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Simple Summary: Histopathological, immunohistochemical and molecular investigation of
melanocytic lesion is the standard for the diagnosis of melanocytic lesions that are difficult to classify.
To ensure correct diagnosis, mass spectrometry has been proposed, specifically in the differential
diagnosis of spitz nevi and melanoma. Imaging mass spectrometry is an evolving technology, able to
discriminate various tumor entities, which combines morphological features and mass spectrometry.
The aim of this study is to apply imaging mass spectrometry to melanocytic lesion to discriminate
melanoma from nevi.

Abstract: The discrimination of malignant melanoma from benign nevi may be difficult in some
cases. For this reason, immunohistological and molecular techniques are included in the differential
diagnostic toolbox for these lesions. These methods are time consuming when applied subsequently
and, in some cases, no definitive diagnosis can be made. We studied both lesions by imaging mass
spectrometry (IMS) in a large cohort (n = 203) to determine a different proteomic profile between
cutaneous melanomas and melanocytic nevi. Sample preparation and instrument setting were tested
to obtain optimal results in term of data quality and reproducibility. A proteomic signature was
found by linear discriminant analysis to discern malignant melanoma from benign nevus (n = 113)
with an overall accuracy of >98%. The prediction model was tested in an independent set (n = 90)
reaching an overall accuracy of 93% in classifying melanoma from nevi. Statistical analysis of the IMS
data revealed mass-to-charge ratio (m/z) peaks which varied significantly (Area under the receiver
operating characteristic curve > 0.7) between the two tissue types. To our knowledge, this is the
largest IMS study of cutaneous melanoma and nevi performed up to now. Our findings clearly show
that discrimination of melanocytic nevi from melanoma is possible by IMS.

Keywords: classification; imaging mass spectrometry; MALDI; melanoma; nevi; proteomics

1. Introduction

Melanoma is the fifth most common cancer among men and women according to
statistics from the American Cancer Society’s (ACS) publication, Cancer Facts & Figures
2021 [1]. The number of people diagnosed with melanoma has been rising rapidly over the
past few decades.
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Approximately 25–33% of cutaneous melanomas arise from nevi [2,3], this percentage
can increase up to 50% for high-risk patients presenting numerous nevi. Benign as well as
atypical nevi have been shown to exist in histologic continuity with melanoma, suggesting
that these melanocytic proliferations are also susceptible to malignant transformation [4].
However, there are melanocytic lesions with an ambiguous histopathologic appearance
demonstrating some but not all of the features associated with common melanomas, making
their classification difficult, with a certain interobserver variability among pathologists [5].
The exact diagnosis of melanocytic lesions is required for adequate therapy and prognosis.
Besides histological evaluation by conventional histology and immunohistology [6–8],
molecular pathological methods have been developed to aid the diagnosis [9–11]. Despite
the application of next-generation sequencing, definite discrimination of melanomas from
nevi may be challenging.

In addition to molecular pathological methods (DNA- or RNA-based methodology),
proteomics has been considered a promising technology for discovering biomarkers. In
recent years, several proteomic methodologies have been developed that now make it pos-
sible to identify, characterize, and comparatively quantify the relative level of expression
of hundreds of proteins that are co-expressed in specific cell types or tissues [12–14]. The
introduction of the imaging mass spectrometry (IMS) technique allows the investigation of
peptides in a three-dimensional manner in histological specimens. IMS is a label-free ana-
lytical technique for the direct analysis of biological samples that revolutionized biological
mass spectrometry, and especially proteomics, because it ionizes biomolecules, maintaining
their spatial integrity. Recent advances in instrumentation, experimental procedures, and
bioinformatics approaches have greatly improved IMS technology. For example, IMS
analysis of large tissue sections (~4 cm2) at high spatial resolution was previously impaired
by the prohibitively slow acquisition speed of existing platforms. Commercial instruments
now incorporate lasers with the ability to operate with a speed of >50 pixel/second, allow-
ing a measurement time of less than 1 hour even at small pixel size (≤20 µm). Fast data
acquisition is now comparable to routine clinical analysis, such as immunohistochemistry,
and will greatly help to increase sample throughput. New software is now available that
allow statistical analysis of spectral data from several hundred thousand pixels; however,
the need of a data reduction tools will become important. In addition, increased molec-
ular accuracy for class prediction model has been reported in several proteomics studies
using IMS; thus, molecular characterization of tumors for each patient individually can be
achieved [15–20]. Other advances, such as combination of IMS data with other imaging
modalities by using machine learning provide an opportunity to develop next-generation
diagnostic tools [21]. The development of IMS technology in conjunction with conventional
methods holds great promise for cancer protein marker discovery and clinical translation.
Moreover, proteomic approaches have been used previously on melanoma samples to
identify diagnostic and prognostic signatures [22–26].

In this study, we applied matrix-assisted laser desorption/ionization (MALDI) imag-
ing mass spectrometry (IMS) to formalin-fixed paraffin-embedded (FFPE) tissue specimens
of malignant melanoma and melanocytic nevi to generate a proteomic classification method
capable to discern between both entities. One of the key aspects of MALDI IMS for routine
clinical application is to develop sample preparation protocols that ensure consistent and ac-
curate data acquisition. Sample preparation may vary between different tissues or types of
experiment, and this may produce variations in the data and data analysis outcome. Thus,
it is important to maintain controlled and standardized sample preparation procedures. We
have recently assessed the quality and reproducibility of MALDI IMS on FFPE tissues in a
multi-center study, which are prerequisites for clinical application. We could demonstrate
that measurements are reproducible when using a standard protocol, including standard
instrumentation and sample preparation conditions [27]. Here, we conducted preliminary
experiments to optimize our routine sample preparation protocol on skin tissues in which
experimental and data quality as well as reproducibility are assessed. We finally analyzed
and classified all melanocytic tissues using the proposed protocol. To our knowledge, this
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is the largest proteomics-based MALDI IMS study conducted on benign and malignant
melanocytic tissues.

2. Results
2.1. Sample Preparation Optimization

In a prior investigation, we explored two different antigen retrieval temperature and
trypsin deposition conditions (wet, dry) for their effect on the peptide signal. These pro-
cedures are performed on serial sections from the same melanoma tissue in duplicate.
We assessed the quality of data and the reproducibility of such methods by comparing
peptide profiles obtained from 100 random spectra from each tissue and each protocol
using R statistical software [28]. Finally, we performed a qualitative evaluation of the
peptide peaks with regard to intensity and tissue distribution. The number of detected
peaks between each protocol was similar for each replicate (Figure S1). However, the
overall peak intensity increased considerably using the protocol with the antigen retrieval
temperature = 110 ◦C (Figure S2). With this temperature condition, wet and dry trypsin
deposition methods showed similar spectra profiles, although the wet approach was faster
(~10 min) compared to the dry condition (~30 min). In addition, signal delocalization be-
havior across the measured areas did not appear to be a problem in any of the experiments
(Figure S2). As a result, the antigen retrieval temperature condition at 110 ◦C with the wet
trypsin deposition method was chosen for further analyses.

2.2. Statistical Analysis and Classification Study

Mass spectra from areas of interest were obtained for each sample including more
than 300 ion peptide peaks. Uniform Manifold Approximation and Projection (UMAP)
and principal component analysis (PCA) were initially used to simplify multidimensional
data by combining similar or redundant information into fewer variables. UMAP visually
revealed two distinct clusters of data corresponding to melanoma and melanocytic nevi.
Following PCA the top 3 principal components accounted for nearly 70% of the overall
variability (Figure 1).
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Figure 1. Dimensionality reduction of the imaging mass spectrometry (IMS) spectral data analyzed by SCiLS Lab and R
statistical software. (A) Uniform Manifold Approximation and Projection (UMAP) two-dimensional (2D) plot of melanoma
(blue spots) and melanocytic nevi (yellow spots). The results show a differential distribution of the two spot regions in
the dataset. (B) Variance plot of the principal component analysis (PCA) showing the first three components containing
approximately 70% of the variance percentage of the data.
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The diagnosis of the tissues was established by a combination of clinical information,
histology and molecular pathology. Hematoxylin and eosin (HE) images of the same
sections used for MALDI IMS showed very similar histological features to the HE serial
section annotated by the pathologist. This allowed to correlate HE-stained areas of interest
with the corresponding IMS data collected from the same section. Comparison of the mass
spectra average profiles between benign and malignant tissues showed specific peptide
expression patterns between the two tissue types. A significant change in expression of the
m/z peaks was evaluated based on receiver operator characteristic curve (ROC) analysis,
which revealed 187 ion peptides discriminating the two phenotypes (p ≤ 0.001, area under
the ROC curve (AUC) > 0.76). A spectral view comparison of some significant peptides is
shown in Figure 2.
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Figure 2. Overlay of the average spectra of melanoma (blue) and melanocytic nevi (yellow) in the training set. Zoomed
spectra of some of the discriminating peaks are shown. Specifically, the m/z ratio, equal to 976.5, 1198.5, 1428.7, and 1495.7,
were highly expressed in the melanoma, while signals at 3052.5 and 3068.5 m/z were overexpressed in the melanocytic nevi.
Receiver operating characteristic curve (ROC) analysis is shown for each peak and was >0.76.
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From the proteomic signatures obtained, including 187 peptide peaks, a linear discrim-
inant analysis (LDA) classification model of malignant and benign melanocytic tissues was
generated and validated. Leave-one-out cross-validation was applied, which indicated a
good performance of the prediction model (accuracy > 97%). The LDA model classified the
training set with a sensitivity of 96% (54/56 melanoma correctly classified) and a specificity
of 100% (57/57 nevus correctly classified). The algorithm was then run in the testing set,
where 91% (41/45) of melanoma and 95% (43/45) of nevi patients were correctly classified
(Table 1). The model achieved an overall accuracy of 98% in the training and 93% in the
testing set.

Table 1. Classification results of melanoma and nevi samples through MALDI MSI-based proteomic analysis.

Peptide
Signature Cohort Tissue Type n Patients Correct

Classification 1
Incorrect

Classification
Overall

Accuracy

187 Peptides
Training Melanoma 56 54 2

98%Nevus 57 57 0

Testing Melanoma 45 41 4
93%Nevus 45 43 2

18 Peptides
Training Melanoma 56 49 7

93%Nevus 57 56 1

Testing Melanoma 45 39 6
92%Nevus 45 44 1

1 In agreement with the diagnosis made by pathologists.

From the 187 m/z considered and based on the t-test statistical comparison (p ≤ 0.001),
a set of 18 peaks was selected which showed a minimum two-fold intensity difference
average. Specifically, 15 peptides peaks (m/z 631.4, 816.4, 872.4, 901.3, 914.4, 957.6, 958.5,
976.4, 1032.7, 1198.7, 1325.7, 1428.7, 1489.7, 1490.8, and 1495.7) were overexpressed in
melanoma, while three peptides (m/z 1138.6, 3052.6, and 3068.4) were overexpressed
in nevi. When we used this short peptide signature (18 peptide peaks) to classify the
same cohort of samples, the overall classification accuracy in the training and testing
set was 93% and 92%, respectively. Specifically, 49/56 melanoma and 56/57 nevi in
the training set, and 39/45 melanoma and 44/45 nevi in the testing set were correctly
classified (Table 1). Thus, each of the classification models showed a high recognition
capability. The outcome of the classification can be easily made visible using the class
imaging function in SCiLS Lab software, where class images were visualized based on a
color-encoded representation (Figure 3). As a result, LDA classification was congruent
with the histomorphological assessment.

A representative correlation of IMS classification with the histology of a melanoma
and a melanocytic nevus tissue is shown in Figure 4, depicting a strong association between
the diagnosis and IMS classification. These tissues were independent and not included
in the sample cohort for training and testing the classification model. In this example,
a total of 34 spectra were included in the histological annotated area of melanoma, and
30/34 were classified correctly by IMS. Likewise, for the nevus sample, 63/66 spectra were
classified as nevus in agreement with the pathological diagnosis.

2.3. Protein Identification

Eighteen m/z peaks were the most prominent discriminatory peptides in melanoma
compared with benign nevi. In total, 11 out of 18 peptides were sequenced and identified
directly from tissue using an on-tissue MS/MS strategy. Table S1 shows a list of the tryptic
peptide masses with their corresponding identifications. A MASCOT search identified the
peptide sequences with a lower mascot score of 51 as DNA-3-methyladenine glycosylase
(m/z 1138.6), and the highest score of 168 as collagen alpha-1(I) protein (m/z 3068.4), which
were both highly intense in nevi. Four m/z ions were identified as vimentin peptide ions
(872.4, 914.5, 1428.7, 1495.7) found overexpressed in melanoma tissues. Two peptides
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(m/z 976.4, 1998.7) derived from actin cytoplasmic 1 protein were also high expressed in
melanoma samples. Likewise, histone H2B type 1 (m/z 816.4), histone H4 (m/z 1325.7),
and stress-70 protein mitochondrial (m/z 958.5) were highly abundant in melanoma tissues.
MS/MS analysis of the discriminant ions at m/z 631.4, 901.3, 957.6, 1489.6, 1490.8, and
3052.6 did not yield significant sequence matches (MASCOT score < 30) due to their
low intensities.
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Figure 3. Imaging mass spectrometry classification results. (A) Cohort of melanoma (n samples = 101) and nevi (n samples
= 102) tissues. (B) Statistical classification model (LDA) was applied to all tissues and visualized in a color-encoded
representation. Specifically, blue was used for melanoma and yellow was used for melanocytic nevi classification. Class
images resembled the histopathological diagnosis made by pathologists. Enlargement of the MALDI IMS classification
result of some representative tissues (B, dashed square) is shown for three melanoma (C, Tissue 1, Tissue 2, Tissue 3) and
three nevi (D, Tissue 4, Tissue 5, Tissue 6). MALDI IMS classification of melanoma (C, pixels in blue) and melanocytic nevi
(D, pixels in yellow) is in agreement with the histopathological diagnosis (C, annotated regions in blue line = melanoma; D,
annotated region in yellow line = nevi). Scale bar = 100 µm.
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3. Discussion

Most of the melanocytic lesions can be classified by conventional histological in-
vestigation alone. Some melanocytic lesions require application of immunohistological
techniques [6–8] or even molecular biological methods [29]. Some lesions cannot be classi-
fied definitively [10,30]. Among the immunohistological markers, S100 protein, HMB-45,
MIB, PRAME, and p16 [6,8] are widely used. Other discriminating immunohistochemi-
cal markers include BRCA1-associated protein-1 (BAP-1), SOX10, and tyrosinase [31,32].
Loss of BAP-1 expression in malignant melanoma may be also helpful in discriminating
benign from malignant melanocytic lesions [31]. HMB-45, SOX10, and tyrosinase, but not
melan-A, proved to differentiate the nevi from malignant melanomas successfully, with
high specificity [32]. In situ hybridization assays for the differential diagnosis of nevus
versus melanoma is now widely used in dermatopathology laboratories. A four-probe
FISH assay targeting 6p25 (RREB1), 6q23 (MYB), Cep6 (centromere 6), and 11q13 (CCND1)
could discriminate between histologically unequivocal melanomas and benign nevi with a
sensitivity of 86.7% and specificity of 95.4% [11]. These sets were later modified as 9p21,
6p25, 11q13, and 8q24, which showed improved discriminatory power in differentiating
melanomas from nevi [9]. The value of CCND1 amplification by FISH as a diagnostic
marker for histologically undetermined early acral melanoma in situ was emphasized by
Cho-Vega, J.H, et al. [10]. Even today, with the next-generation sequencing techniques,
there is an overlap of mutations in melanocytic nevi and malignant melanomas [33].

Prior studies demonstrated that imaging mass spectrometry technology was success-
fully applied to differentiate melanocytic lesions (spitz nevus from malignant melanoma
showing spitzoid features) [34] or for prognostic information [27]. Since then, there has
been advancement in the instrumentation and refinement of the sample processing proto-
cols, especially towards to reproducibility and standardization [27,35,36]. Here, we used
a proteomics-based IMS approach, with a new generation platform for the analysis of
FFPE tissues. Prior to the classification study, we carried out experiments to implement
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standardization, and increase the quality, accuracy, and reproducibility of the mass spectral
data for these specific tissue entities. We observed that the antigen retrieval temperature
at 110 ◦C produced increased peak intensities when compared to the condition at 95 ◦C
(Figures S1 and S2). When we tested two different trypsin deposition methods (wet and
dry), we did not observe considerable differences in regard to intensity; thus, we opted
for the wet condition, as it was the fastest deposition method. In addition, off-tissue ar-
eas, including matrix and autolysis tryptic molecules, were analyzed alongside the tissue
samples. Off-tissues were examined to ensure that no contamination originating from back-
ground signals (e.g., matrix clusters and trypsin) could be considered in the data analysis.
Finally, the efficacy of the tryptic digestion was also evaluated by the presence of one very
common trypsin autolysis product (m/z 842.5). These quality assurance parameters were
carefully controlled and considered in the analysis of all tissues, ensuring a robust and
reproducible methodology.

PCA is usually used as a processing step prior to the application of more advanced data
analysis algorithms. Thus, an initial unsupervised clustering analysis was performed using
PCA to obtain information about the variability and heterogeneity of the spectra dataset.
As a result, the largest variance was described in the first three principal components
accounting of 70%, which could spread the data in two groups, corresponding to melanoma
and nevi. To achieve dimensionality reduction, UMAP analysis was performed, which
separated data in two main clusters corresponding to melanoma and melanocytic nevi.

We have demonstrated a high accuracy (98%) for a supervised LDA classifier dis-
tinguishing malignant melanoma and melanocytic nevi on independent data. When the
model was tested on a separated dataset, its performance was slightly lower in the range
of 91%–95% in terms of sensitivity and specificity, and 93% of overall accuracy. This is
likely due to the small number of samples used (90 patients) compared to the number of
samples used in the training set (113 patients). Furthermore, good performance of the LDA
classifier was also achieved with a smaller number of features (18 instead of 187 peptides),
reaching a comparable accuracy of 93% and 92% in the training and testing set, respectively.
In view of this, a decreased number of peptides did not improve the classification accuracy;
as a matter of fact, all 187 peptides were selected based on the area under the ROC curve
(AUC) ≥ 0.7, thus having a good discrimination quality. In this regard, a proteomics-based
IMS classification approach could help in the evaluation of melanocytic lesions as a rapid,
sensitive, specific, and especially unbiased method.

Most of the differentially expressed peptides were observed at higher intensity in the
melanoma specimens. We detected vimentin as an upregulated protein in the melanoma
samples. Numerous studies relating to proteomics have shown that vimentin is associ-
ated with tumor growth and metastasis in multiple malignancies [37–39]. Vimentin is a
major cytoskeletal component of mesenchymal cells, and it is often used as a marker for
the epithelial–mesenchymal transition during both normal development and metastatic
progression. Thus, overexpression of vimentin in tumors not only serves as a diagnostic
marker, but may also act as a predictor of metastatic potential [40].

The overexpression of actin in melanoma compared to nevi is ascribed to the active
remodeling of a cell’s actin cytoskeleton, essential for tumor cell invasion [41]. These results
correspond well with a previous analysis on cutaneous melanoma cells, where altered
expression of both actin and vimentin revealed increased the cellular elasticity with as a
consequence an increase in the migratory properties of melanoma cells [42]. Differences in
the expression of vimentin and actin in spitz nevi and spitzoid malignant melanoma were
detected by mass spectrometry in a previous study, but the results could not be validated
by immunohistochemistry [43]. This could be due to the limited sensitivity of antibodies
against actin and vimentin. In this regard, it is important to note that mass spectrometry
can also detect actin isoforms. In mammals, actin is represented by six isoforms that are
95–99% identical to each other; however, the six actin genes have vastly different functions
in vivo, and importance of specific amino acid sequences for each actin isoform are not
well understood [44]. Although actin is still associated mainly with the cytoskeleton, it
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has been shown that actin is also important inside the cell nucleus. Actin has been linked
to many gene expression processes, from gene activation to chromatin remodeling, but
also to maintenance of genomic integrity and intranuclear movement of chromosomes and
chromosomal loci [45]. Common high-confidence interactions highlight the role of actin
in chromatin-remodeling complexes and identify the histone-modifying complex human
Ada-Two-A-containing (hATAC) as a novel actin-containing nuclear complex [46].

Increased intensity of histones H2B and H4 in the malignant melanoma is in line with
other studies where dysregulation of the histone modification system contributed to the
loss of tumor suppressors or enhanced proliferative capacity in melanoma as well as in
other cancers [47,48]. Transcriptional and histone modification signatures that may be
molecular events driving melanoma progression and metastasis have been revealed, which
can aid in the identification of novel prognostic genes and drug targets for treating the
disease [49]. It has been shown that H4-methylation was different in the more aggressive
compared to the less aggressive melanoma cell line. Application of immunohistochemistry
of histone modifications may increase the accuracy and confidence in the diagnosis of
melanoma [50].

We found decreased collagen levels in malignant melanoma compared to nevi. This
could represent a structural rearrangement during the progression from benign to ma-
lignant lesions. It has been shown that blood-based biomarkers reflecting excessive
type III collagen were associated with worse survival after PD-1 inhibition in metastatic
melanoma [51].

Interestingly, 3-methyladenine DNA glycosylases, a DNA base repair enzyme, was low
expressed in melanoma compared to nevi tissues. This suggests a deficiency in removing
damaged bases from the genome that can lead to mutations, or breaks in DNA during
replication, and thus, contribute to the development of cancer [52].

A limitation of this study is the sample size. Further confirmation of the classification
analysis requires a larger group of cases possibly from different counties, for the transi-
tion from discovery-based approaches to standard clinical practices. Nevertheless, our
findings strongly demonstrate the effectiveness of IMS to discriminate melanoma from
melanocytic nevi.

4. Materials and Methods
4.1. Tissue Collection and Preparation

The tissue cohort analyzed in this study included melanocytic nevi (n = 102) and
malignant melanomas (n = 101). The histopathological features of each sample were
reviewed by an experienced pathologist (J.K.) to confirm diagnosis and tumor content. This
study was approved by the Ethical Committees of the University of Heidelberg (#315-20).

4.2. On-Tissue Digestion and Matrix Application

Tissues were processed according to standard and automated protocols. Briefly, tissue
samples were fixed for 12–24 h in 10% neutral buffered formalin, dehydrated in graded
ethanol, cleared in xylene, and embedded in paraffin. FFPE tissues were sectioned at
room temperature using a microtome at a thickness of 3 µm. The sections were then
mounted onto conductive indium tin oxide (ITO)-coated glass slides (Bruker Daltonik,
Bremen, Germany) pre-coated with poly-L-lysine (Sigma Aldrich Chemie, Taufkirchen,
Germany) solution (0.1% v/v in water), dried overnight at 37 ◦C, and then stored at room
temperature until analysis. The total samples set spanned 61 ITO slides containing over
200 tissue sections. Serial sections were also collected for each tissue and stained with HE
for histological examination.

FFPE sections were subjected to paraffin removal with xylene (100%, twice for 5 min),
isopropanol wash (100% for 5 min), graded ethanol washes (100%, 95%, 70%, and 50% for
5 min each), and purified water (5 s). All solvents are purchased from Fisher Scientific,
Schwerte, Germany). Dewax tissue sections were then placed directly into 10 mM Tris
(Sigma Aldrich Chemie, Taufkirchen, Germany) buffer pH 9.0 for antigen retrieval proce-
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dure, which were accomplished by pressure heating the slides for 20 min at 110 ◦C using a
Biocare Medical decloaking chamber (ZITOMED Systems GmbH, Berlin, Germany). For
a comparative sample preparation protocol that we investigated in a preliminary study,
antigen retrieval was performed at 95 ◦C for 20 min. The slides were cooled to room tem-
perature using a series of five washings in water [53]. Proteins were on-tissue digested into
peptide fragments using the procedure outlined by Ly et al. [27]. Briefly, trypsin (Promega,
Mannheim, Germany) was diluted in 20 mM ammonium bicarbonate (Sigma Aldrich
Chemie) to reach a concentration of 0.025 µg/µL. The trypsin solution was immediately
deposited across the tissues by an automatic reagent sprayer (TM-Sprayer, HTX Technolo-
gies, Chapel Hill, NC, USA) in eight layers using the following parameters: temperature of
30 ◦C, 0.03 mL/min flow rate, and 750 mm/min velocity. The trypsin spraying method
was another parameter that we wanted to evaluate in order to improve data quality. Thus,
in our test and comparative experiments, trypsin was sprayed in a dry mode, including
16 passes with the following parameters: temperature of 30 ◦C, 0.015 mL/min flow rate,
and 750 mm/min velocity. Slides were then placed inside the digestion chamber, prepared
with saturated potassium sulphate solution (Carl Roth Karlsruhe, Germany) and incubated
at 50 ◦C for 2 h. After digestion, tissues were sprayed with four layers of matrix solution
made from 10 mg/mL α-cyano-4-hydroxycinnamic acid (Bruker Daltonik, Billerica, MA,
USA) in 70% acetonitrile, 1% trifluoroacetic acid (Fisher Scientific) using the same sprayer
devise with the following parameters: temperature of 75 ◦C, 0.120 mL/min flow rate, and
1200 mm/min velocity.

4.3. MALDI Imaging Mass Spectrometry (IMS) Profiling

Direct tissue mass spectral analysis was carried out through a “profiling” approach
where experiments were designed to make comparisons between representative areas on
small areas of tissue. Thus, only specific locations within the tissue sections were analyzed
that correlated with the histological annotation of their corresponding consecutive sections.
The MALDI mass spectra presented here are generated in an automated mode using a
rapifleX MALDI Tissue-typer mass spectrometer (Bruker Daltonik) by averaging signals
from 500 laser pulses per matrix position. For every measurement, the instrument was
externally calibrated using the Peptide Calibration Standard II (Bruker Daltonik). Following
MALDI analysis, the matrix was removed from the samples with 100% ethanol, the slides
were then stained with HE and scanned with 40× objective magnification using two slide
scanners (3DHISTECH Ltd., Budapest, Hungary, and Aperio AT2 slide scanner, Leica
Biosystems, Wetzlar, Germany).

4.4. Data Analysis

Mass spectra were subjected to a series of processing steps to prepare data for statistical
analysis. The analytical goals of profiling experiments were two-fold: (1) the classification of
samples into two classes (melanoma/nevi) and (2) the identification of potential biomarkers
characteristic to each class. The preprocessing steps included baseline subtraction using
the Top Hat algorithm performed by flexImaging software (Bruker Daltonik), and spectra
normalization, which was performed by scaling spectra according to the total measured
ion current (TIC) using SCiLS lab software (Bruker Daltonik). All spectra were further
imported into R statistical software [28] and processed for mass shift analysis and alignment
procedure [54,55].

We performed an initial unsupervised clustering using Uniform Manifold Approxima-
tion and Projection (UMAP) and principal component analysis (PCA) to explore data and
maximize the variance. UMAP analysis was done in R statistical software (v. 4.1.0) with the
help of UMAP package (v.0.2.7.0). Perplexity was set to 30; other standard parameters were
not changed. The UMAP plot was created with the ggpubr package (v. 0.4.0). PCA was con-
ducted on all individual spectra from the annotated regions with weak denoising, and unit
variance scaling was dnoe by using SCiLS lab. Annotated HE images were overlaid with
MALDI data to correlate molecular MS data with histological entities in the same tissue
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section. Thus, spectra from each annotated region were grouped together for each patient
and for each melanocytic type. The cohort was then randomly separated into a training set,
including 56 malignant melanoma and 57 melanocytic nevi, used to build a classification
model, and a testing set, including 45 malignant melanoma and 45 melanocytic nevi, to
validate the model. The selection of the monoisotopic relevant peaks (n = 187) in the spectra
averages was assessed through the Receiver Operating Characteristic (ROC) analysis to
create a peak list which was further processed for spectra classification. The classification
study was accomplished using the linear discriminant analysis (LDA) algorithm supported
by SCiLS lab software.

4.5. Protein Identification

m/z ion peptides that were significantly expressed by the specific tissue phenotype
were identified using a rapifleX MALDI MS/MS Tissue-typer mass spectrometer (Bruker
Daltonik) directly from the digested tissues. Sample preparation for MALDI MS/MS was
identical to that described above. The mass spectrometer was first operated in reflectron
mode in the range of m/z 600–3000 to collect a full scan mass spectrum from the tissue
regions of interest to confirm the presence of the peaks of interest and check the parent ion
masses. For MS/MS analysis, the instrument was operated in Lift mode with the following
operating parameters: ion source voltage-1 = 20 kV, ion source voltage-2 = 19.45 kV,
reflector voltage-1 = 23.8 kV, reflector voltage-2 = 1.79 kV, reflector voltage-3 = 9.85 kV,
reflector detector voltage = 2.64 kV, laser repetition rate = 5000 Hz, sample rate = 1.6 ns,
realtime smooth = medium. The peptide precursor of interest was selected and fragmented
using collision-induced dissociation (CID) by increasing the laser fluence to generate high
fragment ion yields. Each MS/MS spectrum was processed with FlexAnalysis 4.0 (Bruker
Daltonik) for baseline subtraction using TopHat, peak peaking using the SNAP algorithm
and with a signal/noise threshold = 3. The resulting spectrum fragmentation patterns
were searched against the MASCOT database (Mascot 2.7.0.5 SwissProt_2020_06.fasta) for
corresponding sequence patterns. Parent and fragment ion tolerances were set at 200 ppm
and ± 0.3 Da, respectively. Up to one missed cleavage was included, and the variable
modifications allowed were: Arg-loss (C-term R), protein N terminus acetylation, histidine,
methionine, and proline oxidation. UniProtKB/Swiss-Prot (www.uniprot.org, accessed on
17 May 2021) was used as the reference database (human taxonomy). Trypsin was selected
as the proteolytic enzyme.

5. Conclusions

Although recent studies have contributed greatly to the development of melanoma
markers, up to now, there were no molecular biomarkers able to distinguish malignant
from benign nevi. We demonstrate that IMS, as an objective method using molecular
biomarkers, is a promising diagnostic tool to classify malignant melanoma from benign
melanocytic nevi. We anticipate that the application of IMS will offer great potential for the
improved characterization of clinical tissues, and suggest biomarker candidates that can be
routinely used in clinical practice.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13133197/s1, Figure S1: Evaluation of the peptide peaks in regards to their intensity,
Figure S2: Result of different antigen retrieval temperature and trypsin deposition protocols obtained
from two melanocytic areas of two individual tissues, Table S1: List of peptides identified by on-tissue
MALDI MS/MS.
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