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Abstract. Paclitaxel (PXL) is a chemotherapeutic agent 
widely used in solid tumors. However, whether PXL causes 
premature ovarian insufficiency in women of reproductive 
age remains controversial. The aim of the present study was 
to answer how and for how long PXL affects fertility, and 
to identify the protective effect of gonadotropin-releasing 
hormone agonist (GnRHa) in mice. A single dose of PXL 
was administered to 7-week-old female ICR mice. Mice were 
treated with GnRHa for 1 estrous cycle prior to chemotherapy, 
and for another following chemotherapy. On the days 1, 6, 
11 and 16 following the administration of PXL, mice were 
assessed by ovarian histology, ovarian stimulation and mating 
experiment. Multiple doses of PXL were also administered 
to verify the duration of the gonadotoxicity of PXL. It was 
determined that PXL only destroyed antral follicles on day 1 
following chemotherapy without reducing primordial follicles. 
In vitro experiments revealed that PXL impaired oocytes in 
metaphase, excluding those at the germinal vesicle stage. The 
number and quality of retrieved metaphaseⅡ(MⅡ) oocytes in 
PXL-exposed mice were reduced on day 1 following chemo-
therapy, which was recovered on day 11. MⅡ oocytes from 
mice pretreated with GnRHa recovered on day 6 following 
chemotherapy. Following 3 estrous cycles in mice after the 
last dose of the 3-dose paclitaxel administration, follicles in 
all stages and retrieved MII oocytes were recovered. It was 

concluded that the impairment caused by PXL on follicles 
and oocytes in mice lasted for <3 estrous cycles, which was 
shortened by pretreatment of GnRHa.

Introduction

Cancer is a major public health problem worldwide. Notably, 
increasing incidences of certain types of cancer, such as 
cervical (1-3), breast (4) and lung cancer (5), have been reported 
in young women. Although cancer mortality is continu-
ously declining due to progress in treatment (6), improving 
cancer-associated outcomes and quality of life in these patients 
remains imperative. Chemotherapeutic agents are well known 
for their side effects, such as leukopenia, hepatic insufficiency 
and premature ovarian insufficiency (7). Endocrine dysfunc-
tion and infertility induced by ovarian function impairment in 
patients of reproductive age can seriously affect their quality 
of life. The increasing demand for ovarian function preserva-
tion has therefore become a major challenge for onco-fertility 
specialists (8).

According to Information Management System (IMS™) 
data, the global best-selling chemotherapeutic agent is pacli-
taxel (PXL) (9), which is widely used in cervical (10), breast (11) 
and lung cancers (12). Mechanistically, PXL functions as 
an antineoplastic drug by inhibiting guanosine triphosphate 
hydrolysis in the microtubule lattice, inducing microtubule 
stabilization (13). Although PXL had been used for decades, 
the few studies revealing its effect on the ovaries of animals 
have had conflicting results (14-18). The results of certain 
clinical trials and meta-analyses that focused on whether PXL 
diminishes human fertility were not reliable, due to lack of 
an accurate ovarian reserve marker (19-22). Therefore, it is 
important to elucidate how PXL affects ovaries and how long 
its gonadotoxicity lasts.

C u r r en t ly,  gona do t r op i n - r e le a s i ng  ho r mone 
analogues/agonists (GnRHa) are the first and most widely 
used agents for ovarian protection during chemotherapy (7). 
The main mechanism of the protective effect of GnRHa 
is reducing follicle-stimulating hormone (FSH) levels and 
suppressing follicle growth to maintain ovaries in a relatively 
dormant state (7). However, the evidence of fertility preserva-
tion by GnRHa remains insufficient, since controversial results 
were reported in several meta-analyses (23-25). Different 
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chemotherapy regimens used in each clinical trial were prob-
ably responsible for the contrasting results. It remains unclear 
whether GnRHa would be effective in protecting ovaries from 
the gonadotoxicity caused by PXL.

The aim of the present study was to clarify the phenomena 
and mechanisms through which PXL impairs rodent ovaries, 
define the duration of its gonadotoxicity and investigate 
whether GnRHa can protect ovaries during PXL treatment, 
in the hope of providing laboratory evidence for the clinical 
application of PXL and GnRHa more safely in women of 
reproductive age.

Materials and methods

Animals. Seven-week-old female and 10-week-old male ICR 
mice were purchased from the Hubei Provincial Center for 
Disease Control and Prevention, China. Mice were kept for 
1 week in the animal husbandry to enable acclimatization to 
the local conditions in controlled temperature (20‑25˚C) and 
light (12-h light/dark cycle) with free access to food and tap 
water. Three to four female mice were housed in one venti-
lated cage with wood shavings as bedding which was changed 
every 3 days. Each male mouse was separately housed. The 
whole experiment lasted 3 months, including 501 female mice 
and 12 male mice. All the animals were monitored every 
day, and weighed every 5 days. Animals were sacrificed by 
cervical dislocation for sample collection following inhalation 
of 70% v/v CO2. Euthanasia was confirmed by the cessation of 
a heartbeat. Symptoms meeting the NIH guidelines (26) such 
as abnormal postures, weight loss, loss of appetite or weakness 
were set as humane endpoints for the present study. All experi-
ments were approved by the Institutional Ethics Committee of 
Tongji Hospital, Tongji Medical College, Huazhong University 
of Science and Technology (approval no. TJ-A20161101).

PXL and GnRHa treatment. Female ICR mice, weighing 
30-35 g, were randomly assigned to four groups: The vehicle, 
PXL, GnRHa and PXL+GnRHa groups. Based on our 
pre-examination and a previous study (27), the estrous cycle of 
ICR mice was 5 days on average. Therefore, GnRHa (1 mg/kg, 
triptorelin acetate; Ferring Pharmaceuticals) or normal saline 
was administered intraperitoneally to mice prior to chemo-
therapy for 5 days. Next, animals received a single dose of 
PXL (30 mg/kg; Pfizer, Inc.) or vehicle intraperitoneally. One 
quarter of the mice in each group were assessed 24 h after 
chemotherapy. The rest of the mice were continuously admin-
istered GnRHa for another estrous cycle (5 days) following 
chemotherapy, and were assessed on days 6, 11 and 16 
following chemotherapy (Fig. 1A). Another set of mice was 
administerd 30 mg/kg PXL every 3 days, for a total of 3 doses. 
GnRHa (1 mg/kg) was also administered prior to, during and 
following chemotherapy for a total of 16 days, and mice were 
then assessed on days 1, 6, 11 and 16 following chemotherapy 
(Fig. 1B). During the experiment, one mouse in the GnRHa 
group suffered from weight loss and was euthanized before the 
endpoint of our experiment.

Histology and follicle count. After anesthetizing by 50 mg/kg 
pentobarbital sodium (Merck KGaA) intraperitoneally, blood 
was collected from the eye orbit for serum anti-müllerian 

hormone (AMH) analysis (n=5/group/time-point). Then these 
mice were euthanized by cervical dislocation, and mortality 
was confirmed by the cessation of a heartbeat. Subsequently, the 
ovaries were collected. One ovary from each mouse was fixed 
in 4% v/v paraformaldehyde (Wuhan Servicebio Technology 
Co., Ltd.) for 24 h at 4˚C, embedded in paraffin and sectioned 
at 5-µm thickness for histology. Hematoxylin and eosin (H&E) 
staining was performed using standard methods (28). Follicle 
counts were conducted on serially cut sections from every 
sixth section of entire ovaries. The follicles were counted at 
different stages and the mean count per section was calculated 
for each stage. The follicle stages were classified as previously 
described (29).

AMH measurement. Blood was collected from the orbit and 
placed at room temperature for 1 h. Following centrifuga-
tion at 3,000 x g, serum AMH levels were determined using 
a mouse anti-AMH ELISA kit (cat. no. CSB-E13156m; 
Cusabio Technology LLC), following the manufacturer's 
instructions.

Oocyte collection and in vitro maturation. An intraperitoneal 
injection of 10 IU pregnant mare serum gonadotropin (PMSG; 
Beijing Solarbio Science & Technology Co., Ltd.) was admin-
istered, followed by 12 IU human chorionic gonadotrophin 
(hCG; Lizhu Pharmaceutical Trading Co., Ltd.) 48 h after the 
induction of ovulation in mice. Subsequently, 14-17 h after 
hCG, cumulus oocytes were collected in an oviduct ampulla 
after mice were scarified by cervical dislocation following 
inhalation of 70% v/v CO2. Cumulus cells were removed using 
1% hyaluronidase (Merck KGaA), and denuded metaphase Ⅱ 
(MⅡ) oocytes were prepared for further study. In total, 
265 mice were sacrificed for oocyte collection.

Oocytes with germinal vesicle (GV) were punctured from 
ovaries using a 0.5-mm syringe 48 h following PMSG admin-
istration. GV oocytes were cultured in M199 (GE Healthcare 
Life Sciences) drops under liquid mineral oil (Vitrolife) at 37˚C 
in an incubator with 5% CO2 for in vitro maturation. Oocytes 
in MⅠ were retrieved after 6 h, and MⅡ oocytes were retrieved 
after 12 h. GV, MⅠ and MⅡ oocytes were then cultured in 
1 µM PXL for 5 min at 37˚C. GV and MⅠ oocytes were washed 
for ongoing culture to gain MⅡ oocytes. The ongoing culture 
time of GV and MⅠ oocytes was 12 and 6 h, respectively. MⅡ 
oocytes were washed and cultured in normal M199 drops for 
4 h for further study.

Immunofluorescence and confocal microscopy. Oocytes from 
each group at each time‑point (n=5) were fixed with 4% v/v 
paraformaldehyde at 4˚C overnight. They were then trans-
ferred to 0.5% v/v Triton X-100 (Beijing Solarbio Science & 
Technology Co., Ltd.) for 5 min. Following blocking in 1% 
w/v BSA-supplemented (Wuhan Servicebio Technology Co., 
Ltd.) PBS for 1 h, oocytes were incubated with the monoclonal 
anti-α-tubulin antibody produced in mice at a dilution of 
1:1,000 (cat. no. T5168; Merck KGaA) at 4˚C overnight. Then 
specimens were then incubated with anti-mouse IgG (H+L), 
F(ab')2 Fragment (Alexa Fluor® 488 Conjugate) at a dilution 
of 1:300 (product no. 4408S; Cell Signaling Technology, 
Inc.) for 1 h at 37˚C, and then co‑stained with Hoechst 33342 
(Merck KGaA) for 5 min at 37˚C. Oocytes were mounted onto 
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glass slides and observed under a confocal laser-scanning 
microscope (FV1000; Olympus Corporation).

Chromosome (CH) spread of oocytes. Oocytes from each group 
at each time-point (n=4) were placed in hypotonic solution of 
0.9% w/v sodium citrate (Wuhan Servicebio Technology Co., 
Ltd.) for 10 min at 37˚C and then exposed to Tyrode's buffer 
(pH 2.5; Merck KGaA) for ~30 sec at 37˚C to remove the 
zona pellucida. Oocytes were then fixed in a drop of 1% v/v 
paraformaldehyde with 0.15% v/v Triton X-100 (pH 9.2) on a 
glass slide. Then slides were dried in a humid chamber for over 
2 h at 37˚C. CHs were stained with 2% v/v Giemsa (Wuhan 
Servicebio Technology Co., Ltd.) for 10 min at room tempera-
ture and observed under a light microscope at a magnification 
of x100. The normal number of MII oocyte CHs (univalents) 
was 20. Aneuploidy oocytes had ±20 univalents.

In vitro fertilization. The caudae epididymides of healthy 
12-week-old male mice scarified by cervical dislocation 
following inhalation of 70% v/v CO2 were lanced in G-IVF 
medium (Vitrolife) to release sperm. Following capacitation, 
sperm was added to pooled oocytes from 4 mice in each 
group, at each time‑point, in G‑IVF medium, for 5 h at 37˚C 
and 5% CO2. These oocytes were then moved to drops of G1 
(Vitrolife) medium under mineral oil. The presence of two 
pronuclei was considered as successful fertilization.

Mating protocol. Six female mice in the estrous cycle from 
each group at each time-point mated with healthy male mice 
which had been demonstrated to be fertile at a ratio of 3:1 for 
72 h. No special treatment was administered to male mice. 
Female mice were separated as soon as a plug was observed or 
after 72 h of mating.

Pup CH analysis. Three pups from each pregnant mouse 
were selected randomly for CH analysis. Two-week-old 
pups were intraperitoneally injected with 0.5% w/v 0.1 ml 
colchicine (Jialin) and sacrificed by cervical dislocation 
following inhalation of 70% v/v CO2 20 min after injection 
at room temperature. Bone marrow from the thighbones was 
flushed into 0.075 M potassium chloride (Wuhan Servicebio 
Technology Co., Ltd.) solution, and then, marrow cells were 
fixed with methanol‑acetic acid (3:1) fixative for 30 min at 
room temperature. CH slides were conventionally stained 
with 2% v/v Giemsa solution for 10 min at room temperature. 
The number of CHs was counted under a light microscope at 
magnification of x100 to determine aneuploidy.

Statistical analysis. The results are presented as the 
mean ± SEM. The data were analyzed by one-way ANOVA 
followed by LSD post hoc or χ2 test using SPSS 17.0 (SPSS, 
Inc.). A P-value of <0.05 was considered to indicate a 
statistically significant difference.

Figure 1. Experimental scheme. (A) Single-dose scheme: Before chemotherapy, mice were pretreated with NS or GnRHa for 5 days (1 estrous cycle). On D0, a 
single dose of chemotherapy (PXL) or vehicle was administered. On day 1 following chemotherapy, a quarter of the mice were assessed (n=24/group). The rest 
were continuously administered NS or GnRHa for another 5 days. On day 6, 11 and 16 following chemotherapy, a quarter of the mice were assessed at each 
time-point. (B) Multiple-dose scheme: Three doses of paclitaxel were administered consecutively every 3 days and GnRHa was administered continuously 
during chemotherapy. On days 1, 6, 11 and 16 following chemotherapy, a quarter of the mice (n=10/group) were assessed at each time-point. NS, normal saline; 
GnRHa, gonadotropin-releasing hormone agonist; PXL, paclitaxel; V, vehicle.
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Figure 2. Damage caused by PXL on follicles only lasts for 1 estrous cycle, and GnRHa tends to abrogate this damage. (A) Number of primordial, primary, 
secondary, antral and atretic follicles on days 1-16 following chemotherapy. Data are expressed as the mean ± SEM. Statistical analysis was performed by 
one-way ANOVA followed by LSD test. *P<0.05 vs. the control group (vehicle). (B) H&E‑stained sections revealing representative histological fields in the 
four groups on days 1‑6 following chemotherapy (original magnification, x10). The arrows indicate atretic follicles, which were mainly from antral follicles. 
Scale bars, 100 µm. (C) Serum AMH levels in the 4 groups on day 1-16 following chemotherapy. Data are expressed as the mean ± SEM. PXL, placlitaxel; 
GnRHa, gonadotropin-releasing hormone agonist; H&E, hematoxylin and eosin; AMH, anti-müllerian hormone.
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Results

PXL only damages antral follicles in a transient manner and 
does not jeopardize ovarian reserve. In order to determine 
the impact of PXL on ovarian reserve, histological analysis 
of the ovaries was performed and the serum AMH of mice 
was evaluated. On day 1 following the injection of PXL, only 
antral follicles were significantly reduced in the PXL group, 
as compared with the control group (3.35±0.30 vs. 5.90±1.27; 
P<0.05). The antral follicles in the GnRHa group (3.07±0.47 
vs. 5.90±1.27; P<0.05) and PXL+GnRHa (2.60±0.75 vs. 
5.90±1.27; P<0.05) groups were also reduced, due to the 
suppressing effect of GnRHa. Atretic follicles were signifi-
cantly increased in the PXL group as compared with the control 
group (30.67±4.27 vs. 17.95±1.35; P<0.01). Co-administration 
of GnRHa plus PXL tended to abrogate the increase of atretic 
follicles caused by PXL, but not significantly (23.35±3.44 
vs. 30.67±4.27; P=0.09). Primordial, primary and secondary 
follicles were compared between groups (Fig. 2A and B). 

After 1 estrous cycle, on day 6 after chemotherapy, the follicle 
counts between the four groups had already exhibited no 
difference in each follicular stage, except that antral follicles 
in the GnRHa group were still less than the control (3.10±1.09 
vs. 5.60±1.53, P<0.05) (Fig. 2A). On days 11 and 16 following 
chemotherapy, there was no difference in follicle counts 
between the four groups. Histological analysis revealed that 
PXL destroyed antral follicles in a transient way and had no 
effect on primordial follicles. To further confirm the mild 
effect of PXL on ovarian reserve, serum AMH was assessed 
in mice, and the result revealed a stationary trend of AMH 
without any significant difference between the groups at each 
time-point (Fig. 2C).

PXL induces meiotic arrest in oocytes in metaphase but not 
in GV stage in vitro. The antral follicles were damaged by 
PXL where oocytes resumed meiosis, experienced germinal 
vesicle breakdown (GVBD) and M I, and then stopped at 
MⅡ, waiting for fertilization. Following exposure to PXL and 

Figure 3. PXL‑induced reduction of MⅡ oocytes lasts for <2 estrous cycles, and GnRHa shortens the recovery time. (A) Oocyte morphology under a stereo-
microscope (original magnification, x10). Scale bars, 100 µm. (B) The number of oocytes in the four groups on days 1‑16 following chemotherapy. Data are 
expressed as the mean ± SEM. (C) MⅡ percentage in the four groups on days 1‑16 following chemotherapy. Data are expressed as the mean ± SEM. Statistical 
analyses was performed by one-way ANOVA followed by LSD post hoc test. **P<0.005 vs. the control group (vehicle). PXL, paclitaxel; MⅡ, metaphase II; 
GnRHa, gonadotropin-releasing hormone agonist.
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washing, GV oocytes were continuously cultured. The results 
revealed that PXL did not affect the GVBD (75.17±1.81% 
vs. 77.45±2.85%; P>0.05; Fig. S1A) or maturation rate 
(43.65±4.81% vs. 41.02±4.13%; P>0.05; Fig. S1A), which 
suggested that GV oocytes were either away from or resistant 
to the damage produced by PXL. MⅠ oocytes were also 
administered PXL, which was then washed off. Following 
ongoing maturation, the oocytes exposed to PXL barely 
extruded the polar body, and the maturation rate was markedly 
lower (27.84±10.00% vs. 86.80±4.40%, P<0.005; Fig. S1B). 
Immunostaining revealed that the spindle apparatuses of 
these arrested MⅠ oocytes that were exposed to PXL were 
mostly damaged, while the majority of MⅠ oocytes without 
PXL administration exhibited normal spindle organization 
and CH alignment (spindle, 3.70±11.33% vs. 69.84±20.78%, 
P<0.05; CH, 0.00±0.00% vs. 73.01±27.74%; P<0.05; Fig. S1B). 
Similarly, PXL‑exposed MⅡ oocytes had a clearly disordered 
spindle organization and CH alignment, as compared with 
the controls (spindle, 29.72±3.47% vs. 71.28%±17.99; CH, 
26.62±6.50% vs. 60.72±14.97%; P<0.05; Fig. S1C). As a 
result, the fertilization rate of PXL‑exposed MⅡ oocytes 
was markedly reduced (9.49±6.41% vs. 46.35±8.72%, P<0.01; 
Fig. S1C), while nearly half of the control oocytes were able to 
be fertilized and develop into 2‑cell embryos. It was confirmed 
that only oocytes in metaphase and not earlier-stage oocytes 

were affected by PXL through the destruction of spindle 
apparatuses.

PXL‑induced impairment of MⅡ oocytes lasts for 2 estrous 
cycles in vivo, and GnRHa can protect oocytes. To confirm 
the effect of PXL on mouse oocytes in vivo, the amount and 
morphology of oocytes retrieved following ovarian stimula-
tion in mice was observed. On day 1 following chemotherapy, 
retrieved MⅡ oocytes in the PXL group were significantly 
less than those in the vehicle group (2.50±1.50 vs. 29.75±5.65; 
P<0.005 Fig. 3B), and the percentage of MⅡ in retrieved 
oocytes had also decreased (12.22±14.8% vs. 41.40±4.7%; 
P=0.096; Fig. 3C). At this time-point, GnRHa did not rescue 
the number of PXL‑exposed oocytes, since the MⅡ oocytes 
retrieved in the PXL+GnRHa group were not more than those 
retrieved in the PXL group (6.0±6.0 vs. 2.50±1.50; P>0.05). 
On day 6 following chemotherapy, the MⅡ oocyte number 
and percentage in the PXL group started to recover, but was 
still slightly lower than that in the control (18.00±6.49 vs. 
32.40±4.39: P>0.05) (37.1±4.2% vs 52.00±7.3%; P>0.05). 
In addition, mice co-treated with GnRHa took less time to 
completely recover. In the PXL+GnRHa group, the number 
and percentage of MⅡ oocytes were totally similar to those of 
the controls (38.25±8.35 vs. 32.40±4.39; P>0.05) (49.85±6.9% 
vs. 52.00±7.3%; P>0.05), and the number of MⅡ oocytes was 

Figure 4. PXL‑induced impairment of MⅡ oocytes lasts for 1 estrous cycle, and GnRHa tends to protect against it. (A) Percentage of oocytes with a normal 
spindle morphology and aligned CHs. (B) Aneuploid rate of oocytes following oocyte CH spread. Data are expressed as the mean ± SEM. Statistical analysis 
was performed by one-way ANOVA followed by LSD test. *P<0.05 vs. the control group (vehicle). (C) Representative images of spindles and CHs in MⅡ 
oocytes. CHs are shown in blue and microtubules in green under a confocal microscope (original magnification, x100). Scale bars, 5 µm. (D) Embryos at the 
2‑cell stage 12 h after fertilization under a stereomicroscope (original magnification, x10). Scale bars, 100 µm. PXL, placlitaxel; MⅡ, metaphase II; GnRHa, 
gonadotropin-releasing hormone agonist; CH, chromosome.
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slightly higher than that in the PXL group, although without 
significance (38.25±8.35 vs. 18.00±6.49; P=0.058). On 
days 11 and 16, the number and percentage of MⅡ oocytes 
were similar among the four groups (Fig. 3).

Although some oocytes developed into MⅡ oocytes, we 
cannot say that all of them were normal. Spindle morphology, 
CH alignment, karyotype analysis and in vitro fertilization 
were used to evaluate the quality of MⅡ oocytes. Spindle 
apparatus immunostaining revealed that, on day 1 following 
chemotherapy, most oocytes collected from the control or 
GnRHa groups had typical barrel-like spindles with CHs 
located on the equatorial plate (Fig. 4C). By contrast, a majority 
of disorganized spindles and misaligned CHs were observed 
in the PXL group (spindle, 25.32±22.69% vs. 69.64±7.76%; 

P<0.05; CH, 25.21±22.69% vs. 63.21±6.84%; P<0.05; Fig. 4A). 
Co-treatment of GnRHa tended to protect spindle organiza-
tion, although without significance (spindle, 57.50±18.12% vs. 
25.32±22.69%; P>0.05; CH, 47.5±29.18% vs. 25.21%±22.69%; 
P>0.05; Fig. 4A). A significantly higher frequency of aneuploid 
oocytes of ±20 univalents was found in the PXL group than in 
the control or GnRHa groups (79.17±5.15% vs. 24.44±21.76% 
vs. 18.75±8.11%; P<0.05; Fig. 4B) on day 1 following chemo-
therapy. Co-treatment with PXL and GnRHa tended to reduce 
the aneuploidy rate (79.17±5.15% vs. 45.00±5.03%; P>0.05; 
Fig. 4B). The fertilization rate was also clearly decreased in the 
PXL group, as compared with the control (27.27% vs. 75.51%; 
P<0.05; Fig. 4D; Table SI) on day 1 following chemotherapy. 
The fertilization ability of the PXL+GnRHa group was also 

Figure 5. Adverse reproductive outcomes PXL-induced last for 1 estrous cycle, and GnRHa reduces stillbirths. (A) Live pups per litter delivered in the four 
groups on days 1-45 following chemotherapy. (B) Pregnancy rate in the 4 groups on days 1-45 following chemotherapy. (C) Total pups, live pups and stillbirths 
per litter delivered in the four groups days 1-16 following chemotherapy. Data are expressed as the mean ± SEM. Statistical analysis was performed by one-way 
ANOVA followed by LSD post-hoc test. *P<0.05 vs. the control group (vehicle). PXL, paclitaxel; GnRHa, gonadotropin-releasing hormone agonist.
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Table I. Reproductive outcomes of mice mated during the 1st estrous cycle after chemotherapy.

   Total pups Live
Groups N Litters (%) (live pups) pups/littera P-value Stillbirths Stillbirths/littera P-value

Vehicle 6 4 (66.7) 50(48) 12.00±2.16  2 0.50±0.50 
PXL 6 4 (66.7) 39 (21) 5.25±3.20 0.066 18 4.50±2.10b 0.050
GnRHa 6 3 (50.0) 28 (28) 9.33±1.20 0.464 0 0.00±0.00b 0.799 (0.042)
PXL+GnRHa 6 2 (33.3) 22 (22) 11.00±0.00 0.806 0 0.00±0.00 0.822

Reproductive outcomes of mice mated on the 1st day after chemotherapy. aStatistical analyses were performed by one-way ANOVA followed 
by LSD test. bRepresents statistically significant difference between PXL and PXL+GnRHa groups, P=0.042.

Figure 6. Multiple doses of PXL also damage antral follicles in a transient way. (A) Number of primordial, primary, secondary, antral and atretic follicles 
and (B) The number and percentage of MⅡ oocytes retrieved in the three groups on days 1‑16 after 3 doses of chemotherapy. Data are expressed as the 
mean ± SEM. Statistical analysis was performed by one-way ANOVA followed by LSD test. *P<0.05, ***P<0.001 vs. the control group (vehicle). PXL, paclitaxel; 
MⅡ, metaphase II; GnRHa, gonadotropin‑releasing hormone agonist.
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partially restored (64.29 vs. 27.27%; P>0.05). After 1 estrous 
cycle, on day 6 following chemotherapy, the normal spindle 
morphology, as well as CH alignment, aneuploidy and fertil-
ization rates of the oocytes in the PXL group had all reached 
the same level as those of the control group (Fig. 4).

PXL‑induced adverse reproductive outcomes last for 1 
estrous cycle and GnRHa reverses this outcome. A mating 
experiment was carried out to study whether damage to 
oocytes caused by PXL could affect reproductive outcomes. 
After mating on day 1 following chemotherapy, animals 
treated with GnRHa produced fewer litters (Table Ⅰ; Fig. 5B), 
as 4/6 mice were pregnant in the control and PXL group, but 
only 2-3 mice in the GnRHa or PXL+GnRHa groups. No 
significant difference in live pups per litter was observed 
among the four groups. However, markedly, the PXL group 
delivered a total of 18 dead pups, which was more than those 
delivered in the control group (P=0.05) and the GnRHa group 
(P=0.046). There was no stillbirth in the PXL+GnRHa group 
but since only 2 mother mice delivered, no statistical differ-
ence was identified. (Table I; Fig. 5A and C). On day 6 and 11 
following chemotherapy, the percentage of pregnant mothers 
in mice treated with GnRHa remained low. But on day 16, the 
pregnancy rate of mice treated with PXL dropped. As for live 
pups/litters and stillbirths, 1 estrous cycle after chemotherapy, 
the live pups/litters delivered in each group were similar, with 
stillbirth seldom happening (Table Ⅰ; Fig. 5A and C). To ensure 
that the offspring of PXL-exposed animals had no potential 
genetic defects, we examined the karyotypes of 3 random pups 
from every pregnant mother. The results revealed that every 
live pup had a euploid karyotype (Tables SII-SV).

Multiple doses of PXL do not cause permanent damage 
to mouse fertility. In order to mimic the clinical usage of 
PXL, 3 subsequent doses of PXL were administered to mice 
(1 dose per 3 days). Since it was determined that GnRHa 
had no adverse effect on mouse fertility in the single-dose 
experiment, in order to reduce mice sacrificing in our study, 
we canceled this group in the multiple-dose experiment. The 
GnRHa was administered 1 estrous cycle before, during and 
continuing with one more estrous cycle following chemo-
therapy (Fig. 1B). The follicle counts were similar to those 
of the single-dose-PXL experiment. On day 1 following 3 
doses of chemotherapy, the antral follicles in the PXL and 
PXL+GnRHa groups were significantly reduced (7.00±1.00 
vs. 2.00±0.00 vs. 2.70±0.30; P<0.05). The primordial, primary 
and secondary follicles were all similar between groups. The 
administration of GnRHa during chemotherapy significantly 
reduced the PXL-induced atretic follicles (30.60±5.00 vs. 
63.80±4.00; P<0.05). On days 6 and 11 following chemo-
therapy, antral follicles in the PXL group were still less than 
those in the control, but co-treatment with PXL and GnRHa 
helped antral follicles recover on day 11. The increase in 
atretic follicles in the PXL group also lasted until day 11, 
but the PXL+GnRHa group maintained a similar amount 
of atretic follicles to that of the control group. On day 16 
following chemotherapy, no significant difference in follicles 
of all stages was identified among groups (Fig. 6A). To further 
estimate the duration of the gonadotoxicity caused by multiple 
doses of PXL administration, ovarian stimulation was also 

performed. On days 1 and 6 following the last dose of PXL, 
significantly less MⅡ oocytes were collected in the PXL group 
than in the control (D1, 1.00±0.00 vs. 30.40±5.27; P<0.001; D6, 
17.20±4.25 vs. 31.33±4.67; P<0.05; Fig. 6B). With the protec-
tion of GnRHa, even more MⅡ oocytes were retrieved than 
in the control (46.80±3.44 vs. 31.33±4.67; P<0.05; Fig. 6B) on 
day 6 following chemotherapy. On days 11 and 16, the amount 
of MⅡ oocytes was similar in all groups.

Discussion

In the present study, it was determined that PXL only induced 
loss of antral follicles and increased atretic follicles without 
causing any loss of primordial, primary or secondary follicles. 
Notably, after 1-2 estrous cycles for recovery, the follicle counts 
of each stage tended to be the same among groups. In addition, 
AMH examination verified that the ovarian reserve was not 
affected by PXL. PXL only affected antral follicles. That was 
consistent with the results of former studies, which reported 
that PXL acted on cells with active division, irrespective of 
their malignancy (30), since the development from secondary 
to antral follicles is a process in which granulosa cells, theca 
cells and vessels proliferate rapidly (31). The transient impact 
of PXL may be due to its short plasma half-time (32-34) and 
limited effect on pre-antral follicles. When pre-antral follicles 
grew into antral follicles in the next estrous cycle, the plasma 
concentration of PXL had already decreased. As a result, after 
one estrous cycle, the morphology of follicles was able to 
recover.

To understand which stage of oocytes in antral-preovula-
tory follicles would be affected by PXL, an in vitro experiment 
was carried out. The results revealed that, following exposure 
to PXL, mice GV oocytes were capable of maturation, which 
suggested that GV oocytes were insensitive to PXL, since 
microtubules had not assembled into specific forms at this 
stage (35,36). However, oocytes in MⅠ or MⅡ were very sensi-
tive to PXL, as their development depends on the assembly of 
microtubules (37,38) and the formation of a spindle apparatus, 
which were destroyed by exposure to PXL.

To confirm the effect of PXL on oocytes in vivo, an animal 
model was designed to estimate the time mice required to 
recover normal ovulation. This was measured through ovarian 
stimulation of mice at different time-points following chemo-
therapy. It was determined that PXL caused acute oocyte 
damage. Following the administration of PMSG in mice 1 day 
after chemotherapy, when oocytes were in antral-preovulatory 
follicles and directly exposed to PXL, the number and quality 
of oocytes was markedly decreased. Following 1 estrous cycle, 
MⅡ oocytes collected in the PXL group had a similar quality 
to those of the control group. Two estrous cycles after chemo-
therapy, the MⅡ oocytes in the PXL and control groups were 
totally comparable. These results were consistent with the tran-
sient effect of PXL on antral follicles, and supplemented the 
findings of a previous study, which stated that PXL caused a 
meiotic maturation delay and spindle defects in mouse oocytes 
on hCG trigger day (14).

The mating experiment indicated that, although PXL did 
not disrupt copulation, it could cause stillbirths, which was 
consistent with a previous study (18). Following 1 estrous 
cycle, the recovery of litter size and disappearance of stillbirth 
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in the PXL group was consistent with the effect of PXL on 
antral follicles and oocytes, further verifying the transient 
effect of PXL in vivo. Of note, there was 1 stillbirth on day 11 
in the PXL group, which may have been a random incident, 
since there was no other stillbirth in any subsequent mating; 
3 stillbirths were recorded in the control group on day 1. The 
karyotypes of every live pup delivered in all four groups were 
normal, which indicated that PXL caused lethal impairment in 
oocytes. On day 16, a slope in the pregnancy rate was observed 
in the PXL group, following repeated experiments. However, 
on days 30 and 45 following chemotherapy, the pregnancy 
rate and litter size in the PXL group were similar to those 
of the control group. This result suggested that the reduced 
pregnancy rate in the PXL group on day 16 was not due to the 
decrease in ovarian reserve, but other unknown reasons that 
require further exploration.

GnRHa have been studied as protective agents of chemo-
therapy-induced ovarian failure for decades. The mechanism 
of GnRHa was considered to be decreasing FSH levels and 
suppressing follicle growth through the pituitary-gonadal 
axis (39), as well as upregulating anti-apoptotic molecules (40) 
and decreasing the exposure of primordial follicles to cytotoxic 
agents (41). However due to contradictory results of clinical 
trials (23,42), to date, GnRHa has not been recommended as a 
regular ovarian protective agent (43,44). In the present study, 
the follicle count results revealed that GnRHa suppressed 
follicle maturation effectively. GnRHa reduced atretic follicles 
in the PXL+GnRHa group, which suggested that pretreatment 
with GnRHa kept ovaries in a relatively quiescent condition 
to avoid damage induced by PXL to antral follicles. It was 
speculated that the growing follicles were suppressed due to 
the administration of GnRHa before they became sensitive to 
PXL. During PMSG or mating-induced ovulation when the 
plasma concentration of PXL decreased rapidly, exposure to 
PXL at lower concentrations led to the better-quality of oocytes. 
In the mating experiment, mice that received a GnRHa injec-
tion delivered fewer litters, since GnRHa disrupted copulation 
by suppressing reproductive hormones. In combination, the 
protective effect of GnRHa was not obvious, possibly due to 
the short duration of the effect of PXL on ovaries.

Multiple-dose administration of PXL had a similar effect 
on ovaries to that of the single-dose experiment, suggesting that 
there was no cumulative effect or follicle exhaustion caused 
by PXL. This mouse model mimicked the common clinical 
chemotherapy regimen with PXL included [i.e., TP regimen 
in ovarian cancer (45) and AC-T regimen in breast cancer (11), 
in which multiple courses of PXL treatment are required]. 
Notably, ovulation in the PXL+GnRHa group was higher than 
that of the control 1 estrous cycle after the last dose of PXL. 
This may be due to the controlled ovarian hyperstimulation 
effect of GnRHa followed by gonadotrophin PMSG. This 
suggested that the temporary destruction of the oocytes was 
more likely associated with the last dose of PXL, which once 
again underlined the transient effect of PXL on ovaries.

In clinical practice, physicians may face several challenges, 
such as what the required duration of contraceptive method 
administration is following chemotherapy and whether 
GnRHa should be used to protect ovarian function. Physicians 
used to recommend 6 months of contraceptives based on expe-
rience. The present study revealed that PXL had no impact 

on ovarian reserve and only a transient one on oocytes. The 
present laboratory evidence provided the possibility for short-
ening contraceptive method administration following PXL 
chemotherapy. The present study also revealed that GnRHa 
has a protective effect on ovaries in PXL chemotherapy, and 
provided a scheme of GnRHa administration for reproductive 
protection, which suggests that the application of GnRHa 
should be encouraged in PXL-based chemotherapeutic regi-
mens. Further research should be carried out to determine 
whether the impact of PXL on human ovaries and oocytes is 
consistent with its impact on mouse ovaries and oocytes.
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