synthesis are controlled by the

mTORC1/4E-BP axis in response to mRNA translation, and

eliminating 4E-BP1/2 significantly reduces breast cancer

sensitivity (141).
Cysteine

TAMR MCF-7 cells have a significantly higher level of

cystine metabolism than MCF-7 cells, leading to increased

glutathione and taurine synthesis. A higher amount of

enzymes related to cysteine consumption is found in the

TAMR MCF-7 cells, including methionine adenosyl

transferase (MAT), cystathionine b-synthase (CbS), cysteine

dioxygenase (CDO), and cysteine sulfinate decarboxylase

(CSD). TAMR cells grown in medium lacking sulfur amino

acids (SAAD) results in a decrease in cell viability (142). In

breast cancer cells, CDO1 restoration leads to increased ROS

levels, resulting in reduced viability and growth, as well as

anthracycline sensitization. This demonstrates the importance

of CDO1 inactivation in breast cancer and its potential as a

biomarker and treatment target for overcoming anthracycline

resistance (143).
Aspartate

Autophagy is activated due to depletion of the amino acid pool

within drug-resistant cells. To cope with increasing amino acid

requirements, TAMR cells promote import of aspartate and

glutamate by expressing the SLC1A2 transporter on the cell

surface (144). In comparison to normal cells, cancer cells require

different amounts of metabolites when they proliferate. Researchers

have studied the role of aspartate in cancer. In general, aspartate is
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necessary for biosynthesis of purine and pyrimidine nucleotides to

generate AMP from inosine 5’-monophosphate via aspartate (145).

The oxidative phosphorylation process provides electron acceptors

for aspartate biosynthesis. A lack of electron acceptors prevents

proliferative activity in cells. Exogenous aspartate supplementation

can increase cell proliferation in cells with insufficient oxidative

phosphorylation (146). One study found that ursolic acid increases

nuclear accumulation of doxorubicin (Dox) by increasing the

amount entering cells and decreasing levels of intracellular

alanine, lactate, pyruvate, glucose, a-ketoglutarate, glutamate and

various amino acids in the body to reverse MDR. According to the

study, UA has potential as an adjuvant antitumor herbal medicine

to resensitize cells with chemotherapeutic resistance (143).

Consequently, studies have shown that levels of different amino

acids and their metabolizing genes determine when treatment ends.

Several amino acids are believed to contribute to acquired drug

resistance, including serine, cysteine, aspartate, glutamate, and

glutamine. Thus, we need to better understand the

action of amino acids themselves and their precursors as

oncogenic metabolites.
Regulation of fatty acid metabolism
in breast cancer drug resistance

Targeting lipid metabolism is an emerging strategy to

enhance the efficacy of anti-HER2 therapies in HER2-positive

breast cancer (147). A large amount of lipid and cholesterol is

required by cancer cells, which is met by either taking up more

exogenous lipids and lipoproteins or promoting de novo

lipogenesis and cholesterol biosynthesis. Lipid synthesis is

crucial to satisfying the anabolic needs of cancer cells (148).

As the key enzyme in the fatty acid synthesis pathway, acetyl-

CoA carboxylase converts malonyl-CoA to the long-chain fatty

acids palmitate and stearic acid (149). Acetyl-CoA carboxylase

carboxylates acetyl-CoA to malonyl-CoA. FASN has been found

to be upregulated in premalignant lesions as well as in most

human cancers. TNBC tumor cells overexpress fatty acid

synthase (FASN) (150), and the combination of FASN

inhibitors and anti-EGFR signaling agents has significant

antitumor effects in preclinical models of TNBC tumors.

Overall, FASN activity may play an important role in

doxorubicin resistance in TNBC (151).

Blocking FASN inhibits transcription of HER2 by

upregulating PEA3, a transcriptional repressor of HER2.

Trastuzumab inhibits the HER-2-induced upregulation of

FASN expression and fatty synthesis triggered by HER-2

overexpression. In combination with a FASN inhibitor,

trastuzumab resensitizes trastuzumab-resistant breast cancers

by downregulating HER-2 expression (152, 153). Researchers

have demonstrated that FASN regulates HER2 bidirectionally,

which should increase sensitivity to trastuzumab (154).
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Additionally, the FASN inhibitor cerulenin exhibits synergistic

effects with docetaxel in HER-2-overexpressing and docetaxel-

resistant SK-BR-3 cells, suggesting involvement of FASN in

HER-2-induced breast cancer (155). In addition, FASN

blockade may promote synergistic chemosensitization of breast

cancer cells to other treatments, such as paclitaxel, adriamycin,

5-FU, and vinorelbine (156–159). One study revealed that

crosstalk between AKT and AMPK influences autophagy and

metabolism (FAO). In turn, AKT activation, autophagy, and

FAO are among the mechanisms promoting endoxifen

resistance through AMPK (160).
Regulation of autophagy in breast
cancer drug resistance

During the cancer process, cancer cells experience oxidative

stress, which enhances HIF-1a expression and stimulates TGF-

a and Caveolin (Cav1) protein loss, downregulating TGF-a;
moreover, stromal cells undergo autophagy and become CAFs

(161). By undergoing glycolytic metabolism or the Warburg

effect, these CAFs provide energy to nearby cancer cells (162).

CAFs in the mammary gland are a major component of the

tumor microenvironment, greatly contributing to progression of

breast cancer. There is a link between drug resistance and

enhanced growth, anti-apoptosis, and cell survival processes.

However, recent evidence suggests that multidrug resistance in

breast cancer cells may also be caused by autophagy (163,

164). (Figure 2)

In autophagy, broken organelles such as mitochondria and

unfolded proteins are scavenged by autophagy-related

proteins, and autophagy-related proteins can also modulate

key metabolic enzymes to regulate metabolic reprogramming.

Cancer cells can survive by increasing glycolysis when

autophagy activity is impaired (165). Researchers have found

that autophagy promotes resistance to lapatinib, a HER2/

EGFR tyrosine kinase inhibitor, in HER2-positive breast

cancer (166) as well as the anti-HER2 monoclonal antibody

trastuzumab (167). Enhanced autophagy activity has been

demonstrated in doxorubicin- and 5-fluorouracil-resistant

TNBC cells (168).

According to a previous study, GPR30-mediated autophagy

can reduce apoptosis, thereby conferring resistance to TAMs in

breast cancer cells (169). Additionally, CAFs may contribute to

TAM-acquired resistance in breast cancer cells via the paracrine

action of HMGB1, and it has been demonstrated that CAF-

expressed GPR30 initiates this interaction. This interaction

depends on transcriptional regulation through the GPR30/

PI3K/AKT pathway in CAFs and MEK/ERK signaling-induced

autophagy in ERa+ breast cancer cells, contributing to TAM

resistance (170).
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There is evidence that Beclin-1 (BECN1) acts as a suppressor

of cancer and is involved in improving autophagy with

lysosomal degradation; its expression levels are reduced in

mammary carcinomas, particularly TNBC (171, 172).

Autophagy-related BECN1 may therefore promote mammary

carcinogenesis by negatively regulating metabolic rewiring. As a

consequence, loss of BECN1 and autophagy may be linked to

metabolic reprogramming and carcinogenesis in TNBC (173).

The proliferation-inducing ligand TNFSF13 (tumor necrosis

factor superfamily member 13), which is the ligand for

TNFRSF17/BCMA, was identified as an essential gene for B-

cell development, autoimmunity, and cancer (174–176). By

suppressing the Akt-mTOR pathway, TNFSF13 induces

autophagy and therefore desensitizes TNBC cells to

chemotherapy drugs such as paclitaxel, doxorubicin, and

anthracyclines. Furthermore, TNFSF13-induced autophagy is a

useful biomarker for predicting chemotherapeutic efficacy and a

potential therapeutic target for reversing chemoresistance in

TNBC (177).

In a recent study, it was found that acetylation of lysine 254

(K254) increases activity of GAPDH in response to glucose,

which promotes the proliferation of tumor cells (178). The

acetyltransferase PCAF and the deacetylase HDAC5 are also

involved in reversibly regulating GAPDH acetylation (K254). In

addition to increasing glycolysis, GAPDH promotes autophagy
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of damaged mitochondria, helping to protect cells against

caspase-independent cell death (179).

3PO, a PFKFB3 inhibitor, reduces the size of tumors in

HER2+ mice with breast cancer (50). One interesting finding

(180) is that 3PO treatment-related induction of autophagy

provides a mechanism that promotes survival. Consequently,

the combination of an autophagy inhibitor and 3PO is

recommended to enhance antitumor efficacy. Inhibiting LDHA

causes apoptosis and suppresses autophagy in tamoxifen-

resistant BC cells, reversing resistance to tamoxifen in MCF-7

and T47D cells (68).

Paclitaxel induction of ER stress in breast cancer cells leads

to RNF5 association with and ubiquitination and degradation of

SLC1A5/38A2. As a result, Gln uptake decreases, TCA cycle

components are reduced, mTOR signaling decreases, and

autophagy and cell death are increased (181).

By regulating chaperone-mediated autophagy (CMA),

PKM2 K305 acetylation decreases enzyme activity and

promotes lysosomal degradation. After acetylation of PKM2, it

interacts with HSC70, a chaperone for CMA, and associates with

lysosomes. Glycolytic intermediates accumulate in cells

expressing the acetylation mimetic mutant K305Q, causing cell

proliferation and tumor development. It appears that pyruvate

kinase is regulated by lysine acetylation, and the link between

lysine acetylation and CMA has been revealed (182).
FIGURE 2

Important role of mTOR related pathway in metabolic reorganization of breast cancer. PI3K and Ras regulate Akt and ERK, which in turn induce
changes in intermediate metabolism to promote anabolic processes. Potential Notch signaling crosstalk with other pathways in breast cancer. In
addition, they also induce the activation of mTORC1, thus further supporting the rewiring of cellular metabolism and anabolic metabolism
progress. Through various mechanisms Akt, ERK and mTORC1 stimulate aerobic glycolysis, lipid synthesis, the pentose phosphate, oxidative
phosphorylation, autophagy, thus producing the major components necessary for cell growth and proliferation. These networks of signaling
cascades, their interconnection and regulation allow the cells to maintain energetic balance and allow for the physiological adaptation to the
ever-changing environment.
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Regulation of signaling pathways in
breast cancer drug resistance

In tumor cells, increased glucose consumption creates a

hypoglycemic microenvironment, and these nutritional

deficiencies are regarded by tumor cells as stress signals, which

activate the stress signaling pathway to induce autophagy and

escape apoptosis. Upstream of the metabolic pathway, several

molecules activate the proliferation signaling pathway, promote

tumor metabolism, increase glycolysis activity, and inhibit

glycolytic enzyme activity while causing drug resistance as a

result (25). Several pathways, such as the PI3K/Akt signaling and

the Ras/ERK signaling, play a role in anabolic reprogramming

(183) (Figure 2).

Additionally, MCF-7 cells resistant to tamoxifen exhibit

enhanced HK2 and mTOR expression. A mechanism of

resistance to tamoxifen occurs by increasing autophagy

through inactivation of mTOR-S6K via HK2 (35). It was

found that drugs with lower mTOR activity were more

resistant. Cancer cells maintain aerobic glycolysis and HIF-1a
stability despite the absence of hypoxia by the AKT/mTOR

pathway or AMPK signaling pathway (184). When inhibition of

HK2 suppresses the AKT/mTOR/HIF-1a axis, MCF-7 cells

become resensitized to tamoxifen. Through downregulation of

EGFR signaling, tamoxifen and dichloroacetate inhibits

tamoxifen-resistant MCF-7-cell growth (85). Based on these

studies, tamoxifen resistance in breast cancer may be related to

AKT/mTOR/AMPK signaling (184, 185).

The PI3K/mTOR, Ras, MAPK and Src pathways are

constitutively activated by oncogenic mutations in both

normoxia and hypoxia, which increases the level of HIF-1a
expression (186). Breast cancer is associated with upregulation

of HER-2 levels and activation of PI3K/AKT, which leads to

increased stability of HIF-1 via mTOR. Blocking the PI3K/Akt/

mTOR pathway enhances the radiation response of breast

cancer models in vitro (187), and phase II clinical trials have

shown that CCI-779, an mTOR inhibitor, is an effective

treatment for breast cancer (188). Several novel PI3K/Akt

inhibitors have been developed in recent years, including

SF1126, PI-103, and P529, increasing the effectiveness of

radiation therapy and chemotherapy.

It is also believed that FASN is modulated by the PI3k-Akt

and MAPK pathways (149, 189). FASN gene expression is

increased under hypoxic conditions via Akt activation and

subsequent SREBP-1 induction (190). In MCF7 cells, MAP

kinase inhibition decreases transcription from FASN

promoters as well as FASN expression (191). FASN may also

be inhibited by rapamycin, an inhibitor of mTOR (192). Recent

research indicates that regulation of FASN and HER2 occurs in a

bidirectional manner through the HER2-FASN axis (193).

It is known that integrins play multiple functions, including

adhesion, migration, and proliferation. They are controlled by
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the mTOR, HIF-1 and AMPK signaling pathways. In turn,

signaling via b1-integrin/FAK/PI3K/AKT/mTOR also controls

other glucose metabolic pathways (194). Blocking b1-integrin
with an antibody before doxorubicin treatment enhances its

cytotoxic activity (195). Furthermore, enhanced signaling

between fibroblast growth factor (FGF) and fibroblast growth

factor receptor (FGFR) is observed in BC cells that are resistant

to doxorubicin. Downstream signaling is involved in a variety of

oncogenic processes, including angiogenesis, resistance to

therapy, and metastasis. FGFR plays a role in increased

glycolysis and doxorubicin resistance, according to gene

expression microarrays. Furthermore, blocking FGF-FGFR-

ERK1/2 signaling with drug inhibitors targeting FGFR4 and

ERK1/2 can resensitize drug-resistant phenotypes to adriamycin

therapy (196). Although metformin is a hypoglycemic drug, its

antiproliferative effects have been demonstrated in various

breast cancer cell lines, and it was able to sensitize the

multidrug resistance phenotype (197). When metformin is

combined with doxorubicin, metformin acts via the IFN-a
signaling pathway and induces cellular oxidative stress in

resistant breast cancer cells, showing higher cytotoxicity than

doxorubicin alone (198).

Notch signaling is an evolutionarily conserved pathway.

Dysregulation of Notch signaling, for instance, by activating

Notch receptor mutations, overexpressing Notch ligands and/or

receptors, or overexpressing its target genes, contributes to

increased proliferation, cell transformation, and drug

resistance in various cancers, including breast cancer, multiple

myeloma, prostate cancer, and T-cell acute lymphoblastic

leukemia (199). It is known that HER2-driven cancers are

aggressive; furthermore, 70% of patients are resistant to

targeted treatment (200). Studies have shown that resistance

may be caused by direct control of the ERBB2 gene by Notch1

(201), in turn, increased HER2 may activate Notch (202),

possibly creating a positive feedback loop. Specifically,

trastuzumab-resistant cells express higher levels of NOTCH1,

JAG1, and their targets, including HEY1, DTX1, and HES5.

However, a decrease in Notch1 expression using siRNA

sensitizes these cells to trastuzumab (203).
Regulation of OXPHOS in breast
cancer drug resistance

Great progress in the metabolic reprogramming of tumor

cells has occurred in recent decades. A number of molecules act

synergistically upstream of the metabolic pathway to regulate

the signaling pathway of cell proliferation and increase

glycolysis activity and glycolytic enzyme generation and

activation, ultimately leading to chemotherapeutic resistance.

Hence, drug-resistant cells are endowed with adaptive,

proliferative, and survival advantages because of altered
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metabolism (25). Nevertheless, the notion that resistant tumor

cells rely more on mitochondrial OXPHOS and respiration and

less on glycolysis challenges the idea that tumors primarily

invoke glycolytic metabolism and possess defective

mitochondria, as originally proposed by Warburg (204).

Metabolic plasticity has been observed in some tumor cells,

suggesting a transformation from glycolysis to mitochondrial

OXPHOS to produce vast amounts of energy (205).

One study revealed that miRNA-211 controls transcription

of PDK4 and that inhibiting PDK4 by miRNA-211 causes BC

MDA cells to shift from glycolytic to OXPHOS dominance (77).

RNA sequencing has also been applied to analyze differentially

expressed genes in tamoxifen-resistant cells. Gene expression

patterns suggest dysfunctional mitochondria and translate to

OXPHOS (206). Metastatic cancers resistant to hormonal

therapies express high levels of CD133 and IL6 and low levels

of ER. CD133hi/ERlo also reduces mitochondrial OXPHOS

(207). Additionally, two other studies have demonstrate the

importance of OXPHOS and highlight the metabolic plasticity

of TNBC through enhanced susceptibility to fatty acid oxidation

inhibitors (208, 209).

There is growing evidence that OXPHOS participates in

tumorigenesis and chemotherapeutic resistance (210). Breast

cancer research has shown that OXPHOS supplies most of the

ATP required (211). Moreover, OXPHOS influences tumor

treatment in a number of ways. Due to the large amount of

ATP produced, it stimulates the activity of some transporters,

including drug transporters. ABC transporters in breast cancer

cells use the ATP produced from OXPHOS to promote efflux of

DOX and onset of chemotherapy resistance (205). OXPHOS-

induced drug resistance is also associated with tumor stem

cells. Mitochondria OXPHOS can cause tumor stem cells to

spread and may lead to tumor cell resistance (212). Increasing

STAT3 enhances mitochondrial complex I and II activity and

thus OXPHOS in mitochondria. Activation of OXPHOS is a

mechanism for resistance to TKI treatment (213). In TNBC

stem cells, MYC and MCL1 are often overexpressed together,

acting as enhancers of mitochondria. They enhance

mitochondrial OXPHOS and upregulate HIF-1a expression

in synergy; this enhanced mitochondrial OXPHOS promotes

BCSC enrichment in TNBC, leading to an increase in

chemoresistance. HIF-1a inhibition decreases BCSC

enrichment, enhancing chemosensitivity in TNBC cells (212).

Rather than an overly glycolysis-dependent phenotype,

recent research suggests that cancer cells can achieve mixed

phenotypes of glycolysis and OXPHOS in which ATP

production is a result of both glycolysis and oxidative

phosphorylation and is critical to supporting the physiological

activity of individual cells and thus influencing aggressiveness

and therapy resistance (214, 215).

Furthermore, stromal cells interact with cancer cells,

promoting tumor metabolism. Stromal cells are induced by
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cancer cells to invoke aerobic glycolysis, and metabolites

accumulated by stromal cells are utilized by cancer cells for

the mitochondrial OXPHOS pathway. To more effectively fight

cancer, both aerobic glycolysis and mitochondrial metabolism

should be targeted (216).

Lactate production and secretion increase as a result of

aerobic glycolysis, which eventually results in acidification of

the cancer microenvironment. Cancer progression is enhanced

by release of lactate into the tumor microenvironment (35).

Monocarboxylate transporter (MCT) is a lactate efflux

transporter that is necessary for maintaining pH and

regulating glycolysis. MCTs belong to the solute carrier (SLC)

family of 14 members (217). MCT-1 is the key element

facilitating lactate import, and MCT-4 is a lactate exporter

(218). These proteins are present almost ubiquitously in the

body, and they are particularly upregulated in cancer cells and

CAFs, where lactate is generated and transported. As a result,

their overexpression can be used as a biomarker for various types

and subtypes of cancer (219). Indeed, there is an association

between drug resistance and abnormal expression of the MCT

family. For example, MCT1 expression correlates with

aggressiveness, recurrence, decreased survival , and

tumorigenicity in breast cancer (220). It has been reported

that high MCT1 expression causes increases in intratumoral

lactic acid, which is associated with poor prognosis (221). MCT1

is a major transporter that assists 3-bromopyruvate (3-BrPA)

(222), and MCT1 overexpression in cancer cells increases tumor

xenograft sensitivity to 3-BrPA. The study by Morais-Santos

et al. found that various subtypes of breast cancer are sensitive to

MCT1 inhibitors in different ways (223). A high level of MCT1

expression is observed in TNBC (224). As a direct target of miR-

342-3p, MCT1 is increased when miR-342-3p is silenced,

enhancing the glycolytic profile of TNBC cells and rendering

them more aggressive (225).

In breast cancer lesions, MCT4 is associated with immune

cell infiltration, PKM2 and HK3 expression, and glycolytic rate-

limiting enzymes. Additionally, MCT4 may play an important

role in maintaining the tumor immune microenvironment

through metabolic reprogramming. Therefore, these enzymes

of the glycolysis pathway (MCT4, PKM2, and HK3) may serve as

new ta r g e t s f o r modu l a t i ng the tumor immune

microenvironment and enhancing immunotherapy

effectiveness (226). MCT4 downregulation overcomes

resistance to antiangiogenic therapy (227). Based on studies

using xenograft models, MCT4, as a transporter of

monocarboxylate across cell membranes, appears to be

responsible for secretion of lactate by breast tumor cells. After

being secreted, lactate is transported into endothelial cells

expressing MCT-1, which triggers the autocrine NF-kB/IL-8
pathway. As a result, lactate signaling induces cell migration and

tube formation in endothelial cells, promoting tumor artery

morphogenesis and perfusion.
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Conclusion

Cancer research has recently concentrated on the dysregulation

of metabolism within cancer cells; metabolic reprogramming is now

considered one of the hallmarks of cancer. Increasing evidence

suggests that dysregulated cellular metabolism may contribute to

drug resistance in cancer patients. According to the Warburg effect,

cancer cells invoke glycolysis irrespective of whether they are

aerobic or anaerobic, meaning that mitochondrial dysfunction is

present (228). Metabolic reprogramming, includes glucose

metabolism, fatty acid synthesis, and amino acid metabolism. The

fact that metabolic reprogramming occurs in resistant cells andmay

occur in the majority of tumors has important therapeutic

implications and shows that metabolic vulnerabilities might be

exploited therapeutically.

In addition, the emergence of the “reverse Warburg effect”

indicates that lactic acid serves as a material that provides

energy; it can be converted into pyruvate, resulting in

stimulated mitochondria and OXPHOS in neighboring cells,

and mitochondria are important in many aspects of cellular

metabolism (229). Recently, several studies have demonstrated

that tumor cells also display metabolic plasticity. When tumor

cells are surrounded by ample oxygen or when the external

environment changes, glycolysis can moderately transform into

OXPHOS. This review, by unveiling key regulatory events,

further contributes to our knowledge of the relationship

between breast cancer metabolism and drug resistance. To

target cancer metabolism in the context of treatment, it is vital

to alter the metabolic characteristics of tumorigenesis and the

plasticity of cancer cells to switch between different metabolic

pathways, survival, and apoptosis inhibition. There are several

agents that target specific enzymes in the metabolic pathways of

breast cancer, including HK, PK, PDC, GLUTs and lactate, in

addition to that targeting metabolism-related molecular

pathways and genes in the tumor microenvironment. And

potential molecular mechanisms and new methods of

treatment have been studied or hypothesized. Several of these

agents have been shown to improve the efficacy of current

treatments and resensitize resistant cancer cells and have now

entered clinical trials. Combining strategies that modulate
Frontiers in Oncology 13
glycolytic and mitochondrial pathways may be an effective way

to eliminate drug-resistant cells.

Overall, proteomic and metabolomic analyses of tumor

metabolism provide physicians with insight into therapeutic

targets, leading to successful clinical translation. Our hope is

that targeting tumor metabolic pathways will play an important

role in treating breast cancer in the near future.
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therapeutic relevance of the metabolic oncogene fatty acid synthase in Her2+ breast
cancer. Histol histopathols (2016) 32:11830. doi: 10.14670/HH-11-830

194. Moldogazieva NT, Mokhosoev IM, Terentiev AA. Metabolic heterogeneity
of cancer cells: An interplay between hif-1, gluts, and ampk. Cancers (2020) 12:862.
doi: 10.3390/cancers12040862

195. Lovitt CJ, Shelper TB, Avery VM. Doxorubicin resistance in breast cancer
cells is mediated by extracellular matrix proteins. BMC Cancer (2018) 18:41. doi:
10.1186/s12885-017-3953-6

196. Xu M, Chen S, Yang W, Cheng X, Ye Y, Mao J, et al. Fgfr4 links glucose
metabolism and chemotherapy resistance in breast cancer. Cell Physiol Biochem
(2018) 47:151–60. doi: 10.1159/000489759

197. Qu C, Zhang W, Zheng G, Zhang Z, Yin J, He Z. Metformin reverses
multidrug resistance and epithelial-mesenchymal transition (Emt) Via activating
amp-activated protein kinase (Ampk) in human breast cancer cells. Mol Cell
Biochem (2014) 386:63–71. doi: 10.1007/s11010-013-1845-x

198. Marinello PC, Panis C, Silva TNX, Binato R, Abdelhay E, Rodrigues JA,
et al. Metformin prevention of doxorubicin resistance in mcf-7 and mda-Mb-231
involves oxidative stress generation and modulation of cell adaptation genes. Sci
Rep (2019) 9:5864. doi: 10.1038/s41598-019-42357-w

199. Bolós V, Grego-Bessa J, Luis D. Notch signaling in development and
cancer. Endocrine Rev (2007) 28:339–63. doi: 10.1210/er.2006-0046

200. Wong A, Lee S-C. Mechanisms of resistance to trastuzumab and novel
therapeutic strategies in Her2-positive breast cancer. Int J Breast Cancer (2012)
2012:415170. doi: 10.1155/2012/415170

201. Guo S, Liu M, Gonzalez-Perez RR. Role of notch and its oncogenic
signaling crosstalk in breast cancer. Biochim Et Biophys Acta (2011) 1815:197–
213. doi: 10.1016/j.bbcan.2010.12.002

202. Lindsay J, Jiao X, Sakamaki T, Casimiro MC, Shirley LA, Tran TH, et al.
Erbb2 induces Notch1 activity and function in breast cancer cells. doi: 10.1111/
j.1752-8062.2008.00041.x

203. Osipo C, Patel P, Rizzo P, Clementz AG, Hao L, Golde TE, et al. Erbb-2
inhibition activates notch-1 and sensitizes breast cancer cells to a G-secretase
inhibitor. Oncogene Basingstoke (2008) 27:5019–32. doi: 10.1038/onc.2008.149

204. Bosc C, Selak MA, Sarry JE. Resistance is futile: Targeting mitochondrial
energetics and metabolism to overcome drug resistance in cancer treatment. Cell
Metab (2017) 26:705–7. doi: 10.1016/j.cmet.2017.10.013
Frontiers in Oncology 18
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