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Abstract: Zoonotic diseases or zoonoses are infections due to the natural transmission of pathogens
between species (animals and humans). More than 70% of emerging infectious diseases are attributed
to animal origin. Artificial Intelligence (AI) models have been used for studying zoonotic pathogens
and the factors that contribute to their spread. The aim of this literature survey is to synthesize
and analyze machine learning, and deep learning approaches applied to study zoonotic diseases to
understand predictive models to help researchers identify the risk factors, and develop mitigation
strategies. Based on our survey findings, machine learning and deep learning are commonly used for
the prediction of both foodborne and zoonotic pathogens as well as the factors associated with the
presence of the pathogens.
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1. Introduction

Zoonotic diseases or zoonoses are infections due to the natural transmission of
pathogens between animals and humans. Human-animal interactions could lead to the
spread of zoonoses by transmission of pathogenic viruses, bacteria, parasites, and fungi
through direct or indirect contact, or include vector-borne, food-borne, and water-borne
routes. More than 70% of emerging infectious diseases are attributed to animal origin. Thus,
zoonoses are a major public health concern with an estimated 2.7 million annual mortality.
In addition to their impact on human health, zoonoses impact livestock production and
security causing economics losses. Zoonotic diseases can result in epidemics and pan-
demics exemplified by the recent global coronavirus disease pandemic 2019 (COVID-19)
that impacted almost every aspect of life. The World Health Organization COVID-19
dashboard lists 608.3 million confirmed cases and 6.5 million deaths as of September
2022. Early economic projections in 2020 by the United Nations indicated a reduction in
global economic output by 8.5 trillion in two years due to COVID-19. Modeling of the
impact of climate change and land usage on altered viral-mammal networks predicts at
least 15,000 zoonotic spillovers by 2070. Climate hazards are expected to aggravate 58% of
known human infectious diseases. While post-outbreak control methods can help mitigate
the impact of zoonoses, proactive strategies to identify and mitigate risk are warranted to
prevent and reduce the threat to global health, safety, and economy.

In recent years, Artificial Intelligence (AI) models have been used for studying zoonotic
pathogens and the factors that contribute to their spread (Carlson et al., 2021 [1]).

In particular, Logistic Regression (Cox 1958 [2]) and Random Forest (Ho 1995 [3],
Breiman 2001 [4]) are widely used for modeling and drawing useful inferences about
zoonotic diseases and their transmission (Ntampaka et al., 2021 [5], Kiambi et al., 2020 [6],
Acharya et al., 2019 [7]). More recently, the effectiveness of artificial neural networks in
modeling zoonotic diseases and their causes have also been demonstrated in a number of
studies (Boleratz and Oscar 2022 [8], ZareBidaki et al., 2022 [9], Denholm et al., 2020 [10]).

In this review, we provide a summary of AI-based modeling approaches that have
been used for zoonotic diseases and pathogens. Throughout this article, we provide
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information about machine learning (ML) and AI models that are commonly used for
analyzing zoonotic pathogen cases, strategies for model selection, and a short summary of
results. The scope of this study excludes studies that utilize human or plant-based samples
(Buccioni et al., 2022 [11]), or the effects of vaccination (Seekatz et al., 2013 [12]).

The manuscript is organized as follows: Section 2 introduces some fundamental
machine learning concepts that are discussed in this paper. In Section 3, we describe
the databases and search strings used to identify studies. In the following sections, we
examine studies that use artificial intelligence models to address issues concerning zoonotic
diseases. We summarize the investigations related to diseases spread by animal contact in
Section 4, and food-borne zoonotic pathogens in Section 5. A brief summary of the merits
and demerits of popular algorithms included in this manuscript is provided in Section 6.
Conclusions are offered in Section 7.

2. Artificial Intelligence Models

While mathematical models are useful for scenarios involving a small number of
parameters (Schiraldi and Foschino 2022 [13], Adamczewski et al., 2022 [14], Herron
2022 [15]), models based on Artificial Intelligence are especially useful for predicting a wide
range of outcomes of interest based on practically any number of parameters—as long as
sufficient observations are available to construct such models. Machine learning approaches
can be broadly classified into unsupervised approaches for clustering unlabeled data sets,
and supervised algorithms for labeled datasets. More recently, with the reduced cost of
computation, it has been more useful to categorize them in to traditional machine learning
algorithms, which are useful for numerical and category-based inputs, and computationally
intensive deep learning algorithms, that can be applied to a wider range of input types,
including images and audio.

A brief description of traditional machine learning algorithms widely used in the
literature are as follows.

• K-Nearest Neighbors (K-NN): A KNN classifier is a non-parametric classifier that
uses proximity to determine whether or not an individual data point belongs to a
particular group. The nearest neighbors determine the class label by majority vote.

• Logistic Regression: It is a parametric, supervised algorithm that uses a logistic
(sigmoid) function to model independent variables, viz.,

Y =
1

1 + e−WX

where Y is the dependant variable, WX is the linear combination of independent
variables X and weights W.

• Random Forest (RT): A random forest is an ensemble learning technique that con-
structs an output class through a majority voting approach from a multitude of
decision trees.

• Naive Bayes (NB): A Naive Bayes classifier is a probabilistic classifier that makes
predictions applying Bayes’ theorem, assuming that features are independent.

• Support Vector Machine (SVM): Support vector machines are supervised classifica-
tion algorithms that produce a hyperplane (decision boundary) that separates inputs
into different categories.

• eXtreme Gradient Boosting (XGBoost): It is an ensemble-based boosting approach
that consists of multiple decision trees that run sequentially and are aimed at minimiz-
ing the error from the previous model.

The following is a brief description of deep learning models:

• Artificial Neural Network: Neural networks are composed of layers of artificial
neurons that are processed in a forward direction. This method is intended to identify
underlying relationships in a set of data. The system comprises three or more layers:
the input layer that accepts the input, any number of hidden layers of neurons, and
the output layer that produces the output.
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• Recurrent neural network (RNN): RNNs are a type of artificial neural network used
to address ordinal or temporal problems. Their distinct characteristic is their ability to
draw on information from previous inputs to influence current inputs and outputs.

• Long Short Term Memory network (LSTM): LSTMs are a special class of RNN with
the ability to learn long-term relationships.

• Generative Adversarial Network (GAN): A GAN is a supervised deep learning
method that learns from the regularities in data. The model is composed of two
submodels: a generator model and a discriminator model. A generator model at-
tempts to generate new samples from negative data, while a discriminator model
attempts to predict whether a sample is positive or negative.

• Auto-Encoder: An autoencoder is an unsupervised method using stacked layers of
neural networks composed of an encoder layer, a latent layer, and a decoder layer. By
embedding unlabeled data into a latent layer, the original input can be recreated by
the decoder layer. A supervised prediction layer can be added to the latent layer to
make predictions based on the low-dimensional meaningful representations derived
from the input samples.

3. Literature Review

An extensive literature review was conducted in accordance with PRISMA guidelines
to identify publications related to predictive modeling for zoonotic diseases published
between 2015 and 2022. For this study, PubMed, Google Scholar, ACM, IEEE Xplore,
ScienceDirect, and BMC were searched for related articles. The following search strings
identify studies relating to zoonotic pathogens mentioned in the UNEP and ILRI report
2020 [16] and the Dewey-Mattia et al., 2018 [17].

String 1: < Zoonotic_Pathogen > AND Predictive AND modeling
String 2: < Zoonotic_Pathogen > AND < Food_Source > AND Predictive
String 3: < Zoonotic_Pathogen > AND < Arti f icial_Intelligence_Model >
In the above search strings, < Zoonotic_Pathogen > refers to the bacterium, virus, and

parasite names listed in the UNEP and ILRI report 2020 [16] and the Dewey-Mattia et al.
2018 [17]. The term < Food_Source > refers to various animal-based foods, such as milk,
chicken, beef, cheese, etc. The term < Arti f icial_Intelligence_Model >, refers to the widely
used machine learning and deep learning models in classification (for example, random
forest). Of the 638 publications, 271 were excluded on the basis of their title, 34 papers
were excluded based on their abstracts, and 243 papers were excluded after reading the
method. Exclusions were made for studies that used human or water samples. In particular,
we excluded all studies that were not animal or zoonotic based. Lastly, eligible studies
focusing on predictive modeling analysis of zoonotic diseases were included in this review
(Figure 1).
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Figure 1. A flowchart illustrating a selection of manuscripts for inclusion in this review based on
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).

4. Contact-Based Zoonoses

Studies to investigate zoonotic diseases can be broadly categorized into disease pre-
diction (Section 4.1) and identification of risk factors for prevalence (Section 4.2).

4.1. Disease Prediction

Models for predicting incidence of diseases are broadly categorized in to traditional
machine learning models (which require only modest computing abilities) and deep learn-
ing models.

4.1.1. Machine Learning Models

Using a hybrid support vector machine (Cortes and Vapnik 1995 [18]) and partial
least square regression model, Chinnathambi et al., 2020 [19] effectively forecast trap
counts of Culex Tarsalis, female mosquitoes that transmit West Nile Virus, based on meteoro-
logical data, dead birds, WNV cases, and human deaths. Their results show that the SVM
model, which is based on decision boundaries, works better when classes are separable,
outperforms the other machine learning model with a mean absolute error of 3.01.

The linear regression model is generally more effective when there is a linear relation-
ship between the variables and the prediction target. Kirjušina et al., 2016 [20] evaluated
the larval biomass of naturally infected pine martens (Martes martes) of Latvia using
linear regression to investigate the transmission patterns of Trichinella spp. from animals to
humans. Trichinella parasites are cosmopolitan nematodes that infect mainly wild animals.
From pine martens that had been infected with T. britovi, muscle tissue was collected from
the abdomen, back, diaphragm, intercostal muscles, muscles of the head, shoulders, lower
and upper parts of the forelimbs and hind limbs, neck, rump and tail, and base and tip of
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the tongue. Evaluation of larval biomass in reservoir hosts is helpful to predict transmission
from carcasses of infected hosts of Trichinella spp. This study estimated the biomass of
Trichinella larvae from the number of larvae per gram of muscle. According to their results,
larvae found in each muscle were able to accurately predict the total larval burden in
the animal.

The use of logistic regression (Cox 1958 [2]) is demonstrated in Mencía-Ares et al.,
2021 [21] as an effective method for determining antimicrobial resistance (AMR) asso-
ciated with swine farms. The antimicrobial resistance of Campylobacter, Salmonella, and
Staphylococcus, the three common zoonotic pathogens in big populations, was assessed
for antimicrobial use on swine farm management variables. Univariate mixed-effects
logistic regression was used as the machine learning method to assess the influence of
production system type, sample type, and antimicrobial consumption on the occurrence of
multidrug resistant (MDR) phenotypes. Feces and slurry were sampled for Campylobacter;
oral fluid was sampled for Staphylococcus; and feces, slurry, and oral fluid were sampled for
Salmonella. This study demonstrated the link between antimicrobial consumption and resis-
tance and concluded that AMR development in Campylobacter spp. and Staphylococcus spp.
is influenced by the production system, with antimicrobial usage as a major factor.

Qekwana et al., 2017 [22] studied patterns and predictors of AMR among Staphylo-
coccus spp. isolates from canine clinical samples submitted to the University of Pretoria
bacteriology laboratory for routine diagnostic evaluation between 2007 and 2012. The
dataset contained 334 confirmed Staphylococcus isolates, composed of S. aureus and S.
pseudointermedius, with variables such as the site of collection, breed, sex, age, and the
antimicrobial agent used for testing. They explored predictors of AMR in S. aureus (98%
isolates) and S. pseudintermedius (77%) using logistic regression models. Chi-square or
Fisher’s Exact tests are used to find associations between categorical variables. An analysis
of the trends in the proportion of samples resistant to each antimicrobial agent is performed
using the Cochran–Armitage trend tests. A binary logistic regression model is used as an
initial model to identify antimicrobial resistance predictors from variables such as age, sex,
and breed. In the second step, a multivariate logistic regression is conducted using variables
identified with a p-value less than 0.2 in the first step. Based on the Wald Chi-Square Test,
predictor variables with p-values less than 0.05 were considered statistically significant.
More than 50% of the S. aureus isolates tested in their study were resistant to ampicillin,
penicillin, lincospectin, and clindamycin; more than half of the isolates of S. pseudointermedius
were resistant to both ampicillin and penicillin.

Conner et al., 2018 [23] examined AMR predictors among Staphylococcus spp. isolated
from canine specimens submitted to the University of Kentucky Veterinary Diagnostic
Laboratory (UKVDL) between 1993 and 2009. In this study, 4972 Staphylococcus isolates
were assessed with variables, including the year, Staphylococcus spp., geographic region,
dog breed, age, group, sex, and specimen source. Cochran–Armitage trend tests were used
to analyze the temporal trends for each antimicrobial. AMR and MDR were investigated
using logistic regression models. This study found 80 isolates of Staphylococcus spp. to
be resistant to 50% of the antimicrobials tested, while eight isolates were resistant to 75%
of the antimicrobials tested. These studies indicate that logistic regression is an effective
method for identifying the factors influencing antimicrobial resistance in samples with
varying levels of complexity.

American trypanosomiasis, or Chagas disease, is a neglected tropical disease caused by
the flagellated protozoan, Trypanosoma cruzi. This disease is transmitted by Haematophagous
Triatomines of the family Reduviidae, subfamily Triatominae. To detect differences in the
intestinal metabolome of the triatomine Rhodnius prolixus and predict whether the insect had
been exposed to T. cruzi, Eberhard et al., 2021 [24] used logistic regression, random forest
(Breiman 2001 [4]) classifiers, and gradient boosting (Friedman 2001 [25]) algorithms.
Results show that the ensemble approaches outperformed logistic regression for detecting
complex interactions between triatomine vectors and parasites.
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Ebola virus disease (EVD) is a rare and deadly disease affecting humans and non-
human primates. Using clinical, virologic, and transcriptomic features that distinguish
tolerant from lethal outcomes, Price et al., 2020 [26] studied host responses to the Ebola
virus infection in mice. Based on their analysis, the random forest model was found to be
capable of accurately predicting disease outcome.

Crimean-Congo haemorrhagic fever (CCHF) is a highly virulent human disease caused
by a single-stranded, negative sense RNA virus belonging to the genus Nairovirus in the
family Bunyaviridae. Using a structured Gaussian approach, Ak et al., 2020 [27] identified
risky geographic regions in Turkey for the CCHF (Ak et al., 2018 [28]). The dataset included
information on climate, land use, and animal and human populations at risk to capture
spatiotemporal transmission dynamics. According to their analysis, CCHF is primarily
driven by geographical dependence and climate effects on ticks. The Gaussian process,
which is based on a Gaussian probability distribution, can be effectively used to provide
reliable classification in uncertain conditions such as climate or spatiotemporal variables.

4.1.2. Deep Learning Models

The advent of neural networks has enabled researchers to derive inferences and
make informed decisions from a variety of complex, noisy, and varied datasets from areas
including vision, language, audio, and time-series. In one such study, Sadeghi et al.,
2015 [29] employed a neural network (McCulloch and Pitts 1943 [30]) method for detecting
Clostridium perfringens infection in chickens based on the characteristics of the sound they
produced. The five most important and effective vocal features from the poultry farm
were selected based on Fisher Discriminate Analysis (FDA). This study utilized a neural
network pattern recognition (NNPR) method to distinguish between healthy and unhealthy
chickens by analyzing sound signals, providing new directions for the detection and control
of zoonotic pathogens.

Using a hybrid PCA-ANN model, Chenar and Deng 2021 [31] successfully predicted
historical outbreaks of oyster norovirus along the northern Gulf of Mexico coast. Remote
sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite,
which are gathered at the center of each oyster harvesting area for 10 years, were used as
input to this system. Principal component analysis (PCA) was applied to reduce the size of
the MODIS Aqua data. The researchers trained an artificial neural network (ANN) model
using the first four years’ data, and successfully predicted the outbreaks for six additional
years features.

Avian influenza virus (HPAI) is a highly contagious virus that belongs to the family
Orthomyxoviridae and genus influenza virus A. Using poultry farm management variables,
the visit records of livestock-related vehicles, and environmental variables, Yoon et al.,
2020 [32] presented a deep learning model to assess avian influenza risk at the farm level.
The multi-layer perceptron model they developed has proven effective in assessing risk,
thus facilitating risk management activities and supporting control measures.

Bovine tuberculosis (bTB) is a progressive and debilitating zoonotic disease caused by
Mycobacterium bovis infection in tissues primarily associated with respiratory tracts and
lymph nodes. Denholm et al., 2020 [10] used an ANN architecture to predict the bTB status
of UK dairy cows by using mid-infrared spectral profiles, single intradermal comparative
cervical tuberculin (SICCT) skin-test results, culture data, and the presence of lesions. The
model enabled them to identify cows that are likely to fail the SICCT skin test, which allows
farmers to make early management decisions concerning potential reactor cows.

In another case, Cuan et al., 2022 [33] found an effective deep learning method based
on a bidirectional long short term memory neural network (Hochreiter and Schmidhuber
1997 [34]) for detecting Newcastle disease Virus. They extracted complex vocalizations from a
specific pathogen-free chicken (SPF) poultry and used them to develop a predictive model
to distinguish sick vocalizations from healthy vocalizations.

Brucellosis is an infectious disease caused by brucellae bacteria that infects the human
body and causes symptoms of fatigue, muscle aches, and joint pains. Convolution-based



Microorganisms 2022, 10, 1911 7 of 20

LSTM recurrent neural networks were employed by Shen et al., 2022 [35] for epidemic
disease prediction using animal stock, food supply information, population, and GDP data.
Based on this model, they devised a decision support system for controlling Brucella.

The use of neural network models is widespread; however, they are not suitable when
the problem does not demand a complex solution. In Arning et al., 2021 [36], popular neural
networks such as the recurrent neural network and the long short-term memory network
have been used along with ensemble models to determine the source of transmission of
Campylobacteriosis from a variety of food sources such as chicken, cattle, sheep, and wild
birds. The dataset included the whole genome sequences (WGS) and the core genome
MLST (cgMLST) of bacteria sampled from infected individuals, contaminated chickens,
cattle, sheep, and wild birds. Allelic profiles from MLST, cgMLST, and WGS were encoded
as k-mers using DSK (Rizk et al., 2013 [37]). They used the dataset to determine which
machine learning algorithm is the most effective for detecting the source of infection.
According to their results, tree-based ensemble methods (random forest and xgboost) are
more effective at predicting the source of human Campylobacteriosis with this sample set
than more complex neural network models. This highlights the importance of selecting the
appropriate algorithm.

Medical management has seen the benefits of deep learning in the prediction of mor-
bidity. Song et al., 2017 [38] developed a deep denoising autoencoder (Liou et al., 2014 [39])
to discover the relationship between gastrointestinal diseases and the contaminants. Data
were collected from four counties in China that included meat, aquatic foods, and eggs.
This study used a denoising auto-encoder with two phases: an encoder that constructs a
hidden representation from a noisy input and a decoder that reconstructs the original input
in a clean, “repaired” form. A supervised neural network model is also incorporated to
predict the presence of contaminants in food. Their analysis showed that deep learning
approaches are effective for building predictive models to detect diseases. Their neural
network architectures were found to be effective in finding the source of Campylobacteriosis,
a foodborne illness caused by Campylobacter jejuni.

4.2. Risk Factors for Pathogen Prevalence

The use of traditional machine learning methods has been instrumental in investigat-
ing the relationship between zoonotic diseases and the factors that affect the incidence and
distribution of these diseases. Pang et al., 2017 [40] used logistic regression (LR) and ran-
dom forest (RF) to analyze the association between meteorological factors and Listeria spp.
in a mixed produce and diary farm. This study collected fresh cow feces from a dairy barn,
cow feed, cow drinking water, and bird feces, and water from the lagoon. A number of
meteorological factors were taken into consideration in the analysis, including temperature,
precipitation, and wind speed. In both LR and RF models, wind speed and precipitation
were found to play a significant role in the transmission of Listeria spp. These experiments
demonstrate that both models have good predictive capabilities in analyzing risk factors,
such as weather.

There is evidence that models based on logistic regression are effective for under-
standing the role of host species in the maintenance and transmission of multihost zoonotic
pathogens. González-Barrio et al., 2015 [41] examined the role of European rabbits in the
Iberian region as a reservoir for Coxiella burnetii using logistic regression models. Serum,
spleen, uterus, mammary glands, as well as vaginal, sex, weight, and presence/absence
of ruminants and uterus swabs are among the variables examined. The results show that
rabbit density plays a major role in the ecology of C. burnetii, and that the higher risk of
exposure observed during the summer may be the result of increased indirect interactions
with C. burnetii shed by coexisting ruminants. A subsequent study by González-Barrio et al.
2015 [42] validated the use of multivariate logistic regression models in finding the po-
tential risk factors of C. burnetii based on red deer exposure to environmental, host, and
management factors.
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Due to its ability to determine the importance of features using model coefficients,
logistic regression is a popular choice for studies involving the impact of livestock farming
practices on zoonotic disease transmission. Using samples collected from 100 household
clusters with cattle in close proximity to humans, Lupindu et al., 2015 [43] studied the
transmission of fecal microorganisms between cattle, humans, water, and soil inside and
outside livestock farms, as well as the transfer from livestock farms to the neighborhood.
Ampicillin- and tetracycline-resistant Escherichia coli isolates were detected using logistic
regression analysis from cow feces, human stool, soil, and water samples. Using such
modeling provides a framework for improving livestock management practices to reduce
fecal pollution and the spread of pathogens from livestock manure to humans and the
environment. E. coli infections associated with pathogens such as Campylobacter, Salmonella,
and Listeria were studied by Xu et al., 2022 [44] in pastured poultry farms. For fecal, soil,
ceca, and whole carcass rinse processing and chilling samples, a logistic regression model
was developed. In their analysis, the amount of E. coli in the soil was significantly associated
with the predicted presence of Salmonella, and the percentage of Campylobacter in feces and
ceca decreased as E. coli concentration increased.

Yoo et al., 2022 [45] used a Bayesian logistic regression and an extreme gradient
boosting model to predict the risk of Avian influenza virus occurrence at poultry farms
using 12 spatial variables. According to their study, domestic duck farms and the minimum
distance to live bird markets were the leading risk factors for outbreaks.

A classification tree may also be used to improve an understanding of interconnected
and high-risk groups and their likelihood of contracting disease. Romero et al., 2020 [46]
evaluated potential herd-level predictors of bovine tuberculosis using decision trees and
multivariable logistic regression in high, edge, and low-risk areas in England. This dataset
contained information regarding demographic characteristics of the herd, the history of
bTB, cattle movements, badger density, and land class. Using their models, they were able
to analyze how bTB risk factors were interrelated to determine the likelihood of an incident
occurring in high-risk groups of herds. In addition, Romero et al., 2021 [47] conducted
studies using random forest and LASSO regression models on the same dataset to identify
high-risk farms and develop a targeted disease control strategy.

Even though our survey revealed relatively little use of Bayesian analyses, our re-
search has found that Britten et al., 2021 [48] explicitly quantified the advantages of
Bayesian hierarchical modeling when assisting researchers in selecting the most appro-
priate methodology to use when collecting heterogeneous environmental data sets. Using
Bayesian models with Laplace approximations and stochastic partial differential equa-
tion, Tumusiime et al., 2022 [49] estimated the risk of Rift Valley fever based on animal
level factors and meteorological factors. Rift Valley fever is a severe viral hemorrhagic fever
caused by RVF virus (genus Phlebovirus, order Bunyavirales). Their analyses were based
on posterior distributions of model parameters, which enabled them to identify spatial
autocorrelation in the data. Their findings concluded that low precipitation, seasonality,
haplic planosols, and low cattle density were highly associated with the risk of mortality.

A random forest-based predictive model was developed by Hwang et al., 2020 [50] to
quantify the relationship between meteorological factors and the presence of Salmonella on
pastured poultry farms. According to their analysis, the soil model identified humidity as
the most significant meteorological variable associated with Salmonella prevalence, while
the feces model identified high wind gust speed and average temperature as the most
significant. In a similar way, Xu et al., 2021 [51] developed a random forest predictive
model that used farm practices and processing variables to identify variables that can
reduce the prevalence of Campylobacter on pastured poultry farms.

In recent years, ensemble models have shown success in predicting pathogen presence
and evaluating pathogen risk based on a variety of data sets, such as genetic data and
remote sensing environmental data. Combining different models to reach an agreeable
decision makes ensemble approaches effective when developing predictive models based
on nonlinear, imbalanced data. Tsetse flies (family Glossinidae and genus Glossina), which are
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obligate parasites and biological vectors of trypanosomes, cause human sleeping sickness and
animal trypanosomiasis. Bishop et al., 2021 [52] used a random forest regression algorithm
to construct a model for learning about Glossina pallidipes habitat suitability across Kenya
and northern Tanzania based on genetic data and remotely sensed environmental data.
Based on the research, they concluded that vector control will be most successful in the Lake
Victoria Basin, and G. pallidipes should be managed as a single unit in most of eastern Kenya.

Yoo et al., 2021 [53] employed Random Forest, Gradient Boosting Machine (GBM),
and eXtreme Gradient Boosting models to predict avian influenza using environmental,
on-farm biosecurity, meteorological, vehicle movement, and wild bird surveillance data.
Eight to ten of the 19 premises infected were predicted to be at high risk in advance by
these models. Schreuder et al., 2022 [54] predicted spatial patterns associated with HPAI
outbreak risk on Dutch poultry farms based on wild bird density and land cover data.
Random forest prediction evaluation identified 20 best explaining predictors, of which
17 are water-associated bird species, 2 are birds of prey, and 1 is agricultural cover.

An ensemble approach identified influential factors for prevalence of Bacillus anthracis,
a soil-borne spore-producing neglected bacterium, is responsible for anthrax, an archetypal
animal disease. With the use of artificial neural networks, flexible discriminant analysis,
general linear models, general boosted models, classification tree analysis, multiple
adaptive regression splines, random forests, and maximum entropy approaches, Assefa
et al., 2020 [55] developed a prediction analysis for anthrax using bioclimatic variables, soil
characteristic variables, and livestock density variables. Based on their evaluation, the
model was influenced by a variety of precipitation factors and animal density factors.

Creutzfeldt–Jakob disease (CJD), also called mad cow disease, is a fatal neurodegenerative
disease resulting in lesions, cell damage, gliosis, and neuron loss. A popular variant of
CJD is caused by consumption of cattle products contaminated with bovine spongiform
encephalopathy (BSE). With the use of elastic net regression, recurrent neural networks,
and random forests, Bhakta and Byrne 2021 [56] learned the predictive causes of the CJD
epidemic in the United States. Their results indicated that beer consumption, obesity, and
tobacco use are strongly associated with CJD.

Boosting-based ensemble approaches combine weak learners sequentially to improve
observations collectively. As a well-known feature selection approach, it is widely used
to find features that have a significant impact on the prediction process. It enables the
identification of relevant factors involved in the presence of zoonotic pathogens. Prediction
of Aedes mosquitoes (A. aegypti and A. albopictus), which belong to the Flaviviridae virus
family and are the primary vector of the Zika virus, utilized boosted ensemble approach.
Using an ecological network that links flaviviruses and their mosquito vectors, Evans et al.,
2017 [57] developed a predictive model using gradient boosted regression tree to identify
associations between vector species and the Zika virus. According to their model, 35 species,
including Culex quinquefasciatus and Cx. pipiens, could transmit the disease. Based on
gradient boosted tree analysis of wild bird samples, Walsh et al., 2019 [58] predict avian
influenza viruses. Analysis of sample features, including bird age, sex, bird type, geographic
location, and rRT-PCR results, revealed that geographic location and rRT-PCR results are
predictive factors.

COVID-19 is caused by severe acute respiratory syndrome coronavirus2 (SARS-CoV-2),
a coronavirus. While the origin of COVID-19 (SARS-CoV-2) in humans is unknown, using
feature vectors derived from spike protein sequences using a position weight matrix
(PWM), Ali et al., 2022 [59] assessed the host specificity of coronaviruses in birds, bats,
camels, swine, humans, and weasels using boosted regression algorithms, Fischhoff et al.,
2021 [60] combined ecological traits with biological traits to predict the zoonotic potential
of SARS-CoV-2 in greater than 5000 mammals. Based on their results, 540 species belonging
to 13 orders were predicted to have a high zoonotic potential for Coronavirus.

Based on sequencing of 511 whole genome sequences and 650 spike protein sequences,
Brierley and Fowler 2021 [61] developed a random forest model to predict the host animal
for SARS-CoV-2. According to their analysis, human sequences of SARS-CoV-2 were
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predicted to have been acquired from bats (suborder Yinpterochiroptera), supporting bats as
the probable source of the current pandemic.

Using machine learning algorithms in combination with explainable artificial in-
telligence enhances the ability of humans to understand the reasoning behind the decisions
made by the AI. Specifically, it enables researchers to explain factors that contributed to
a particular prediction. Recently, there has been growing interest in using explanatory
tools to investigate the relative importance of biological and ecological factors in pathogen
presence. Ndraha et al., 2021 [62] examined the effect of sea surface temperature, pre-
cipitation, wind speed, wind gust, salinity, and acidity (pH) on Vibrio parahaemolyticus
using machine learning and explanatory tools. An extreme gradient boosting machine
learning algorithm was used to build a prediction model for Vibrio parahaemolyticus. Ac-
cording to the results obtained, XGBoost is capable of modeling the pathogen in oysters
and seawater, but not in sediments. As part of this study, partial dependence plots (PDPs)
were generated by SHapley Additive exPlanations (SHAP) (Lundberg and Lee 2017 [63])
methods to determine the relationship between environmental variables and the level of V.
parahaemolyticus. A SHAP dependency plot demonstrates how a single feature impacts the
model’s output. According to the relative importance variable analysis, variations in sea
surface temperature influence the concentration of V. parahaemolyticus in oysters.

Another study (Mollentze et al., 2021 [64]) determined which animal viruses are
capable of infecting humans; molecular sequencing data was used to rank pathogens
according to their zoonotic potential employing ensemble methods and SHAP plots.
Bergner et al., 2021 [65] collected metagenomic sequences of feces and saliva from com-
mon vampire bats and evaluated their zoonotic potential using XGBoost. An analysis of
variation in feature importance was performed using SHAP, and gradient boosted ma-
chines (GBMs) trained on virus taxonomy were used to rank phylogenetic proximity to
human-infecting viruses. Based on their findings, 58 viruses were detected as having a
higher zoonotic potential, which includes rabies virus, Hepeviridae, Coronaviridae, Reoviridae,
Astroviridae, and Picornaviridae.

West Nile virus is an emerging arthropod-borne virus that causes West Nile fever, which
is commonly transmitted by mosquitoes. An analysis of climate factors and regional data
was conducted by Wieland et al., 2021 [66] for predicting the distribution of native mosquito
species as vectors of the West Nile virus. An XGboost machine learning algorithm was
used for the evaluation model, and the SHAP library was used for the identification of
explanatory variables. They concluded that regional characteristics play a larger role in the
habitat of native mosquitoes than climatic conditions.

Selection of features that influence antimicrobial resistance based on majority voting
from diverse AI algorithms is a reliable method for predicting risk factors. Two traditional
machine learning approaches (Random Forest and XGBoost) as well as three deep learning
approaches (Multilayer Perceptron, Generative Adversarial Network (Mirza and Osin-
dero 2014 [67]), and Auto-Encoder Liou et al., 2014 [39]) were used in combination with
SHAP by Ayoola et al., 2022 [68] to identify critical farm management practices and
environmental variables that contribute to multidrug resistance in poultry pathogens in
broiler production systems representing background resistance to Salmonella, Listeria, and
Campylobacter. A number of recommendations were made in the paper based on the
findings in order to mitigate potential multidrug resistance and the prevalence of Salmonella
and Listeria in pastured poultry.

A Poisson point process is another predictive model that assumes independence
between samples to be effective. Using wildlife-livestock interfaces, Walsh et al., 2021 [69]
examined the landscape epidemiology of Japanese encephalitis virus (JEV) outbreaks in India.
JEV is a zoonotic disease spread by mosquitoes, particularly Culex tritaeniorhynchus. Using
a poisson point process, outbreak risk was modeled, which indicated that habitat suitability
of ardeid birds and pig density play prominent roles in outbreaks.

Utilizing a maximum entropy machine learning model, Walsh et al., 2017 [70] exam-
ined the ecological role of wildlife reservoirs and surface water features in the increasing
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risk of RVF outbreaks. RVF outbreaks were correlated with wetlands, Bovidae species
richness, and sheep density in their validation study, demonstrating the effectiveness of
the maximum entropy machine learning model in learning risk factors. In another study,
MaxEnt model is used to determine the spatial distribution of exposure, identify environ-
mental parameters, and identified high exposure risk areas for sheep and goats to C. burnetii
in central Greece Valiakos et al., 2017 [71]. Based on the results of this study, there is a
probability of exposure to C burnetii of greater than 70% in low altitude zones, irrigated
and cultivated agricultural areas, and pastures.

Walsh et al., 2019 [72] evaluated anthrax’s geographical suitability in India using a
maximum entropy (Maxent) machine learning approach that considered both biotic and
abiotic factors. There was a significant impact of water–soil balance, soil chemistry, and
historic forest loss on the model, and the elephant-livestock interface played a crucial role
in the cycle of anthrax.

Using a long short-term memory model, Tu et al., 2021 [73] assessed the relationship
between meteorological factors and population density of Culex tritaeniorhynchus. Their
analysis showed that mean air temperature and relative humidity had a positive effect
on outbreak risk and intensity, suggesting the potential application of neural networks in
identifying the factors that influence zoonotic diseases.

A summary of contact-based zoonoses studies, the artificial intelligence model that
was used, its application, etiology, and references can be found in Table 1.

Table 1. Summary of AI models and their applications in zoonoses literature.

Model Application Etiology Reference

Logistic Regression

disease prediction Campylobacter
Salmonella
Staphylococcus

Mencía-Ares et al., 2021 [21]

disease prediction Staphylococcus spp. Qekwana et al., 2017 [22]
disease prediction Staphylococcus spp. Conner et al., 2018 [23]

contamination factor Coxiella burnetii González-Barrio et al., 2015 [41]

contamination factor Coxiella burnetii González-Barrio et al., 2015 [42]

contamination factor Escherichia coli Lupindu et al., 2015 [43]

contamination factor Campylobacter
Salmonella
Listeria

Xu et al., 2022 [44]

Random forest

disease prediction Ebola virus Price et al., 2020 [26]
contamination factor Salmonella hwang et al., 2020 [50]
contamination factor Campylobacter Xu et al., 2021 [51]
contamination factor Glossina pallidipes Bishop et al., 2021 [52]
contamination factor Avian influenza Schreuder et al., 2022 [54]
contamination factor SARS-CoV-2 Brierley and Fowler 2021 [61]
contamination factor SARS-CoV-2 Fischhoff et al., 2021 [60]

Gradient boosted regression contamination factor Zika Virus Evans et al., 2017 [57]
contamination factor Avian influenza viruses Walsh et al., 2019 [58]

Poisson Point Process contamination factor Japanese encephalitis virus Walsh et al., 2021 [69]

Baysian Model contamination factor Rift Valley fever Tumusiime et al., 2022 [49]

Gaussian Process disease prediction Crimean-Congo
haemorrhagic fever

Ak et al., 2020 [27]
Ak et al., 2018 [28]

Maximum Entropy Model
contamination factor Rift Valley fever Walsh et al., 2017 [70]
contamination factor C. burnetii Valiakos et al., 2017 [71]
contamination factor Anthrax Walsh et al., 2019 [72]
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Table 1. Cont.

Model Application Etiology Reference

Logistic regression, Random forest,
Gradient boosting

disease prediction Trypanosoma cruzi Eberhard et al., 2021 [24]

Logistic regression, Random Forest contamination factor Listeria spp. Pang et al., 2017 [40]

Linear Regression disease prediction Trichinella spp. Kirjušina et al., 2016 [20]

Support Vector Machine,
least square regression

disease prediction Culex Tarsalis Chinnathambi et al., 2020 [19]

XGBoost SHAP

contamination factor Vibrio parahaemolyticus Ndraha et al., 2021 [62]

contamination factor Rabies virus, Hepeviridae,
Coronaviridae Reoviridae,
Astroviridae, Picornaviridae

Bergner et al., 2021 [65]

contamination factor West Nile virus Wieland et al., 2021 [66]

Artificial Neural Network

disease prediction Clostridium perfringens Sadeghi et al., 2015 [29]
disease prediction Norovirus Chenar and Deng 2021 [31]
disease prediction Avian influenza virus Yoon et al., 2020 [32]
disease prediction Bovine tuberculosis Denholm et al., 2020 [10]

Long short term memory
disease prediction Newcastle disease Virus Cuan et al., 2022 [33]
disease prediction Brucellosis Shen et al., 2022 [35]
contamination factor Japanese encephalitis virus Tu et al., 2021 [73]

Long short-term memory network,
XGboost Recurrent neural network,
Random forest

disease prediction Campylobacteriosis Arning et al., 2021 [36]

Auto-Encoder disease prediction Campylobacteriosis Song et al., 2017 [38]

Bayesian logistic regression, XGBoost contamination factor Avian influenza virus Yoo et al., 2022 [45]

Decision trees, Logistic regression contamination factor Bovine tuberculosis Romero et al., 2020 [46]

Random Forest, LASSO regression contamination factor Bovine tuberculosis Romero et al., 2021 [47]

Random Forest, XGBoost contamination factor Avian influenza Yoo et al., 2021 [53]

Neural Network, Random forest,
Maximum Entropy

contamination factor Anthrax Assefa et al., 2020 [55]

Recurrent neural network, Random
forest

contamination factor Creutzfeldt-Jakob disease Bhakta and Byrne 2021 [56]

Random Forest, XGBoost,
Multilayer Perceptron Generative
Adversarial Network, Auto-Encoder,
SHAP

contamination factor Salmonella, Listeria,
and Campylobacter

Ayoola et al., 2022 [68]

5. Food-Borne Pathogens

Based on our search, we have observed mainly two types of food-borne zoonotic
disease investigations. Based on the surrounding factors, the first approach attempts to
predict the presence of food-borne pathogens, while the second case analyzes the dynamics
of microbial populations in food.

Numerous factors contribute to the presence of bacteria in food, such as the initial
level of contamination, level of nutrients, temperature, pH, activity of the water, and other
microorganisms (https://pmp.errc.ars.usda.gov/ (accessed date: 18 September 2022)). It is,
therefore, possible to adjust these factors to both prevent food spoilage and ensure food
safety. Our literature search did not find any studies that examined the quality of the nutri-
ent medium, so such studies are not included in this review. The growth of microorganisms
in foods goes through different phases: the lag phase in which microorganisms adjust to
their surroundings, the log or exponential phase in which the population of microorganisms

https://pmp.errc.ars.usda.gov/
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grows exponentially over time, the stationary phase in which the population stabilizes, and
the death phase.

Predictive microbiology studies for foodborne pathogens include the estimation of
changes in microbial numbers within a production chain under a variety of processing and
environmental conditions (McMeekin et al., 2007 [74]). The objective is to determine the
number of microorganisms in food at any given point in time to determine the minimum
acceptable quality, to determine if the food is safe for consumption, or what treatment
can be applied to inactivate the microorganisms. Since microbiological laboratory testing
is a time-consuming process, and is not suitable for making quick decisions in real time,
predictive microbiology is beneficial for controlling risk and ensuring food safety.

This section presents predictive models and case studies for pathogen prediction
(Section 5.1) and bacterial growth dynamics (Section 5.2).

5.1. Pathogen Prediction

The purpose of this section is to present case studies that focus on predicting pathogens
from food sources. The results of such studies provide valuable guidance for developing a
food safety risk management strategy.

Franssen et al., 2017 [75] utilized quantitative microbiological risk assessment (QMRA)
methods in their paper to assess the risk of human Trichinellosis associated with the con-
sumption of meat from infected pigs, wild boars, and pigs raised in uncontrolled housing.
In order to assess the risk model, Trichinella muscle larvae , edible muscle types, heat
inactivation by cooking and portion sizes, and sensitivity at carcass control are taken into
account. To estimate the number of larvae in an animal’s diaphragm, a negative binomial
distribution is used with maximum likelihood parameter estimation. The beta binomial
distribution is used to model the variability associated with Trichinella muscle larvae detec-
tion. According to the analysis, testing for Trichinella in pigs that are kept under controlled
housing does not add any value to the protection of human health.

Given the vast array of artificial intelligence techniques available today, choosing
the right option for detecting the presence of bacteria can be quite challenging. To detect
bacteria such as Escherichia Coli and Staphylococcus Aureus in raw meat (beef), Amado
et al., 2019 [76] employed a variety of machine learning algorithms (K-Nearest Neighbors,
Support Vector Machine, Random Forest, Naive Bayes Classifier, and Artificial Neural
Network). The dataset inputs were derived from the emitted gases of meat. They demon-
strated that the Random Forest predictive model achieved the highest level of accuracy
(more than 95%) in this classification task, suggesting that ensemble-based models, which
combine multiple diverse models to generate a solution, are more effective than single
solutions. By comparing the bagging and boosting ensemble techniques, further insight
can be gained into the selection of ensemble-based prediction models for the detection of
pathogens in food.

Using the core genome multi-locus sequence typing data of Listeria monocytogenes
isolates, Tanui et al., 2022 [77] compared four popular machine learning approaches (three
ensembles) to attribute the source of human Listeriosis. The isolates from dairy, fruits,
leafy greens, meat, poultry, seafood, and vegetables were used in the dataset. The authors
employed supervised classification algorithms, including the random forest algorithm
(bagging approach), the support vector machine radial kernel algorithm, the stochastic
gradient boosting algorithm (boosting approach), and the logistic boost algorithm (boost-
ing approach) in their study. Their analysis found that 17.5% of human clinical cases were
caused by dairy products, 32.5% by fruits, 14.3% by leafy greens, 9.7% by meat, 4.6% by
poultry, and 18.8% by vegetables. Furthermore, they demonstrated that genomic data
combined with machine learning-based models can greatly enhance the ability to track
L. monocytogenes. Upon analysis, the authors found that the performance of ensemble mod-
els did not differ significantly, indicating that any ensemble method would be sufficient to
predict pathogens where the data is not highly complex.
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5.2. Bacterial Growth Dynamics

In this section, we present the case studies for bacterial growth dynamics in foods, the
dataset, and a brief conclusion to assist researchers in designing food safety models.

Salmonella enteritidis outbreaks that were reported in eleven U.S. states in October,
2018 listed shell eggs as a possible contributing factor (Centers for Disease Control and
Prevention 2018 [78]). Based on Monte Carlo simulation, Park et al., 2020 [79] developed
a predictive model for Salmonella spp. and S. aureus growth in fresh eggs under isothermal
and non-isothermal conditions. However, it has been estimated that there is no likelihood
of infection from ready-to-eat egg products due to Salmonella spp. or S. aureus. Monte Carlo
simulation is ideally suited for estimating stochastic and deterministic problems, although
poor parameters and constraints could compromise the model’s performance.

In a case study by Dourou et al., 2021 [80], machine learning techniques combined
with features derived from Fourier-transform infrared spectroscopy (FTIR) to demonstrate
the feasibility of recording the microbiota on foods under dynamic storage conditions.
This study focused on Salmonella’s ability to survive and proliferate during extended
refrigerated storage. They combined tree-based ensemble methods with support vector
regression (SVR) to estimate the microbial populations in chicken samples. A combination
of Salmonella-inoculated and non-inoculated chicken liver samples was used for food
quality evaluation. The tree-based ensemble approach is used to extract the critical features
that best represent the samples, and support vector regression model with radial kernel
function is used to estimate Salmonella levels. Overall, the results indicated that Salmonella
was capable of both surviving and growing at refrigeration temperatures.

In polynomial regression models, nth degree polynomial transformations of variables
are used to approximate the relationship, making it suitable for a wide range of functions.
To model the time to detect Staphylococcal enterotoxins produced by Staphylococcus aureus in
cooked chicken products, Hu et al., 2018 [81] proposed a growth predictive model using
linear polynomial regression analysis. Assessing the time required to reach the pathogen
detection limit could provide valuable insight into food preservation and the quantitative
assessment of risk. In this study, the inoculating concentration of S. aureus and the incuba-
tion temperature were selected as environmental variables. The high correlation coefficient
of the regression equation indicated the validity of their methodology. Their study con-
cluded that temperature is the most significant environmental factor that influences the
detection of S. enterotoxins.

Bulat et al., 2020 [82] measured the differences between microbial load and bacterial
shell life of A. hydrophila with respect to storage of sardines at different temperatures,
using a one-way analysis of variance (ANOVA) to determine differences in daily measures.
Sardines’ gills, skin, meat, and intestines were analyzed using statistical prediction models
to estimate their shelf-life and quality. According to their findings, sardines stored in the
refrigerator had a longer shelf life than those stored at the temperature used for seafood
processing. The sardines stored at the temperature used for seafood processing, however,
contained higher microbial loads than those stored in the refrigerator.

Summary of food-borne zoonotic pathogen-based studies, research focus, zoonotic
pathogen, data source, and references are given in the Table 2.
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Table 2. Summary of models and their applications in foodborne zoonoses.

Model Application Etiology Datasource Reference

Monte Carlo simulation population growth Salmonella spp. fresh eggs Park et al., 2020
[79]

Support Vector Regression population growth Salmonella spp. chicken Dourou et al., 2021
[80]

Polynomial Regression population growth Staphylococcus aureus chicken Hu et al., 2018
[81]

K-Nearest Neighbors, Support
Vector Machine, Random Forest,
Naive Bayes Classifier
and Artificial Neural Network

pathogen detection Escherichia coli
Staphylococcus aureus beef Amado et al., 2019

[76]

Random forest, Support vector machine,
Radial kernel, Stochastic gradient
boosting, Logistic boost

pathogen detection Listeria monocytogenes
dairy, fruits,
leafy greens, meat,
poultry, seafood

Tanui et al., 2022
[77]

6. Discussion

Models based on artificial intelligence are especially useful for predicting a wide range
of outcomes of interest based on practically any number of parameters, as long as sufficient
observations are available to construct such models.

Machine learning algorithms such as logistic regression, support vector machines,
gradient boosting algorithms, and random forest models are commonly used to predict
pathogens and their associated risks. In our literature review, we found studies using these
methods, along with linear regression, Naive Bayes, and K-Nearest Neighbors, to identify
popular food attributions to diseases. Several popular food choices, such as chicken, beef,
pork, dairy products, and seafood, have been found to pose a potential risk factor for
various zoonoses based on prediction models. The following are some of the commonly
used models, along with their advantages.

• Support Vector Machine (SVM): SVM is capable of understanding both the dynamics
of population growth for foodborne diseases as well as the prediction of disease and
pathogens. It is a memory-efficient algorithm that performs well when there is a
clear margin of separation between the samples. It is also capable of handling high-
dimensional data. The SVM, however, is not suited to handling large or highly
noisy datasets.

• Logistic Regression: Several studies have demonstrated the effectiveness of logistic
regression as a method for analyzing the influencing factors of zoonotic diseases and
those that affect their incidence and distribution. The logistic regression method is
suitable for both binary classification as well as multiclassification. In general, it is
effective when the data can be separated linearly and the coefficients of the model
can be used to determine the importance of the features in the prediction. However,
logistic regression does not provide a great deal of insight into nonlinear or complex
relationships.

• Random Forest (RF): Most studies that employed RF demonstrated that it outper-
formed other traditional machine learning models. The method is robust to outliers,
non-linear data, and high dimensional data. In addition, it is capable of handling
unbalanced data and exhibits low bias and variance.

• eXtreme Gradient Boosting (XGBoost): Similar to other ensemble approaches, XG-
Boost is capable of handling outliers, imbalanced data, high dimensional data, and
large datasets. The model is less susceptible to overfitting. Research studies have
demonstrated that XGBoost paired with SHAP, an explainable AI framework, is
an effective methodology for identifying the factors that contribute to the presence
of pathogens.
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The use of neural networks (deep learning) has been found to be effective for de-
tecting the presence of animal diseases and pathogens in our survey. Multi-layer neural
network and long short term memory models have been found to be effective in modeling
zoonotic pathogens.

• Artificial Neural Network: The ability to model complex, noisy, high dimensional
input enables neural network models to effectively use vocal features to distinguish
healthy chickens from unhealthy chickens. The use of sound or images in such studies
may provide new avenues for the control of diseases. On the other hand, we have
found that neural network models are not as effective as ensemble approaches when
no complex algorithm is required to learn the data.

• Long Short Term Memory network (LSTM): LSTM can be used to address ordinal or
temporal problems. LSTM’s distinct characteristic is its ability to draw on information
from previous inputs to influence current inputs and outputs. The results of our survey
indicate that LSTM can be effectively used for datasets with temporal properties
such as food supply, population, and GDP statistics. In situations where the data
necessitates the study of spatial or temporal associations, LSTM or RNN can be
selected as the algorithm of choice.

A quantitative representation of predictive algorithms in the literature is presented in
Figure 2.

Figure 2. Predictive algorithms and their representation in etiology based studies.

7. Conclusions

The aim of this literature survey is to synthesize and analyze machine learning and
deep learning approaches applied to study zoonotic diseases. Our review findings will
enable researchers to understand predictive models to identify the risk factors for transmis-
sion to develop mitigation strategies. The survey revealed that traditional machine learning
models are widely used in this field. According to our findings, support vector machines
are flexible enough to learn population growth dynamics and predict the occurrence of
diseases. With noisy, complex, and varied data, ensemble approaches such as random forest



Microorganisms 2022, 10, 1911 17 of 20

and xgboost have demonstrated excellent performance. However, deep learning methods
have tremendous potential for identifying appropriate protective models. Application of
deep learning techniques, such as segmentation and classification of images, can enhance
research into diagnosing irregularities caused by infections. While the resources in this
field are limited, transfer learning (Jeremy et al., 2005 [83]), where we reuse a previously
trained model as the basis for training a new model, or zero-shot-based learning (Chang
et al. 2008 [84]) that classifies data based on very few or even no labeled examples, have the
potential to make learning more efficient and contribute to the development of diagnostic
and preventive strategies to limit the spread of zoonotic diseases.
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